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Derivation of flux equation based on model in Fig. S1. 

 

The normalized population of each state under steady state conditions was calculated by 

first setting the total rate of change of each state to zero as in Eq. A1; 

 

Eq. A1. 
d[A]

dt
=

d[BH2]

dt
=

d[BH3]

dt
=

d[CH2]

dt
=

d[CH3]

dt
= 0  

 

which yields the following system of linear equations Eq. A2 – Eq. A6: 

 

Eq. A2 – Eq. A6: 

0 =
d[A]

dt
= −k1[HO ]2[A]+ k

−1[BH2]

0 =
d[BH2]

dt
= k1[HO ]2[A]− (k

−1 + k3[HO ]+ k5[HI ]+ k2)[BH2]+ (k
−3 + k

−5)[BH3]+ k
−2[CH2]

0 =
d[BH3]

dt
= (k3[HO ]+ k5[HI ])[BH2]− (k

−3 + k
−5 + k4 )[BH3]+ k

−4[CH3]

0 =
d[CH2]

dt
= k2[BH2]− (k

−2 + k7[HO ]+ k9[HI ])[CH2]+ (k
−7 + k

−9)[CH3]

0 =
d[CH3]

dt
= k4[BH3]− (k

−4 + k
−7 + k

−9)[CH3]+ (k7[HO ]+ k9[HI ])[CH2]

 

 

Solving the system using Maxima (1) or Mathematica (2) yielded the populations of each 

state of the protein under steady-state kinetic conditions as a function of the rate constants 

and [HI] and [HO]; the populations were normalized to reflect an unchanging amount of 

total protein.    

 

Inward proton flux at a given pHin and pHout was defined by subtracting the difference of 

extraviral proton release and binding rates from the difference of intraviral proton release 

and binding rates, as follows in Eq. A7: 



 

Eq. A7. Flux = (Release,in – Binding,in) – (Release,out – Binding,out) 

Or, more specifically defined for this system in Eq. A8: 

Eq. A8. Flux = (k-9[CH3]+k-5[BH3])-(k9[HI][CH2]+k5[HI][BH2])- 

((k-7[CH3]+k-3[BH3]+k-1[BH2])-(k1[A][HO]
2
+k3[BH2][HO]+k7[CH2][HO])) 

where the protein terms are the normalized steady-state populations obtained from 

solving the linear system described above.  In the more complex model discussed below, 

flux was described similarly by summing all possible internal deprotonation event rates 

as the “Release, in” term, all possible internal protonation event rates as the “Binding, in” 

term, etc. 

 

Conceptual framework for electrical distances. 

 

Relative electrical distances in the flux models were based on the approach of Lear (3), 

but expanded to include additional minima and barriers corresponding to both 

conformational changes and protonation transitions. Net barriers only were fit for the 

BH2-CH2 conformational change. Rate constants included to represent “leak” processes 

were initially modeled as voltage-independent, as were conformational transitions 

involving fully deprotonated tetramer. 

 

Calculation of population-averaged pKa over two conformational states. 

 

The population-averaged pKa was calculated according to Eq. A9, where Ka,x and Ka,y 

represent the acid dissociation constant values of conformational states x and y, and Keq 

represents the equilibrium constant for conversion of yH to xH. 

 

Eq. A9Ka,avg =
Ka,y + KeqKa,x

1+ Keq

 

 



   

Figure S1.  Kinetic scheme used to derive flux equation representing mechanism in Fig. 

3; a similar approach was used for the mechanism shown in Fig. 5. A system of equations 

was constructed where the difference of all rates of formation and depletion of each 

protein state was set to zero, allowing for the determination of normalized steady-state 

populations as a function of rate constants (ki) as well as pHin and pHout,.  Flux was 

computed as the difference in proton release and proton binding rates on either side of the 

membrane under steady-state conditions (see above in Supporting Information).  Pairs of 

rate constants representing non-rate-determining processes could be combined into 

equilibrium constants, as in Fig. 3 and Fig. 5, although the fitting algorithm employed 

rate constants only.  One rate constant from each kinetic cycle could be eliminated by 

microscopic reversibility.  Certain rate constants were modeled as voltage-dependent (see 

above in Supporting Information).   

   



 

 

Figure S2.  Proteoliposome flux assay demonstrating proton transport activity of the M2 

construct used in Trp fluorescence studies when reconstituted under similar conditions.  

Upon triggering of flux with valinomycin, M2-containing large unilamellar vesicles (M2 

LUV, red squares) acidify in an amantadine-sensitive fashion (green circles).  Protein-

free control vesicles (black triangles) do not show a significant change in pH on the 

timescale of the experiment. 



  

Figure S3.  Fit of model in Fig. 3 to M2 chord conductance-pH relationship at -60 mV 

(upper line and set of points) and +60 mV (lower line and set of points); data from (4) 

and are normalized to pH 4, -60 mV. Chord conductance is defined as current divided by 

the difference of driving potential and reversal potential (4). Data points are based on 

rimantadine-sensitive net currents.  A good fit is obtained to both data sets. 



 

Figure S4.  Fit of mechanism shown in Fig. 5 to M2 chord conductance-pH data 

displayed as in Fig. S3. The predicted function at +60 mV is discontinuous because of 

software rounding error. 



Table S1.  Best-fit parameters for mechanism shown in Fig. 3 and Fig. S1.  Second 

column from left, parameters from model guidance with hypothesis that third proton 

binding favors “C” state (pKaC > pKaB).  Third column from left, parameters from model 

guidance with reverse hypothesis. For processes represented as equilibria in Fig. 3 and 

here, separate rate constants (e.g. as in Fig. S1) were used in the fitting. 

 

Parameter pKaC > pKaB pKaB > pKaC   

k1 5.00E+17 5.00E+17 M-2 sec-1  

pKa1 1.64E+01 1.64E+01   

K2 (toward BH3) 3.39E-01 1.73E+01   

k3 5.60E+06 3.86E+07 M-1 sec-1  

pKa3 5.99E+00 8.13E+00   

K4 (toward CH3) 1.02E+01 5.73E-02   

k5 0.00E+00 0.00E+00 M-1 sec-1  

k7 0.00E+00 0.00E+00 M-1 sec-1  

k9 7.41E+08 9.38E+07 M-1 sec-1  

pKa9 7.47E+00 5.65E+00   

Electrical distances (normalized to 1)  

Barrier BH2 outside 

prot 2.51E-01 2.52E-01 

  

BH3 state 2.50E-01 2.55E-01   

Barrier BH3-CH3  2.50E-01 2.55E-01   

CH3 state 2.52E-01 2.50E-01   

Barrier CH3 inside 

deprot 4.62E-01 4.67E-01 

  

 



Table S2.  Best-fit parameters for mechanism shown in Fig. 5, presented similarly to 

Table S1. For sets of rate constants shown as equilibria in Fig. 5, rate constants with 

positive subscripts correspond to rates in the downward direction in the mechanism 

figure. 

k1  1.45E+07 sec-1 

k2  9.93E+14 M-2 sec-1 

pKa2  1.43E+01  

k3  6.81E+05 sec-1 

k-3  5.39E+04 sec-1 

k4  0.00E+00 M-2 sec-1 

k5  1.07E+06 sec-1 

k6  9.90E+14 M-2 sec-1 

pKa6  1.56E+01  

k7  9.92E+03 sec-1 

k-7  1.01E+03 sec-1 

k8  4.07E+06 M-1 sec-1 

pKa8  5.99E+00  

k10  0.00E+00 M-1 sec-1 

k12  5.43E+08 M-1 sec-1 

pKa12  7.49E+00  

Relative electrical distances - first two protons 

Barrier A prot 0.00E+00  

AH2 state  3.35E-01  

Barrier AH2-BH2 3.30E-01  

BH2 state  4.16E-01  

Barrier BH2 deprot 9.67E-01  

Relative electrical distances - third proton 

Barrier BH2 prot 2.04E-01  

BH3 state  2.08E-01  

Barrier BH3-CH3 2.34E-01  



CH3 state  2.34E-01  

Barrier CH3 deprot 4.62E-01  
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