A Highly Sensitive, Colorimetric Detection of Mercury (II) in Aqueous Media by Quaternary Ammonium Groups-Capped Gold Nanoparticles at room temperature

Dingbin Liu, Weisi Qu, Wenwen Chen, Wei Zhang, Zhuo Wang*, Xingyu Jiang*

CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience

and Technology, Beijing 100190, China, and Graduate School of Chinese Academy of Sciences,

Beijing 100080, China

E-mail: xingyujiang@nanoctr.cn; wangz@nanoctr.cn

Fax: (+86)10-82545631

Contents		Page
Materials and Instrumentation		2
Preparation of AuNPs		3
Preparation of QA-AuNPs		3
Table S1	A comparison of the QA-AuNPs and other AuNPs-based sensors for detecting Hg ²⁺	4
Figure S1	UV-vis absorption spectra of the QA-AuNPs in aqueous solutions with different pH values. a: pH 1.0-7.0, b: pH 9.0.	5
Figure S2	The ESI-MS data for the dissociated ligands from the surfaces of AuNPs	5
Table S2	XPS for QA-AuNPs before (a) and after the addition of Hg^{2+} ions (b)	6

Phone: (+86)10-82545611

Figure S3	Hg ²⁺					
Figure S4						
Figure S5	UV-vis absorption spectra of the Hg ²⁺ caused aggregation of QA-AuNPs					
Figure S6DLS measurements for QA-AuNPs before (a) and after (b) adding Hg^{2+}						
Figure S7	UV-vis absorption spectra of AuNPs in response to the low concentrations of Hg ²⁺	8				
Figure S8	The ESI-MS data for (a) the dissociated ligands from the surfaces of AuNPs induced by 500 nM Hg ²⁺ following with 30 s of solar light irradiation and (b) the solution of MTA that had been irradiated with 30 s of solar light.					
`igure S9 UV-vis absorption spectra of AuNPs in response to the selectivity of the system assisted by solar light irradiation for s		9				
Figure S10	igure S10 UV-vis spectra and colorimetric detection of Hg ²⁺ in drinking water at pH 1.0					
Figure S11	Selectivity of the Hg ²⁺ sensor	10				
REFERENCES:		11				

Materials and Instrumentation: All chemicals were purchased from major suppliers such as Alfa Aesar, Sigma-Aldrich and used as received, except for 11-mercapto-undecyl-trimethyl- ammonium, which was purchased from Prochimia. The UV-vis spectra were recorded with UV2450 spectrophotometer (Shimadzu). Mass spectrometry data were obtained with a Micromass LCT electronspray ionization time of flight (ESI TOF) with positive-ion mode. X-ray photoelectron spectroscopy (XPS) data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W radiation. Thermogravimetric analysis (TGA) of QA-AuNPs was performed using a Pyris 1 (Perkin Elmer) with a rate of 10 °C/ min from room temperature to 600 °C. Dynamic light scattering (DLS) and zeta potential (ζ) were performed on a Zeta Sizer Nano ZS (Malvern Zetasizer 3000HS and He/Ne laser at 632.8 nm at scattering angles of 90 at 25 °C). TEM images were

obtained by using a JEOL1400 TEM at an accelerating voltage of 100 kV. The solutions of AuNPs were irradiated with solar light generated by a solar light simulator (PLS-SXE300, Changtuo, Inc., China) with the intensity at ~ 396 mW/cm^2 . The drinking water used in this assay is bottled water from a local supermarket.

Preparation of AuNPs: AuNPs were prepared by the citrate-mediated reduction of HAuCl₄.¹ A stirred aqueous solution of HAuCl₄ (41 mg, 1 mM) in 100 mL water was heated to reflux, and a trisodium citrate solution (114 mg, 38.8 mM) dissolved in hot water (10 mL) was added rapidly. The solution was heated under reflux with vigorous stirring for another 15 min, its color changed from pale yellow to deep red. The solution was cooled to room temperature with a slow and continuous stir. The resulting solution was filtered with a polyethersulfone membrane (filter unit is 22 μ m) to remove large clusters and insoluble compounds. The sizes of the nanoparticles were about 13 nm by TEM analysis, the corresponding absorption band is at ~520 nm.

Preparation of QA-AuNPs: 11-Mercapto-undecyl-trimethyl-ammonium (MTA) modified gold nanoparticles were prepared by adding 10 mM MTA (100 μ L) to the as-prepared 13-nm-diameter AuNPs solution (10 nM, 10 mL) under slow stir. 10 μ L of 1 M HCl solution in water was added to the AuNPs solution. After reaction for 2 hours at room temperature, the MTA-modified AuNPs were purified by centrifugation (20 min, 14000×g) and resuspended in distilled water for five times. The concentration of the MTA-modified AuNPs was determined with the UV-vis spectra (the extinction coefficients of 13 nm of AuNPs is about 2.7×10⁸M⁻¹cm⁻¹).²

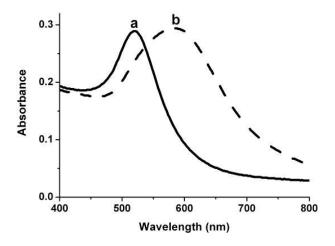

Sensor	Readout	LOD (µM)	Selectivity	Analysis time (min)	Operating temperature	References	
DNA-AuNPs Naked-eye or Absorption		0.1 ^a	Hg ²⁺	480	50 °C	(3)	
DNA-AuNPs	DNA-AuNPs Naked-eye or flatbed canner		Hg ²⁺	30	34 °C	(4)	
DNA-AuNPs Naked-eye or Absorption		1.0 ^a	Hg ²⁺	5	Room	(5)	
DNA-AuNPs Naked-eye or Absorption		0.01 ^a	Hg ^{2+ b}	20	Room	(6)	
DNA-AuNPs	DNA-AuNPs Fluorescence and naked-eye		Hg ²⁺	30	Room	(7)	
Acid-AuNPs Naked-eye or Absorption		0.1 ^a	Hg ^{2+ b}	120	Room	(8)	
Acid-AuNPs	Fluorescence	0.005 ^c	Hg ^{2+ b}	10	Room	(9)	
Acid-AuNPs	The hyper Rayleigh scattering	0.025	Hg ^{2+ b}	<7	Room	(10)	
Tween-AuNPs Naked-eye or Absorption		0.1	$\mathrm{Hg}^{2+},\mathrm{Ag}^{+}$	5	Room	(11)	
QA-AuNPs	Naked-eye or Absorption	0.03	Hg ²⁺	<1	Room	This study	

Table S1. A comparison of the QA-AuNPs and other AuNPs-based sensors for detecting Hg²⁺

^a Readout is UV-Vis absorption

^b By adding masking agents

^c Readout is fluorescence

Figure S1. UV-vis absorption spectra of the QA-AuNPs in aqueous solutions with different pH values. a: pH 1.0-7.0, b: pH 9.0.

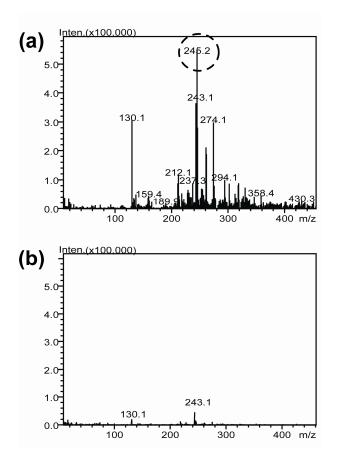


Figure S2. The ESI-MS data for the dissociated ligands from the surfaces of AuNPs (supernatant

collected after and before adding Hg^{2+}). (a) After the addition of Hg^{2+} , the value in the dashed circle is attributed to the ligands abstracted from the surfaces of AuNPs by Hg^{2+} ; (b) Before the addition of Hg^{2+} .

Table S2. XPS for QA-AuNPs before (a) and after the addition of Hg^{2+} ions (b).

ſ	Elements	Au	S	С	N	Cl	0	Au/S	Au/C	Au/N
ľ	At. %(a)	36.34	2.46	50.09	3.89	2.85	4.38	14.77	0.73	9.34
ŀ	At. %(b)	42.4	2.31	43.34	2.62	1.01	8.32	18.35	0.98	16.18

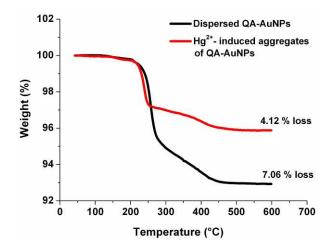


Figure S3. TGA data measuring the loss of ligands before and after adding Hg²⁺.

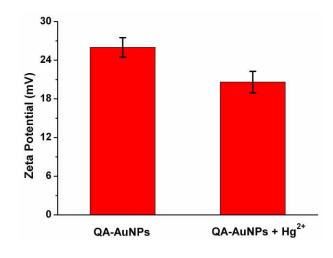


Figure S4. Zeta potential in response to QA-AuNPs before and after adding Hg^{2+} .

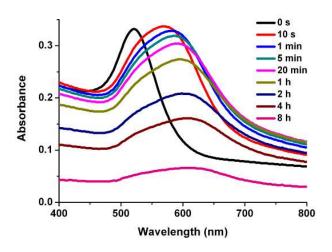


Figure S5. UV-vis absorption spectra of Hg^{2+} -caused aggregation of QA-AuNPs. The concentration of Hg^{2+} was 100 μ M.

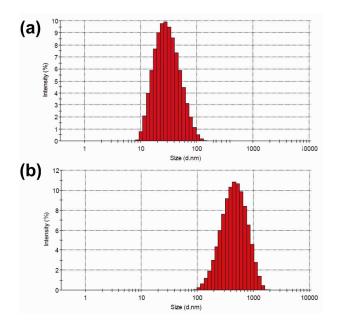
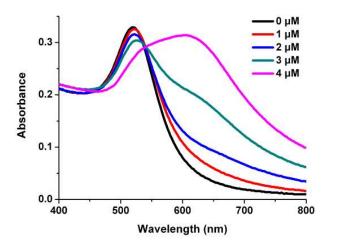
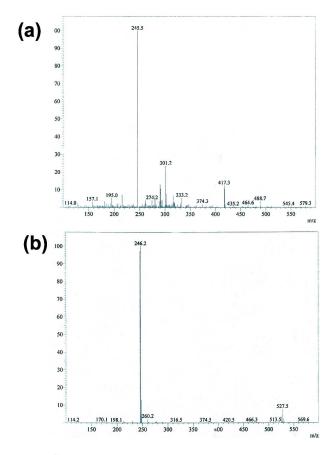
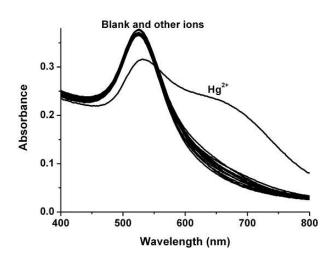
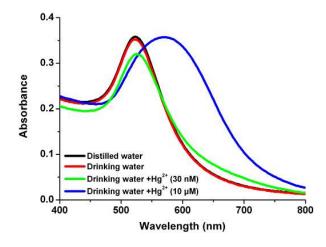


Figure S6. DLS measurements for QA-AuNPs before (a) and after (b) adding Hg²⁺.


Figure S7. UV-vis absorption spectra of AuNPs in response to the low concentrations of Hg^{2+} .

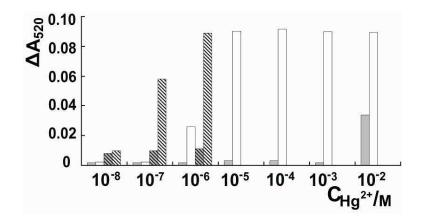

Figure S8. The ESI-MS data for (a) the dissociated ligands from the surfaces of AuNPs induced by 500 $nM Hg^{2+}$ following by 30 s of solar light irradiation and (b) the solution of MTA that had been irradiated with 30 s of solar light.

Figure S9. UV-vis absorption spectra of AuNPs that shows the selectivity of the system assisted by solar light irradiation for 30 s.

Figure S10. UV-vis spectra and colorimetric detection of Hg^{2+} in drinking water at pH 1.0: Black line, using distilled water as the solvent to disperse AuNPs; Red, using drinking water as the solvent to disperse AuNPs; Green, the drinking water solution of AuNPs added with 30 nM Hg^{2+} and irradiated with solar light for 30 s; Blue, the drinking water solution of AuNPs added with 10 μ M Hg^{2+} .

Figure S11. Selectivity of the Hg^{2+} sensor. Bars with white background represent absorbance responses after addition of various concentrations of Hg^{2+} ions together with the same concentration of other metallic ions. Bars with grey background represent absorbance responses after addition of various concentrations of other metallic ions. At lower concentrations of $3 \times 10^{-8} \sim 1 \times 10^{-6}$ M, the bars having biases represent absorbance response after solar light irradiation (30 s), the white and grey backgrounds represent the conditions as mentioned above.

REFERENCES:

- (1) Frens, G. Nature-Phys. Sci. 1973, 241, 20-22.
- (2) Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
- (3) Lee, J. S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2007, 46, 4093-4096.
- (4) Lee, J. S.; Mirkin, C. A. Anal. Chem. 2008, 80, 6805-6808.
- (5) Xue, X. J.; Wang, F.; Liu, X. G. J. Am. Chem. Soc. 2008, 130, 3244-3245.
- (6) Li, D.; Wieckowska, A.; Willner, I. Angew. Chem. Int. Ed. 2008, 47, 3927-3931.
- (7) Wang, H.; Wang, Y. X.; Jin, J. Y.; Yang, R. H. Anal. Chem. 2008, 80, 9021-9028.

- (8) Huang, C. C.; Chang, H. T. Chem. Commun. 2007, 1215-1217.
- (9) Huang, C. C.; Yang, Z.; Lee, H. K.; Chang, H. T. Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
- (10) Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Ray, P. C. J. Am. Chem. Soc. 2008, 130, 8038-8043.
- (11) Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. Anal. Chem. 2010, 82, 6830-6837.