Asymmetric Deprotonation using *s*-BuLi or *i*-PrLi and Chiral Diamines in THF: the Diamine Matters

Giorgio Carbone,[†] Peter O'Brien^{*†} and Göran Hilmersson,^{*‡}

[†] Department of Chemistry, University of York, Heslington, York YO10 5DD UK

[‡]Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden

paob1@york.ac.uk

Supporting Information Available: Full experimental procedures and data, ¹H/¹³C NMR spectra of new compounds and full details of the ⁶Li and ¹³C NMR spectroscopic study.

Table of contents:

- S2 Investigation of the solution structure of *i*-PrLi complexed with (–)-sparteine and the
 (+)-sparteine surrogate using NMR spectroscopy
- S2 General methods for the NMR spectroscopy study
- S3 Preparation of [⁶Li]-*i*-PrLi
- S4 NMR spectra of *i*-PrLi/(–)-sparteine in Et_2O-d_{10}
- S8 NMR spectra of *i*-PrLi/(–)-sparteine in THF- d_{10}
- S12 NMR spectra of *i*-PrLi/(+)-sparteine surrogate in Et_2O-d_{10}
- S16 NMR spectra of *i*-PrLi/(+)-sparteine surrogate in Et_2O-d_{10}
- S19 Investigation of asymmetric deprotonation reactions using *i*-PrLi and *s*-BuLi with chiral diamines in different solvents
- S19 General
- S20 General Procedures
- S22 Experimental procedures and characterisation data
- S37 ¹H/¹³C NMR spectra and CSP-HPLC data
- S57 References for Supporting Information

Investigation of the solution structure of *i*-PrLi complexed with (–)-sparteine and the (+)-sparteine surrogate using NMR spectroscopy

General methods for the NMR spectroscopy study

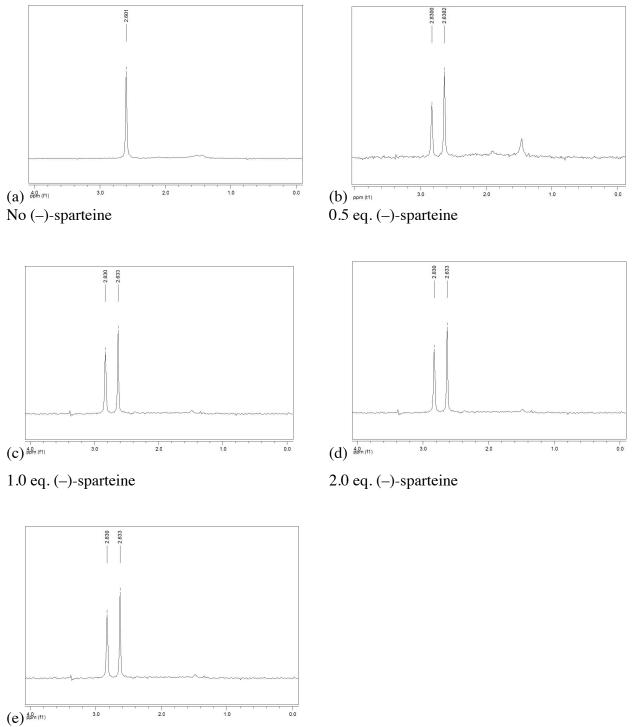
Glassware and syringes were dried at 50 °C in a vacuum oven before being transferred into a glove box (Braun equipped with a gas purification system that removes O_2 and moisture) containing a N_2 atmosphere. Typical moisture and O_2 content was less than 1.5 ppm. All manipulations concerning the addition reactions were carried out using gas-tight syringes. Et₂O- d_{10} and THF- d_8 were distilled under N_2 from sodium and benzophenone and were kept over 4 Å molecular sieves in septum-sealed flasks inside the glove box. (–)-Sparteine and the (+)-sparteine surrogate [(+)-(1*R*,2*S*,9*S*)-11-Methyl-7,11-Diazatricyclo[7.3.1.0^{2.7}]tridecane] were distilled from CaH₂.

All NMR spectra were recorded using a Varian Unity 500 spectrometer equipped with three channels using a 5 mm ¹H,¹³C,⁶Li triple resonance probe head, custom built by the Nalorac Company. The measurement frequencies were 500 MHz (¹H), 125 MHz (¹³C) and 73 MHz (⁶Li). The ¹³C NMR spectra were referenced to the solvent Et₂O- d_{10} signal at δ 65.5 (¹³C, -CD₂) and the THF- d_8 signal at δ 67.6 (¹³C, -CD₂). The ⁶Li NMR spectra were referenced to external 0.3 M [⁶Li]Cl in MeOH- d_4 (δ = 0.0). A typical 90° ⁶Li pulse on the instrument is 20 μ s.

For the ⁶Li,¹H-HOESY spectrum¹ the following parameters were used: spectral width of 2000 Hz (f_2 = ⁶Li) and 8000 Hz (f_1 = ¹H); 96 increments and 32 scans per increment in t_1 ; mixing time= 1.0 s; relaxation delay 6 s; sine-bell weighting in f_1 and f_2 for the phase sensitive spectrum; 23 μ s proton 90° decouple pulse.

Preparation of [⁶Li]-*i*-PrLi

[⁶Li]-*i*-PrLi was prepared as outlined below according to a published procedure.²


A block of ⁶Li (250 mg, 36.6 mmol, 96% ⁶Li) was cut into small pieces and placed in a 50 mL twonecked round-bottomed flask at rt under Ar. The ⁶Li was rinsed with 2-propanol (10 mL) and the solvent was removed using a syringe. Then, hexane (10 mL) was added and the flask was placed in an ultrasonic bath for 5 min. The suspension of LiOH in hexane was removed using a syringe. Then, hexane (10 mL) was added and the flask was placed in an ultrasonic bath for 5 min. The suspension of LiOH in hexane was removed using a syringe. This procedure was repeated until the hexane remained clear and the previously black ⁶Li pieces showed a metallic sheen. Then, 2-chloropropane (1.10 mL, 12.0 mmol) was added dropwise to a stirred suspension of the ⁶Li pieces in TBME (7 μ L, 0.05%) and pentane (5 mL) at rt under Ar. The resulting suspension was stirred and heated at reflux for 1.5 h. After being allowed to cool to rt, the suspension was centrifuged to remove any solids and the resulting solution was transferred *via* a syringe into a 25 mL round-bottomed flask under Ar. Assuming quantitative conversion of the 2-chloropropane, this produced 12.0 mmol of [⁶Li]-*i*-PrLi in pentane (5 mL) i.e. a 2.4 M solution of [⁶Li]-*i*-PrLi in pentane, which was stored at -30 °C under Ar.

NMR spectra of *i*-PrLi/(–)-sparteine in Et₂O-d₁₀

20 μ L of a 2.4 M solution of [⁶Li]-*i*-PrLi in pentane (0.048 mmol) was added to an NMR tube containing 700 μ L of Et₂O-*d*₁₀ (i.e. ~0.07 M solution of [⁶Li]-*i*-PrLi) through a rubber septum inside the glove box. The NMR tube was then transferred to the NMR instrument and cooled to -80 °C. A ⁶Li NMR spectrum was recorded (Figure S1a). Then, 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S1b). Then, a further 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S1b). Then, a further 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S1c). Then, a further 10 μ L of (–)-sparteine (0.04 mmol, ~1.0 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S1d). Then, a further 20 μ L of (–)-sparteine (0.08 mmol, ~2.0 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S1e).

Figure S1. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi/(–)-sparteine in Et_2O-d_{10} : (a) No (–)-sparteine; (b) 0.5 eq.

(-)-sparteine; (c) 1.0 eq. (-)-sparteine; (d) 2.0 eq. (-)-sparteine; (e) 4.0 eq. (-)-sparteine.

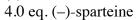
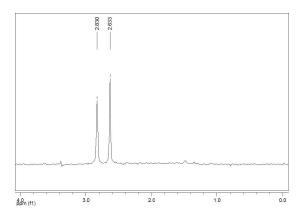
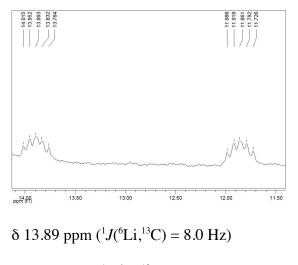
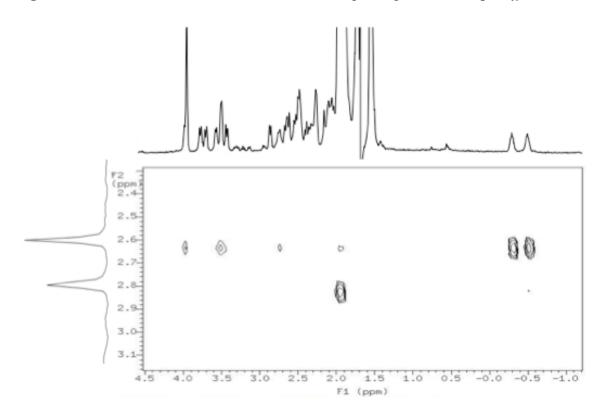




Figure S2. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi and 2.0 eq. (–)-sparteine in Et₂O-d₁₀.

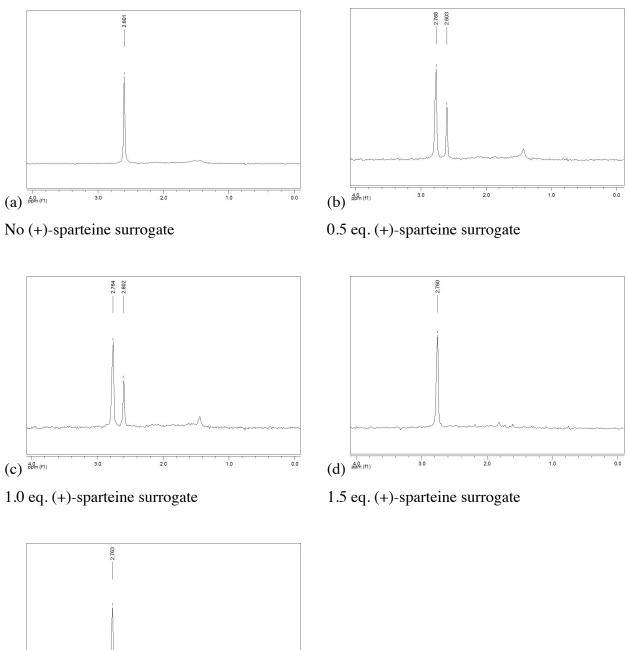
The ⁶Li NMR spectrum shows two different lithium environments.

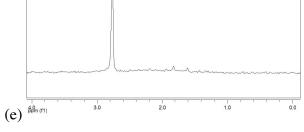

Figure S3. ¹³C NMR spectra of [⁶Li]-*i*-PrLi and 2.0 eq. (–)-sparteine in Et_2O-d_{10} .

 δ 11.86 ppm (¹*J*(⁶Li,¹³C) = 8.5 Hz)

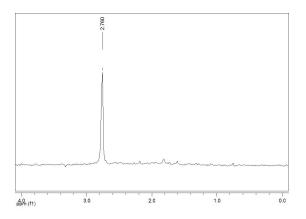

The ¹³C NMR spectrum shows two different carbon environments for the CH carbons of the *i*-Pr groups. Both are quintets which indicates that each CH couples to two lithium atoms. The magnitudes of the ¹*J*(⁶Li,¹³C) coupling constants (8.0 and 8.5 Hz) suggest a dimeric aggregate based on the empirical Bauer-Winchester-Schleyer rule for coupling constants ($J(^{6}Li,^{13}C) = (17 \pm 2)/n_{C}$ where n_{C} is the number of ⁶Li cations directly connected to the observed ¹³C).³ The ¹³C NMR spectrum also shows signals due to uncomplexed (–)-sparteine and (–)-sparteine complexed to the *i*-PrLi.

Figure S4. ⁶Li,¹H-HOESY of [⁶Li]-*i*-PrLi and 2.0 eq. (–)-sparteine in Et_2O-d_{10} at -80 °C.¹




The signal at δ 2.83 ppm does not show any NOE interactions with the (–)-sparteine resonances but does show a strong NOE interaction with the methyl group of the *i*-PrLi. In contrast, the signal at δ 2.63 ppm shows several NOE interactions with the (–)-sparteine resonances and a strong NOE to the CH protons of the *i*-PrLi.

Taking all of the NMR spectroscopic data together, heterodimer **3** (a 2:1 complex of *i*-PrLi and (–)-sparteine) was characterised for the solution structure of *i*-PrLi and 2.0 eq. (–)-sparteine (excess) in Et₂O at –80 °C. This is in agreement with the structure previously proposed by Beak and co-workers.⁴


20 μ L of a 2.4 M solution of [⁶Li]-*i*-PrLi in pentane (0.048 mmol) was added to an NMR tube containing 700 μ L of Et₂O-*d*₁₀ (i.e. ~0.07 M solution of [⁶Li]-*i*-PrLi) through a rubber septum inside the glove box. The NMR tube was then transferred to the NMR instrument and cooled to -80 °C. A ⁶Li NMR spectrum was recorded (Figure S5a). Then, 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5b). Then, a further 5 μ L of (+)sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5c). Then, a further 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5d). Then, a further 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5c). Then, a further 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5d). Then, a further 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S5e). **Figure S5**. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi/(+)-sparteine surrogate in Et_2O-d_{10} : (a) No (+)-sparteine surrogate; (b) 0.5 eq. (+)-sparteine surrogate; (c) 1.0 eq. (+)-sparteine surrogate; (d) 1.5 eq. (+)-sparteine surrogate; (e) 2.0 eq. (+)-sparteine surrogate.

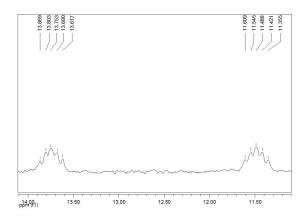
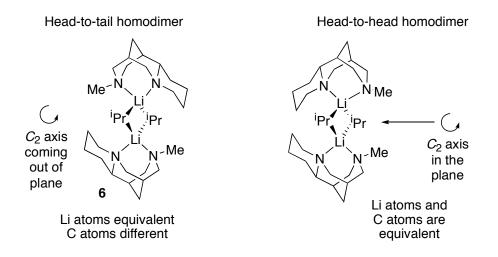

2.0 eq. (+)-sparteine surrogate

Figure S6. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi and 1.5 eq. (+)-sparteine surrogate in Et₂O-d₁₀.

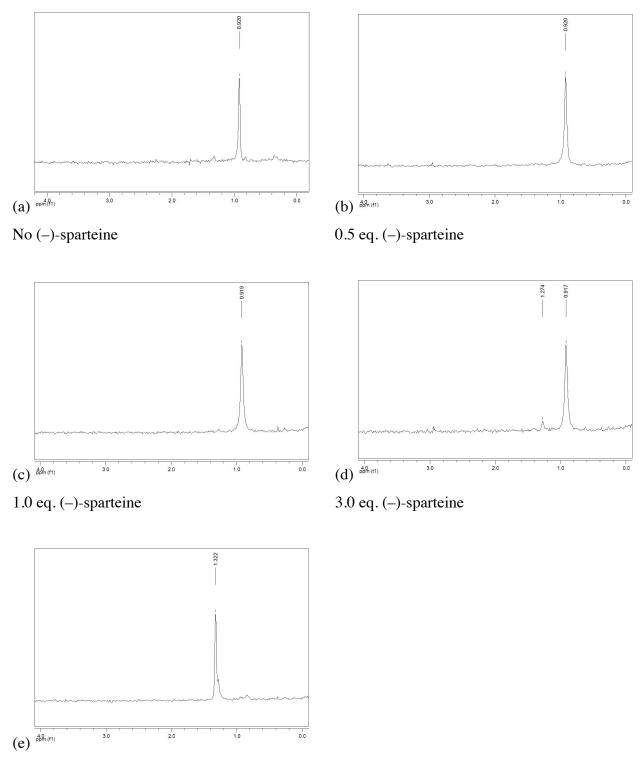
The ⁶Li NMR spectrum shows one lithium environment.


Figure S7. ¹³C NMR spectra of [⁶Li]-*i*-PrLi and 1.5 eq. (+)-sparteine surrogate in Et_2O-d_{10} .

- δ 13.75 ppm (¹*J*(⁶Li, ¹³C) = 8.0 Hz)
- δ 11.49 ppm (¹*J*(⁶Li, ¹³C) = 8.0 Hz)

The ¹³C NMR spectrum shows two different carbon environments for the CH carbons of the *i*-Pr groups. Both are quintets which indicates that each CH couples to two lithium atoms. The magnitudes of the ¹*J*(⁶Li,¹³C) coupling constants (8.0 Hz) suggest a dimeric aggregate based on the empirical Bauer-Winchester-Schleyer rule for coupling constants ($J(^{6}Li,^{13}C) = (17 \pm 2)/n_{C}$ where n_{C} is the number of ⁶Li cations directly connected to the observed ¹³C).³ The ¹³C NMR spectrum also shows signals due to uncomplexed (+)-sparteine surrogate and (+)-sparteine surrogate complexed to the *i*-PrLi.

Taking all of the NMR spectroscopic data together, a homodimer was characterised for the solution structure of *i*-PrLi and 1.5 eq. (+)-sparteine surrogate in Et₂O at -80 °C. However, there are two possible homodimers: a head-to-tail homodimer (**6**) and a head-to-head homodimer as shown below.



The head-to-tail homodimer **6** has equivalent lithium atoms and inequivalent carbon atoms due to the C_2 axis coming out of the plane. This is consistent with the ⁶Li and ¹³C NMR spectra. The head-to-head homodimer has equivalent lithium and carbon atoms due to the location of the C_2 axis as indicated above. Hence, head-to-tail homodimer was characterised for the solution structure of *i*-PrLi and 1.5 eq. (+)-sparteine surrogate in Et₂O at -80 °C.

NMR spectra of *i*-PrLi/(–)-sparteine in THF-d₈

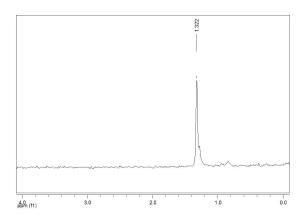

20 μ L of a 2.4 M solution of [⁶Li]-*i*-PrLi in pentane (0.048 mmol) was added to an NMR tube containing 700 μ L of THF-*d*₈ (i.e. ~0.07 M solution of [⁶Li]-*i*-PrLi) through a rubber septum inside the glove box. The NMR tube was then transferred to the NMR instrument and cooled to -80 °C. A ⁶Li NMR spectrum was recorded (Figure S8a). Then, 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S8b). Then, a further 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S8b). Then, a further 5 μ L of (–)-sparteine (0.02 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S8c). Then, a further 20 μ L of (–)-sparteine (0.08 mmol, ~2.0 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S8d). Then, a further 30 μ L of (–)-sparteine (0.12 mmol, ~3.0 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S8e).

Figure S8. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi/(–)-sparteine in THF- d_8 : (a) No (–)-sparteine; (b) 0.5 eq. (–)-sparteine; (c) 1.0 eq. (–)-sparteine; (d) 3.0 eq. (–)-sparteine; (e) 6.0 eq. (–)-sparteine.

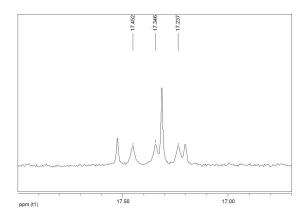
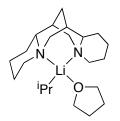

6.0 eq. (-)-sparteine

Figure S9. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi and 6.0 eq. (–)-sparteine in THF- d_8 .

The ⁶Li NMR spectrum shows one lithium environment. The shoulder on the signal is most likely due to a shimming artefact.


Figure S10. ¹³C NMR spectra of $[^{6}Li]$ -*i*-PrLi and 6.0 eq. (–)-sparteine in THF- d_{8} .

δ 17.35 ppm 1:1:1 triplet (¹*J*(⁶Li,¹³C) = 13.5 Hz) plus other signals (provisionally assigned to (–)-sparteine)

The ¹³C NMR spectrum shows one carbon environment for the CH carbon of the *i*-Pr group. It is a 1:1:1 triplet which indicates that the CH couples to one lithium atom. The magnitude of the ¹J(⁶Li,¹³C) coupling constant (13.5 Hz) is slightly lower than expected for a monomeric aggregate based on the empirical Bauer-Winchester-Schleyer rule for coupling constants (J(⁶Li,¹³C) = (17 ± 2)/ $n_{\rm C}$ where $n_{\rm C}$ is the number of ⁶Li cations directly connected to the observed ¹³C).³ The ¹³C NMR spectrum also shows signals due to uncomplexed (–)-sparteine and (–)-sparteine complexed to the *i*-PrLi.

Taking all of the NMR spectroscopic data together, a monomer was characterised for the solution structure of *i*-PrLi and 6.0 eq. (–)-sparteine in THF at -80 °C.

NMR spectra of *i*-PrLi/(+)-sparteine surrogate in THF- d_8

20 μ L of a 2.4 M solution of [⁶Li]-*i*-PrLi in pentane (0.048 mmol) was added to an NMR tube containing 700 μ L of THF-*d*₈ (i.e. ~0.07 M solution of [⁶Li]-*i*-PrLi) through a rubber septum inside the glove box. The NMR tube was then transferred to the NMR instrument and cooled to -80 °C. A ⁶Li NMR spectrum was recorded (Figure S11a). Then, 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S11b). Then, a further 5 μ L of (+)sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR spectrum was recorded (Figure S11c). Then, a further 5 μ L of (+)-sparteine surrogate (0.025 mmol, ~0.5 eq.) was added and a ⁶Li NMR

Figure S11. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi/(+)-sparteine surrogate in THF- d_8 : (a) No (+)-sparteine surrogate; (b) 0.5 eq. (+)-sparteine surrogate; (c) 1.0 eq. (+)-sparteine surrogate; (d) 1.5 eq. (+)-sparteine surrogate.

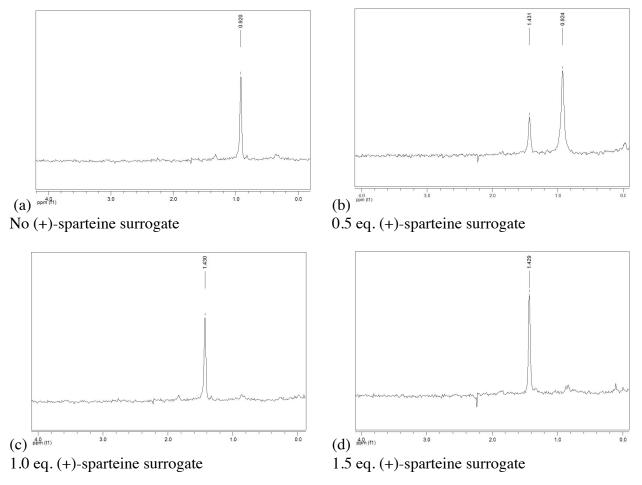
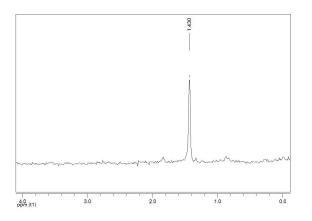
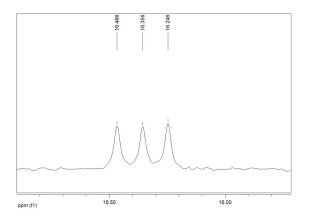
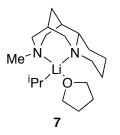




Figure S12. ⁶Li NMR spectra of [⁶Li]-*i*-PrLi and 1.0 eq. (+)-sparteine surrogate in THF-*d*₈.

The ⁶Li NMR spectrum shows one lithium environment.


Figure S13. ¹³C NMR spectra of [⁶Li]-*i*-PrLi and 1.0 eq. (+)-sparteine surrogate in THF-*d*₈.

 δ 16.36 ppm 1:1:1 triplet (¹*J*(⁶Li,¹³C) = 14.0 Hz)

The ¹³C NMR spectrum shows one carbon environment for the CH carbon of the *i*-Pr group. It is a 1:1:1 triplet which indicates that the CH couples to one lithium atom. The magnitude of the ¹*J*(⁶Li,¹³C) coupling constant (14.0 Hz) is slightly lower than expected for a monomeric aggregate based on the empirical Bauer-Winchester-Schleyer rule for coupling constants ($J(^{6}\text{Li},^{13}\text{C}) = (17 \pm 2)/n_{\text{C}}$ where n_{C} is the number of ⁶Li cations directly connected to the observed ¹³C).³

Taking all of the NMR spectroscopic data together, monomer 7 was characterised for the solution structure of *i*-PrLi and 1.0 eq. (+)-sparteine surrogate in THF at -80 °C.

Investigation of asymmetric deprotonation reactions using *i*-PrLi and *s*-BuLi with chiral diamines in different solvents

General

Water is distilled water. Et₂O, THF, TBME (*tert*-butylmethyl ether) and 2-methyl-THF were freshly distilled from benzophenone ketyl. All diamines, *N*-Boc pyrrolidine **8** and *O*-alkyl carbamate **12** used in lithiation reactions were distilled from CaH₂ before use. *s*-BuLi was titrated against *N*-benzylbenzamide before use.⁵ Petrol refers to the fraction of petroleum ether with a boiling point range of 40-60 °C. All non-aqueous reactions were carried out under O₂ free N₂ or Ar atmosphere using oven-dried and/or flame-dried glassware. Flash column chromatography was carried out using Fluka Silica gel 60 (0.035-0.070 mm particle size). Thin layer chromatography was performed on Merck F_{254} alumina backed silica plates. For Kügelrohr distillation, the temperatures quoted are the oven temperatures.

Proton (400 MHz) and carbon (100.6 MHz) NMR spectra were recorded on a Jeol ECX 400 instrument using an internal deuterium lock. All samples were recorded in CDCl₃. Chemical shifts are quoted in parts per million and referenced relative to CHCl₃ (7.27 ppm for ¹H NMR and 77.0 for ¹³C NMR spectroscopy). Coupling constants (*J*) are quoted in Hertz. Carbon NMR spectra were recorded with broadband proton decoupling and assigned using DEPT experiments and HSQC experiments.

Optical rotations were recorded at 20 °C on a Jasco DIP-370 polarimeter (using the sodium D line; 259 nm) and $[\alpha]_D$ values are given in units of 10⁻¹ deg cm³ g⁻¹. Chiral stationary phase HPLC was performed on an Agilent 1200 series chromatograph using a Chiralcel OD column.

The (+)-sparteine surrogate⁶ and Alexakis' diamine (R,R)-11⁷ were prepared using the published procedures.

General Procedures

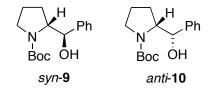
General procedure A: asymmetric deprotonation-trapping of N-Boc pyrrolidine 8

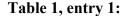
s-BuLi (1.3 M solution in hexanes, 1.3 eq.) or *i*-PrLi (0.56-0.7 M solution in pentane, 1.3 eq.) was added dropwise to a stirred solution of (–)-sparteine or the (+)-sparteine surrogate (1.3 eq.) in Et₂O, THF, TBME or 2-methyl-THF (5 mL) at –78 °C under Ar. After stirring at –78 °C for 15 min, a solution of *N*-Boc pyrrolidine **8** (304 mg, 1.78 mmol, 1.0 eq.) in Et₂O, THF, TBME or 2-methyl-THF (1 mL) was added dropwise. The resulting pale yellow solution was stirred at –78 °C for 3 h. Then, a solution of benzaldehyde (378 mg, 3.56 mmol, 2.0 eq.) in Et₂O, THF, TBME or 2-methyl-THF (1 mL) was added dropwise and the resulting solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) was added and the two layers were separated. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product.

General procedure B: asymmetric deprotonation-trapping of O-alkyl carbamate 12

s-BuLi (1.3 M solution in hexanes, 1.2 eq.) was added dropwise to a stirred solution of (–)-sparteine or the (+)-sparteine surrogate (1.2 eq.) in Et₂O or THF (3 mL) at –78 °C under Ar. After stirring at –78 °C for 15 min, a solution of *O*-alkyl carbamate **12** (300 mg, 1.14 mmol, 1.0 eq.) in Et₂O or THF (2 mL) was added dropwise. The resulting pale yellow solution was stirred at –78 °C for 5 h. Then, methyl chloroformate (221 mg, 2.30 mmol, 2.0 eq.) was added dropwise and the resulting solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) was added and the two layers were separated. The aqueous layer was extracted with Et₂O (4 x 10 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product.

General procedure C: asymmetric deprotonation-trapping of phosphine borane 14


s-BuLi (1.3 M solution in hexanes) (1.1. eq.) was added dropwise to a stirred solution of (–)-sparteine or the (+)-sparteine surrogate (1.2 eq.) in Et₂O or THF (2 mL) at -78 °C under Ar. After stirring at -78 °C for 15 min, a solution of phosphine borane **14** (0.76 mmol, 1.0 eq.) in Et₂O or THF (7 mL) was added dropwise. The resulting pale yellow solution was stirred at -78 °C for 3 h. Then, a solution of benzophenone (152 mg, 0.83 mmol, 1.1 eq.) in Et₂O or THF (2 mL) was added dropwise and the resulting solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) was added and the two layers were separated. The aqueous layer was extracted with EtOAc (5 x 10 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product.


N-Boc Pyrrolidine 8

Pyrrolidine (8.60 g, 10.0 mL, 120.92 mmol) was added dropwise to a stirred solution of di-*tert*-butyl dicarbonate (21.65 g, 99.2 mmol) in CH₂Cl₂ (340 mL) at 0 °C under Ar. The resulting colourless solution was allowed to warm to rt and stirred for 3 h. Then, the solvent was evaporated under reduced pressure to give the crude product. Purification by Kügelrohr distillation gave *N*-Boc pyrrolidine **8** (16.58 g, 98%) as a colourless oil, bp 90-100 °C/0.6 mmHg (lit.,⁸ bp 70-75 °C/0.5 mmHg); ¹H NMR (400 MHz, CDCl₃) δ 3.26 (br s, 2H, NCH₂), 3.21 (br s, 2H, NCH₂), 1.72 (br s, 4H, CH₂), 1.35 (s, 9H, CMe₃); ¹³C NMR (100.6 MHz, CDCl₃) mixture of rotamers δ 154.7 (C=O, Boc), 78.8 (*C*Me₃), 45.9 (CH₂N), 45.6 (CH₂N), 28.5 (*CMe*₃), 25.7 (CH₂), 24.9 (CH₂). Spectroscopic data consistent with those reported in the literature.⁸

(1*R*,2*R*)- and (1*S*,2*R*)-2-(Hydroxyphenylmethyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester *syn*-9 and *anti*-9

Using general procedure A, *i*-PrLi (4.06 mL of a 0.70 M solution in pentane, 2.28 mmol) and (–)sparteine (533 mg, 2.28 mmol) in Et₂O (5 mL), *N*-Boc pyrrolidine **8** (300 mg, 1.75 mmol) in Et₂O (1 mL) and benzaldehyde (371 mg, 3.50 mmol) in Et₂O (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*R*,2*R*)-9 (310 mg, 64%, 97:3 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ -1.8 (*c* 1.0 in CHCl₃) (lit., ${}^{9} [\alpha]_{D} - 1.9$ (c 1.0 in CHCl₃) for (1R,2R)-9 of 95:5 er); R_{F} (98:2 CH₂Cl₂-acetone) 0.3; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.18 (m, 5H, Ph), 5.81 (br s, 1H, OH), 4.45 (br d, J = 8.0 Hz, 1H, CHO), 4.02 (td, J = 8.0, 3.5 Hz, 1H, NCH), 3.44-3.36 (m, 1H, NCH), 3.35-3.25 (m, 1H, NCH), 1.77-1.59 (m, 2H, 2 x CH), 1.58-1.38 (m, 2H, 2 x CH), 1.45 (s, 9H, CMe₃); 13 C NMR (100.6 MHz, CDCl₃) δ 158.2 (C=O), 142.5 (ipso-Ph), 128.3 (Ph), 127.7 (Ph), 127.2 (Ph), 80.7 (CMe₃), 79.2 (CHO), 64.1 (NCH), 47.6 (NCH₂), 28.4 (CH₂), 28.2 (CMe₃), 23.7 (CH₂); HPLC: chiralcel OD (98:2 hexane-ⁱPrOH, 0.5 mLmin^{-1} (1*R*,2*R*)-9 22.2 min, (1*S*,2*S*)-9 27.6 min and alcohol (1*S*,2*R*)-10 (107 mg, 22%, 95:5 er by CSP-HPLC) as a white solid, mp 53-55 °C (lit., 9 52-53 °C); $[\alpha]^{20}_{D}$ +100.7 (*c* 1.0 in CHCl₃) (lit., 9 $[\alpha]_{D}$ +95.3 (c 1.0 in CHCl₃) for (1S,2R)-10 of 97:3 er); $R_{\rm F}$ (98:2 CH₂Cl₂-acetone) 0.2; ¹H NMR (400 MHz, CDCl₃) (75:25 mixture of rotamers) δ 7.38-7.25 (m, 5H, Ph), 5.50 (br s, 0.75H, OH), 5.18 (br s, 0.25H, OH), 4.87 (br s, 0.75H, CHO), 4.32 (br s, 0.75H, NCH), 4.02 (br s, 0.25H, CHO), 3.58 (br s, 0.25H, NCH), 3.30 (m, 1H, NCH), 2.82 (br s, 0.75H, NCH), 2.32 (br s, 0.25H, NCH), 2.03-1.86 (m, 1H, CH₂), 1.85-1.72 (m, 1H, CH₂), 1.63 (s, 2.25H, CMe₃), 1.62-1.46 (m, 1H, CH₂), 1.52 (s, 6.75H, CMe₃), 1.21-1.13 (m, 1H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃) mixture of rotamers δ 157.1 (C=O), 153.4 (C=O), 141.6 (ipso-Ph), 139.8 (ipso-Ph), 128.6 (Ph), 128.3 (Ph), 127.8 (Ph), 127.5 (Ph), 127.4 (Ph), 127.2 (Ph), 80.9 (CMe₃), 80.3 (CMe₃), 78.9 (CHO), 63.2 (NCH), 48.0 (NCH₂), 47.7 (NCH₂), 28.2 (CMe₃), 27.1 (CH₂), 26.9 (CH₂), 23.2 (CH₂), 22.8 (CH₂); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1S,2R)-10 19.7 min, (1R,2S)-10 22.0 min. Spectroscopic data consistent with those reported in the literature.⁹

Table 1, entry 2:

Using general procedure A, *s*-BuLi (1.78 mL of a 1.30 M solution in cyclohexanes, 2.31 mmol) and (–)-sparteine (541 mg, 2.31 mmol) in Et₂O (5 mL), *N*-Boc pyrrolidine **8** (304 mg, 1.78 mmol) in Et₂O (1 mL) and benzaldehyde (378 mg, 3.56 mmol) in Et₂O (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**10** by ¹H NMR

spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave (1*R*,2*R*)-**9** (298 mg, 63%, 97:3 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ –1.0 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 21.5 min, (1*S*,2*S*)-**9** 27.0 min and alcohol (1*S*,2*R*)-**10** (109 mg, 23%, 97:3 er by CSP-HPLC) as a white solid, mp 53-55 °C (lit.,⁹ 52-53 °C); $[\alpha]^{20}_{D}$ +92.5 (*c* 0.6 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.3 min, (1*R*,2*S*)-**10** 22.7 min.

Table 1, entry 3:

Using general procedure A, *s*-BuLi (1.75 mL of a 1.30 M solution in cyclohexanes, 2.34 mmol) and (–)-sparteine (548 mg, 2.34 mmol) in TBME (5 mL), *N*-Boc pyrrolidine **8** (309 mg, 1.80 mmol) in TBME (1 mL) and benzaldehyde (382 mg, 3.60 mmol) in TBME (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**9** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*R*,2*R*)-**9** (255 mg, 51%, 97:3 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{\text{D}} -1.3$ (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 22.2 min, (1*S*,2*S*)-**9** 27.6 min and alcohol (1*S*,2*R*)-**10** (121 mg, 24%, 98:2 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{\text{D}} +93.3$ (*c* 0.6 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.7 min, (1*R*,2*S*)-**10** 22.9 min.

Table 1, entry 4:

Using general procedure A, *i*-PrLi (4.06 mL of a 0.70 M solution in pentane, 2.28 mmol) and (–)sparteine (533 mg, 2.28 mmol) in THF (5 mL), *N*-Boc pyrrolidine **8** (300 mg, 1.75 mmol) in THF (1 mL) and benzaldehyde (371 mg, 3.50 mmol) in THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**9** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*R*,2*R*)-**9** (317 mg, 65%, 63:37 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ –0.3 (*c* 0.75 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 22.6 min, (1*S*,2*S*)-**9** 27.8 min and alcohol (1*S*,2*R*)-**10** (106 mg, 22%, 60:40 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ +31.2 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.3 min, (1*R*,2*S*)-**10** 21.5 min.

Table 1, entry 5:

Using general procedure A, *s*-BuLi (1.75 mL of a 1.30 M solution in cyclohexanes, 2.28 mmol) and (–)-sparteine (539 mg, 2.30 mmol) in THF (5 mL), *N*-Boc pyrrolidine **8** (300 mg, 1.75 mmol) in THF (1 mL) and benzaldehyde (376 mg, 3.54 mmol) in THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1R,2R)-**9** and (1S,2R)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1R,2R)-**9** (232 mg, 50%, 51:49 er by CSP-HPLC) as a colourless oil, HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1R,2R)-**9** 23.7 min, (1S,2S)-**9** 28.5 min and alcohol (1S,2R)-**10** (66 mg, 14%, 51:49 er by CSP-HPLC) as a white solid, HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1S,2R)-**10** 19.5 min, (1R,2S)-**10** 22.8 min.

Table 1, entry 6:

Using general procedure A, *s*-BuLi (1.83 mL of a 1.30 M solution in cyclohexanes, 2.38 mmol) and (–)-sparteine (558 mg, 2.38 mmol) in 2-methyl-THF (5 mL), *N*-Boc pyrrolidine **8** (314 mg, 1.83 mmol) in 2-methyl-THF (1 mL) and benzaldehyde (388 mg, 3.66 mmol) in 2-methyl-THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*R*,2*R*)-**9** (256 mg, 50%, 59:41 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ –0.4 (*c* 0.9 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 23.0 min, (1*S*,2*S*)-**9** 28.4 min and alcohol (1*S*,2*R*)-**10** (109 mg, 29%, 55:45 er by CSP-HPLC)

as a white solid, $[\alpha]^{20}_{D}$ +28.8 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-10 19.7 min, (1*R*,2*S*)-10 22.1 min.

(1*S*,2*S*)- and (1*R*,2*S*)-2-(Hydroxyphenylmethyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester *syn*-

9 and *anti*-10

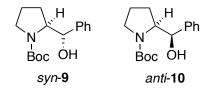


 Table 2, entry 1:

Using general procedure A, *i*-PrLi (4.13 mL of a 0.56 M solution in pentane, 2.31 mmol) and the (+)sparteine surrogate (442 mg, 2.27 mmol) in Et₂O (5 mL), *N*-Boc pyrrolidine **8** (305 mg, 1.78 mmol) in Et₂O (1 mL) and benzaldehyde (378 mg, 3.56 mmol) in Et₂O (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (331 mg, 68%, 98:2 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +2.7 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 23.3 min, (1*S*,2*S*)-**9** 28.1 min and alcohol (1*R*,2*S*)-**10** (107 mg, 23%, 95:5 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ -102.1 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.4 min, (1*R*,2*S*)-**10** 21.4 min.

Table 2, entry 2:

Using general procedure A, *s*-BuLi (1.61 mL of a 1.30 M solution in cyclohexanes, 2.09 mmol) and the (+)-sparteine surrogate (406 mg, 2.09 mmol) in Et₂O (5 mL), *N*-Boc pyrrolidine **8** (298 mg, 1.61 mmol) in Et₂O (1 mL) and benzaldehyde (334 mg, 3.15 mmol) in Et₂O (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (248 mg, 58%, 95:5 er by CSP-HPLC) as a colourless oil,

 $[\alpha]^{20}{}_{D}$ +1.7 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-9 24.6 min, (1*S*,2*S*)-9 29.7 min and alcohol (1*R*,2*S*)-10 (98 mg, 23%, 94:6 er by CSP-HPLC) as a white solid, $[\alpha]^{20}{}_{D}$ -93.1 (*c* 1.1 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-10 20.2 min, (1*R*,2*S*)-10 21.8 min.

Table 2, entry 3:

Using general procedure A, *s*-BuLi (1.75 mL of a 1.30 M solution in cyclohexanes, 2.28 mmol) and the (+)-sparteine surrogate (452 mg, 2.33 mmol) in TBME (5 mL), *N*-Boc pyrrolidine **8** (306 mg, 1.79 mmol) in TBME (1 mL) and benzaldehyde (371 mg, 3.58 mmol) in TBME (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (272 mg, 56%, 94:6 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +2.3 (*c* 1.2 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 22.8 min, (1*S*,2*S*)-**9** 27.7 min and alcohol (1*R*,2*S*)-**10** (151 mg, 31%, 93:7 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ -101.6 (*c* 1.1 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.8 min, (1*R*,2*S*)-**10** 22.1 min.

Table 2, entry 4:

Using general procedure A, *i*-PrLi (4.13 mL of a 0.56 M solution in pentane, 2.31 mmol) and the (+)sparteine surrogate (442 mg, 2.28 mmol) in THF (5 mL), *N*-Boc pyrrolidine **8** (299 mg, 1.75 mmol) in THF (1 mL) and benzaldehyde (371 mg, 3.50 mmol) in THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (320 mg, 66%, 97:3 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +2.3 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 23.3 min, (1*S*,2*S*)-**9** 27.7 min and alcohol (1*S*,2*R*)-**10** (106 mg, 21%, 97:3 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ -105.1 (c 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-10 19.6 min, (1*R*,2*S*)-10 21.5 min.

Table 2, entry 5:

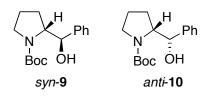
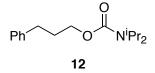

Using general procedure A, *s*-BuLi (1.65 mL of a 1.30 M solution in cyclohexanes, 2.15 mmol) and the (+)-sparteine surrogate (418 mg, 2.15 mmol) in THF (5 mL), *N*-Boc pyrrolidine **8** (307 mg, 1.65 mmol) in THF (1 mL) and benzaldehyde (355 mg, 3.30 mmol) in THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (195 mg, 45%, 95:5 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +2.4 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 24.1 min, (1*S*,2*S*)-**9** 28.9 min and alcohol (1*R*,2*S*)-**10** (86 mg, 20%, 95:5 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ -104.5 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 20.4 min, (*R*,*S*)-**10** 21.9 min.

Table 2, entry 6:

Using general procedure A, *s*-BuLi (1.85 mL of a 1.30 M solution in cyclohexanes, 2.41 mmol) and the (+)-sparteine surrogate (467 mg, 2.41 mmol) in 2-methyl-THF (5 mL), *N*-Boc pyrrolidine **8** (316 mg, 1.85 mmol) in 2-methyl-THF (1 mL) and benzaldehyde (392 mg, 3.70 mmol) in 2-methyl-THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*S*,2*S*)-**9** and (1*R*,2*S*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*S*,2*S*)-**9** (272 mg, 53%, 93:7 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +1.1 (*c* 0.75 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 23.2 min, (1*S*,2*S*)-**9** 28.1 min and alcohol (1*R*,2*S*)-**10** (113 mg, 22%, 93:7 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ -78.7 (*c* 0.6 in CHCl₃); HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*S*,2*R*)-**10** 19.7 min, (1*R*,2*S*)-**10** 22.0 min.

(1R,2R)- and (1S,2R)-2-(Hydroxyphenylmethyl)pyrrolidine-1-carboxylic acid tert-butyl ester

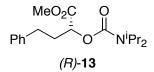


Scheme 2:

Using general procedure A, *s*-BuLi (1.90 mL of a 1.30 M solution in cyclohexanes, 2.44 mmol) and diamine (1*R*,2*R*)-**11** (607 mg, 2.46 mmol) in THF (5 mL), *N*-Boc pyrrolidine **8** (322 mg, 1.88 mmol) in THF (1 mL) and benzaldehyde (399 mg, 3.76 mmol) in THF (1 mL) gave the crude product as a pale yellow oil which contained an approximately 75:25 mixture of alcohols (1*R*,2*R*)-**9** and (1*S*,2*R*)-**10** by ¹H NMR spectroscopy. Purification by flash column chromatography on silica with 98:2 CH₂Cl₂-acetone as eluent gave alcohol (1*R*,2*R*)-**9** (302 mg, 59%, 50:50 er by CSP-HPLC) as a colourless oil, HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*R*)-**9** 21.7 min, (1*S*,2*S*)-**9** 27.0 min and alcohol (1*S*,2*R*)-**10** (122 mg, 24%, 53:47 er by CSP-HPLC) as a white solid, HPLC: chiralcel OD (98:2 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (1*R*,2*S*)-**10** 22.0 min.

3-Phenylpropyl N,N-diisopropylcarbamate 12

A solution of diisopropylcarbamoyl chloride (500 mg, 3.06 mmol, 1.05 eq.) in Et₂O (5 mL) was added dropwise over 10 min to a stirred solution of NaH (80 mg of 60% wt dispersion in mineral oil, 3.35 mmol, pre-washed with Et₂O (3 x 10 mL)) and 3-phenyl-1-propanol (396 mg, 2.91 mmol, 1.0 eq.) in Et₂O (5 mL) at rt under Ar. The resulting mixture was stirred at rt for 16 h. Then, 1 M HCl_(aq) (10 mL) was added and the resulting mixture was stirred vigorously for 5 min. The two layers were separated and the aqueous layer was extracted with Et₂O (4 x 10 mL). The combined organic extracts were dried (2:1 Na₂SO₄-NaHCO₃) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-Et₂O (5:1) as eluent gave *O*-alkyl carbamate **12** (581 mg, 76%) as a colourless oil; *R*_F(5:1 petrol-Et₂O) 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H, Ph), 7.22-7.18 (m, 3H, Ph), 4.21-3.63 (br m, 2H, 2 x NCH), 4.13 (t, *J* = 6.5 Hz, 2H, OCH₂), 2.73 (t, *J* = 8.0 Hz, 2H, CH₂Ph), 2.03-1.95 (m, 2H, CH₂), 1.23 (d, *J* = 7.0 Hz, 12H, 2 x NCH*Me*₂); ¹³C NMR (100.6 MHz, CDCl₃), 155.8 (C=O), 141.6 (*ipso*-Ph), 128.40 (Ph), 128.38 (Ph), 125.9 (Ph), 64.0 (OCH₂), 45.8 (NCH), 32.6 (CH₂), 30.9 (Me), 21.1 (CH₂). Spectroscopic data consistent with those reported in the literature.¹⁰


rac-2-Diisopropylcarbamoyl-4-phenylbutyric acid rac-13

Ph
$$O_2C O$$

Ph O N^iPr_2
rac-13

s-BuLi (1.38 mL of a 1.30 M solution in cyclohexanes, 1.54 mmol, 1.3 eq.) was added dropwise to a stirred solution of *O*-alkyl carbamate **12** (311 mg, 1.14 mmol, 1.0 eq.) in THF (5 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 5 h. Then, methyl chloroformate (221 mg, 2.34 mmol, 2.0 eq.) was added dropwise and the resulting solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) was added and the two layers were separated. The aqueous layer was

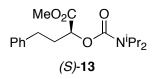
extracted with Et₂O (3 x 10 mL) and the combined organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester *rac*-**13** (271 mg, 74%) as a colourless oil, R_F (4:1 petrol-Et₂O) 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H, Ph), 7.23-7.19 (m, 3H, Ph), 5.08 (t, *J* = 6.5 Hz, 1H, CHO), 4.11 (br s, 1H, NCH), 3.81 (br s, 1H, NCH), 3.73 (s, 3H, CO₂Me), 2.79-2.75 (m, 2H, CH₂), 2.21-2.15 (m, 2H, CH₂), 1.31-1.24 (m, 12H, 2 x NCH*Me*₂); ¹³C NMR (100.6 MHz, CDCl₃), 172.0 (C=O, CO₂Me), 155.2 (C=O, NCO₂), 141.3 (*ipso*-Ph), 128.7 (Ph), 128.6 (Ph), 126.4 (Ph), 71.9 (CHO), 51.8 (CO₂*Me*), 46.5 (NCHMe₂), 46.4 (NCHMe₂), 32.9 (CH₂), 31.4 (CH₂), 21.4 (NCH*Me*₂). Spectroscopic data consistent with those reported in the literature.¹¹

(R)-2-Diisopropylcarbamoyl-4-phenyl-butyric (R)-13

Table 3, entry 1:

Using general procedure B, *s*-BuLi (1.05 mL of a 1.30 M solution in cyclohexanes, 1.37 mmol) and (–)-sparteine (321 mg, 1.37 mmol) in Et₂O (3 mL), *O*-alkyl carbamate **12** (300 mg, 1.14 mmol) in Et₂O (2 mL) and methyl chloroformate (221 mg, 2.30 mmol) gave the crude product as a pale yellow oil. Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester (*R*)-**13** (308 mg, 84%, 97:3 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}{}_{D}$ –17.3 (*c* 1.0 in CH₂Cl₂) (lit.,¹¹ $[\alpha]^{20}{}_{D}$ –17.3 (*c* 1.2 in CH₂Cl₂)); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*S*)-**13** 10.0 min, (*R*)-**13** 11.3 min.

Table 3, entry 2:


Using general procedure B, *s*-BuLi (1.11 mL of a 1.30 M solution in cyclohexanes, 1.39 mmol) and (–)-sparteine (338 mg, 1.42 mmol) in THF (3 mL), *O*-alkyl carbamate **12** (315 mg, 1.15 mmol) in THF (2 mL) and methyl chloroformate (233 mg, 2.40 mmol) gave the crude product as a pale yellow oil.

Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester (*R*)-**13** (262 mg, 68%, 61:39 er by CSP-HPLC) as a colourless oil, $[\alpha]_{D}^{20}$ –2.5 (*c* 0.75 in CH₂Cl₂); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*S*)-**13** 10.3 min, (*R*)-**13** 11.8 min.

Table 3, entry 3:

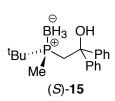
Using general procedure B, *s*-BuLi (1.06 mL of a 1.30 M solution in cyclohexanes, 1.38 mmol) and (–)-sparteine (1.078 g, 4.61 mmol, 3.3 eq. relative to *s*-BuLi) in THF (3 mL), *O*-alkyl carbamate **12** (303 mg, 1.15 mmol) in THF (2 mL) and methyl chloroformate (228 mg, 2.41 mmol) gave the crude product as a pale yellow oil. Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester (*R*)-**13** (87 mg, 24%, 61:39 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ –2.8 (*c* 0.75 in CH₂Cl₂); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*S*)-**13** 9.8 min, (*R*)-**13** 11.1 min.

(S)-2-Diisopropylcarbamoyl-4-phenylbutyric (S)-13

Table 3, entry 4:

Using general procedure B, *s*-BuLi (0.81 mL of a 1.30 M solution in cyclohexanes, 1.06 mmol) and the (+)-sparteine surrogate (207 mg, 0.88 mmol) in Et₂O (3 mL), *O*-alkyl carbamate **12** (366 mg, 1.14 mmol) in Et₂O (2 mL) and methyl chloroformate (172 mg, 2.12 mmol) gave the crude product as a pale yellow oil. Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester (*S*)-**13** (190 mg, 67%, 93:7 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +16.3 (*c* 0.8 in CH₂Cl₂); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*S*)-**13** 9.9 min, (*R*)-**13** 11.3 min.

Table 3, entry 5:


Using general procedure B, *s*-BuLi (0.98 mL of a 1.30 M solution in cyclohexanes, 1.28 mmol) and the (+)-sparteine surrogate (249 mg, 1.28 mmol) in THF (3 mL), *O*-alkyl carbamate **12** (281 mg, 1.37 mmol) in THF (2 mL) and methyl chloroformate (208 mg, 2.14 mmol) gave the crude product as a pale yellow oil. Purification by flash column chromatography on silica with 4:1-2:1 petrol-Et₂O as eluent gave ester (*S*)-**13** (248 mg, 72%, 93:7 er by CSP-HPLC) as a colourless oil, $[\alpha]^{20}_{D}$ +16.0 (*c* 1.0 in CH₂Cl₂); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*S*)-**13** 9.9 min, (*R*)-**13** 11.3 min.

tert-Butyldimethylphosphine borane 14

A solution of MeMgBr (5.50 mL of a 3 M solution in Et₂O, 16.50 mmol, 2.6 eq.) in THF (6 mL) was added dropwise over 1 h to a stirred solution of *t*-butyldichlorophosphine (1.00 g, 6.29 mmol, 1 eq.) in THF (10 mL) at -10 °C under Ar. The resulting mixture was stirred at rt for 5 h. Then, BH₃·DMS (3.80 mL of a 2 M solution in THF, 7.60 mmol, 1.2 eq.) was added dropwise over 20 min. The solution was stirred at rt for 1 h and poured onto a mixture of ice (15 g) and concentrated HCl_(aq) (1.50 mL). The mixture was extracted with EtOAc (4 x 10 mL) and the combined organic extracts were dried (NaSO₄) and evaporated under reduced pressure to give the crude product as a white solid. Purification by recrystallisation from hexane (10 mL) gave phosphine borane **14** (510 mg, 60%) as a white solid, mp 164-166 °C (lit.,¹² 160-163 °C); *R*_F(4:1 petrol-Et₂O) 0.4; ¹H NMR (400 MHz, CDCl₃) δ 1.23 (d, *J* = 10.0 Hz, 6H, PMe), 1.16 (d, *J* = 14.0 Hz, 9H, CMe₃), 0.45 (qd, *J* = 95.0, 13.0 Hz, 3H, BH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 26.3 (d, *J* = 35.0 Hz, PCMe₃), 24.4 (d, *J* = 3.0 Hz, PCMe₃), 6.8 (d, *J* = 36.0 Hz, PMe). Spectroscopic data consistent with those reported in the literature.¹²

(S)-P-(2,2-Diphenyl-2-hydroxyethyl)-P-methyl-tert-butylphosphine borane (S)-15

Table 4, entry 1:

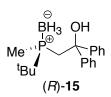

Using general procedure C, *s*-BuLi (0.69 mL of a 1.30 M solution in cyclohexanes, 0.97 mmol) and (–)-sparteine (226 mg, 0.96 mmol) in Et₂O (2 mL), phosphine borane **14** (109 mg, 0.81 mmol) in Et₂O (7 mL) and benzophenone (162 mg, 0.89 mmol) in Et₂O (2 mL) gave the crude product as a white solid. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave alcohol (*S*)-**15** (223 mg, 88%, 95:5 er by CSP-HPLC) as a white solid, mp 113-115 °C (lit.,¹³ 116.5-117.5 °C); $[\alpha]^{20}_{\text{D}}$ +22.0 (*c* 1.0 in CHCl₃) (lit.,¹³ $[\alpha]_{\text{D}}$ –14.9 (*c* 0.47 in CHCl₃) for (*R*)-**15** of 96:4 er); *R*_F(95:5 petrol-EtOAc) 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.47 (m, 4H, Ph), δ 7.36-7.30 (m, 4H, Ph), δ 7.25-7.21 (m, 2H, Ph), 4.59 (s, 1H, OH), 2.89 (t, *J* = 14.5 Hz, 1H, PCH_AH_B), 2.68 (dd, *J* = 14.5, 7.0 Hz, 1H, PCH_AH_B), 1.18 (d, *J* = 13.5 Hz, 9H, CMe₃), 0.74 (d, *J* = 10.0 Hz, 3H, PMe), 0.56-0.19 (m, 3H, BH₃); ¹³C NMR (100MHz, CDCl₃) δ : 148.1 (d, *J*= 8.5 Hz, *ipso*-Ph), 145.6 (d, *J* = 2.5 Hz, *ipso*-Ph), 128.5 (Ph), 128.4 (Ph), 127.4 (Ph), 126.3 (Ph), 125.5 (Ph), 77.0 (d, *J* = 1.0 Hz, COH), 34.0 (d, *J* = 28.0 Hz, PCH₂), 27.7 (d, *J* = 36.0 Hz, PCMe₃), 24.4 (d, *J* = 2.0 Hz, PCMe₃), 6.1 (d, *J* = 35.0 Hz, PMe); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*R*)-**15** 10.9 min, (*S*)-**15** 13.1 min. Spectroscopic data consistent with that reported in the literature.¹⁴

Table 4, entry 2:

Using general procedure C, *s*-BuLi (0.63 mL of a 1.30 M solution in cyclohexanes, 0.89 mmol) and (–)-sparteine (205 mg, 0.87 mmol) in THF (2 mL), phosphine borane **14** (100 mg, 0.74 mmol) in THF (7 mL) and benzophenone (148 mg, 0.81 mmol) in THF (2mL) gave the crude product as a white solid. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave alcohol

(S)-15 (70 mg, 30%, 50:50 er by CSP-HPLC) as a white solid, HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*R*)-15 11.1 min, (S)-15 13.5 min.

(R)-P-(2,2-Diphenyl-2-hydroxyethyl)-P-methyl-tert-butylphosphine borane (R)-15

Table 4, entry 3:

Using general procedure C, *s*-BuLi (0.64 mL of a 1.30 M solution in cyclohexanes, 0.84 mmol) and the (+)-sparteine surrogate (177 mg, 0.91 mmol) in Et₂O (2 mL), phosphine borane **14** (103 mg, 0.76 mmol) in Et₂O (7 mL) and benzophenone (152 mg, 0.83 mmol) in Et₂O (2 mL) gave the crude product as a white solid. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave alcohol (*R*)-**15** (279 mg, 89%, 95:5 er by CSP-HPLC) as a white solid, $[\alpha]^{20}_{D}$ –22.0 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*R*)-**15** 10.8 min, (*S*)-**15** 13.1 min.

Table 4, entry 4:

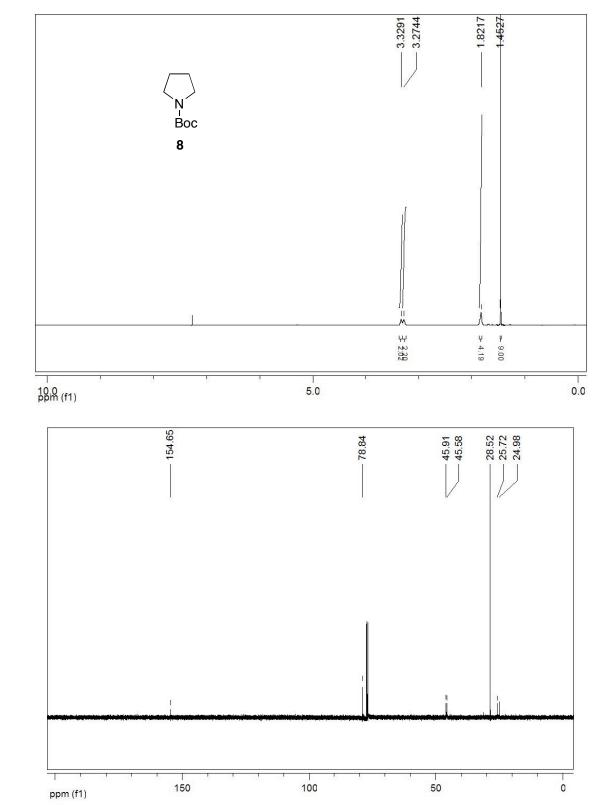
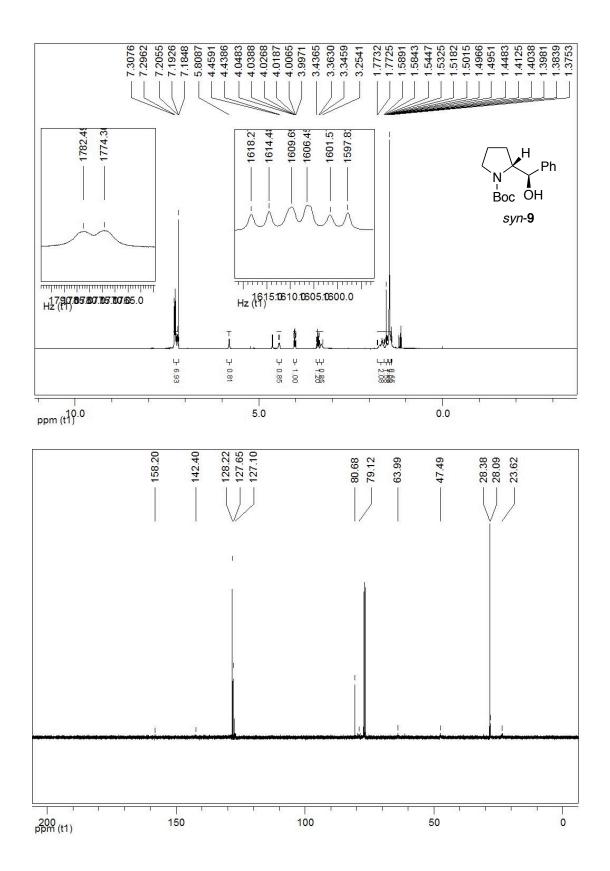
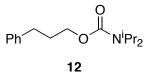
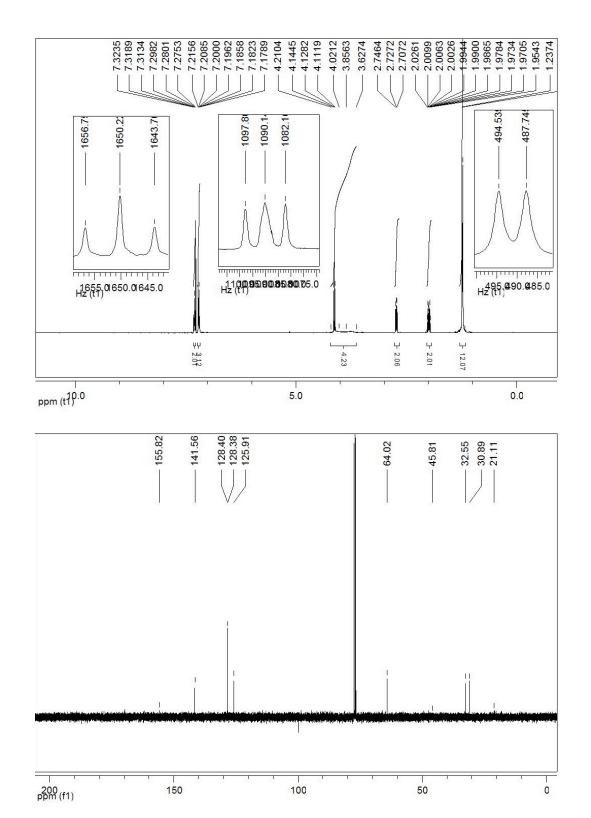

Using general procedure C, *s*-BuLi (0.68 mL of a 1.30 M solution in cyclohexanes, 0.81 mmol) and the (+)-sparteine surrogate (173 mg, 0.89 mmol) in THF (2 mL), phosphine borane **14** (100 mg, 0.74 mmol) in THF (7 mL) and benzophenone (148 mg, 0.81 mmol) in THF (2 mL) gave the crude product as a white solid. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave alcohol (*R*)-**15** (103 mg, 44%, 88:12 er by CSP-HPLC) as a white solid, $[\alpha]_D$ –16.2 (*c* 1.0 in CHCl₃); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*R*)-**15** 11.9 min, (*S*)-**15** 13.1 min.

Table 4, entry 5:

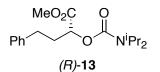

Using general procedure C, *s*-BuLi (1.02 mL of a 1.30 M solution in cyclohexanes, 1.33 mmol) and the (+)-sparteine surrogate (260 mg, 1.34 mmol) in THF (2 mL), phosphine borane **14** (139 mg, 1.02

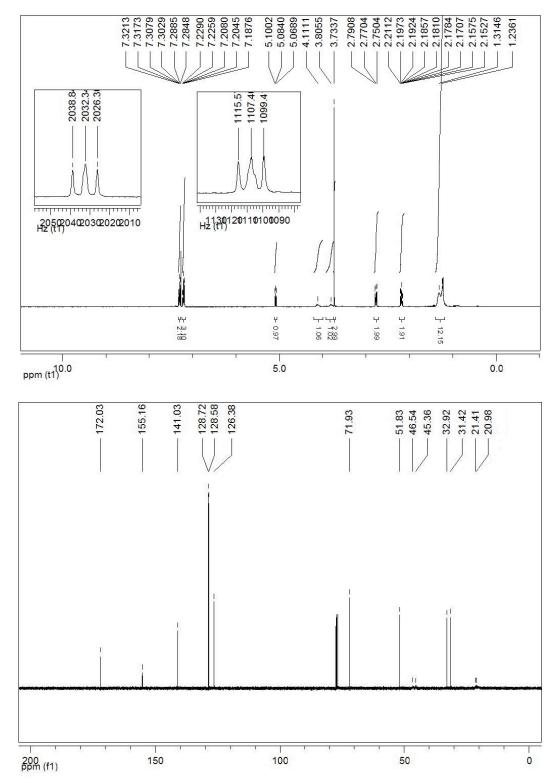
mmol) in THF (2 mL) and benzophenone (205 mg, 1.12 mmol) in THF (1 mL) gave the crude product as a white solid. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave alcohol (*R*)-**15** (250 mg, 78%, 91:9 er by CSP-HPLC) as a white solid, $[\alpha]_D$ =18.6 (*c* 1.15 in CHCl₃); HPLC: chiralcel OD (95:5 hexane-*i*-PrOH, 0.5 mLmin⁻¹) (*R*)-**15** 11.0 min, (*S*)-**15** 13.2 min.

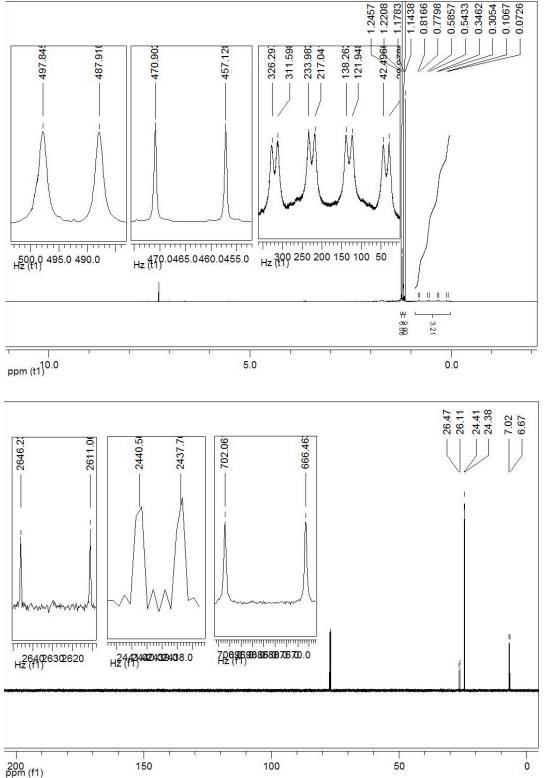

¹H/¹³C NMR spectra and CSP-HPLC/ data:

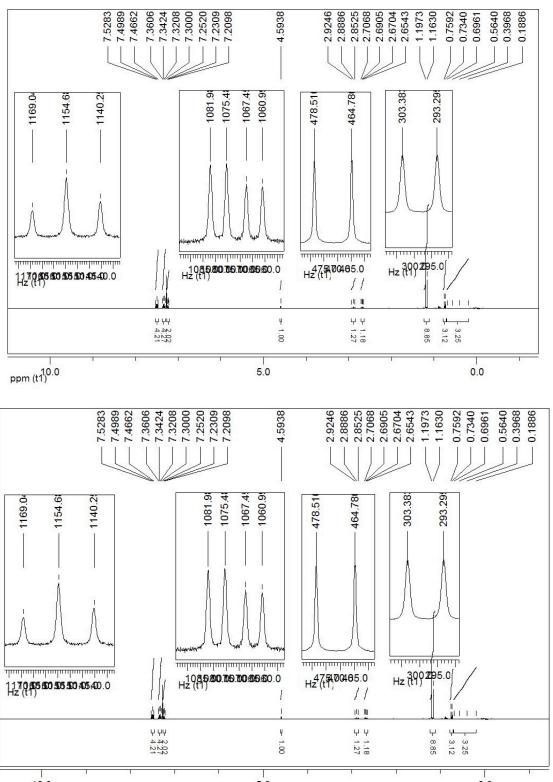


400 MHz ¹H NMR spectrum; 100.6 MHz ¹³C NMR spectrum; CDCl₃





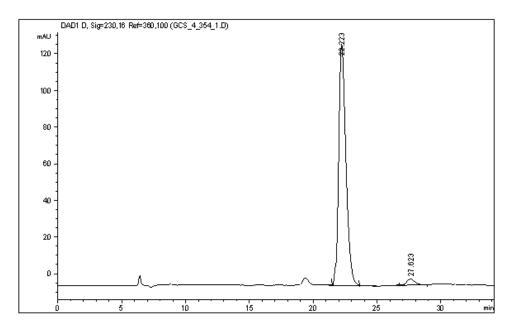

S40



400 MHz ¹H NMR spectrum; 100.6 MHz ¹³C NMR spectrum; CDCl₃

 $\stackrel{\ominus}{\overset{\Theta}{\overset{}_{H_3}}}_{\overset{-}{\overset{}_{H_3}}} \stackrel{OH}{\overset{-}_{H_3}}$

(S)-15


Ph Ph

^tBu

Mè

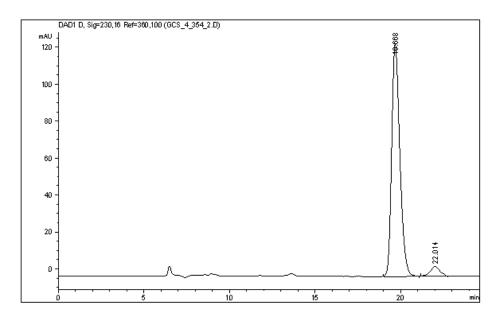
Data File C:\CHEM32\1\DATA\GCS_4_354_1.D Sample Name: GCS_4_354_1.D

	=		
Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument l	Location : Vial 1
Injection Date	:	09/02/2010 08:55:34 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\GRA	AEME\DUMMY.M
Last changed	:	09/02/2010 08:53:35 PM	by Giorgio
		(modified after loading	3)
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4	354 l.D\DA.M (DUMMY.M)
Last changed	:	09/02/2010 09:30:22 PM	by Giorgio
Sample Info	:		rolidine, i-PrLi/(-)-sparteine
		Et20, trapping with be	-
		OD column, hexane:IPA	98:2, 0.5 mL/min, 10 bar

in

المحتمد المحتمة المحتم

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs


Signal 1: DAD1 D, Sig=230,16 Ref=360,100

				Area [mAU*s]	Height [mAU]	
1	22.223	vv	0.5984	5120.18799	131.45538	97.2077
2	27.623	BB	0.6752	147.07628	3.38279	2.7923
Total	з:			5267.26427	134.83817	

H Boc OH syn-9

Data File C:\CHEM32\1\DATA\GCS_4_354_2.D Sample Name: GCS_4_354_2.D

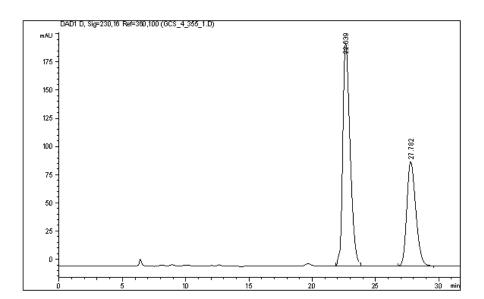
Acq. Operator :	Giorgio	
Acq. Instrument :	Instrument l	Location : Vial 1
Injection Date :	09/02/2010 09:33:21	PM
Acq. Method :	C:\CHEM32\1\METHODS	\GRAEME\DUMMY.M
Last changed :	09/02/2010 09:30:23	PM by Giorgio
	(modified after load	ding)
Analysis Method :	C:\CHEM32\1\DATA\GC	S 4 354 2.D\DA.M (DUMMY.M)
Last changed :	09/02/2010 10:09:41	PM by Giorgio
Sample Info :	GCS 4 354 2 (N-Boc]	pyrrolidine, i-PrLi/(-)-sparteine in
	Et20, trapping with	-
	OD column, hexane:Il	PA 98:2, 0.5 mL/min, 10 bar

معتقد المعتقد ا

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100


#			[min]	Area [mAU*s]	Height [mAU]	Area ۴
1	19.668	BB	0.5115	4181.31641	125.88693	95.1808
2	22.014	BV	0.5851	211.70790	5.35690	4.8192

Data File C:\CHEM32\1\DATA\GCS_4_355_1.D Sample Name: GCS_4_355_1

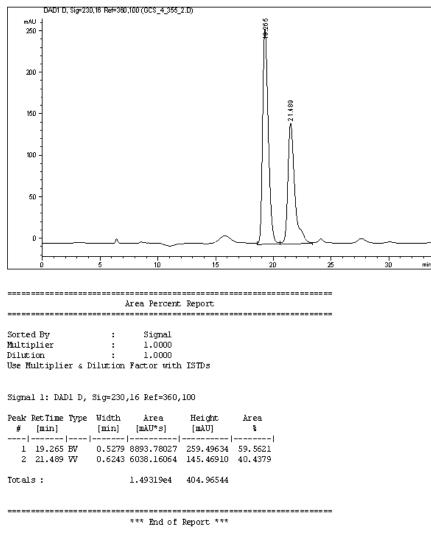
Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument l	Location : Vial 1
Injection Date	:	07/02/2010 05:36:53 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\GRAED	ME\DUMMY.M
Last changed	:	07/02/2010 04:54:05 PM by	y Graeme
		(modified after loading)	
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4_3	55_1.D\DA.M (DUMMY.M)
Last changed	:	07/08/2010 10:15:04 PM	
		(modified after loading)	
Sample Info	:	GCS 4 355 1 OD column, 98	8:2 hexane:IPA, 0.5 mL/min, 10
		bar	

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier &	Dilution	Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

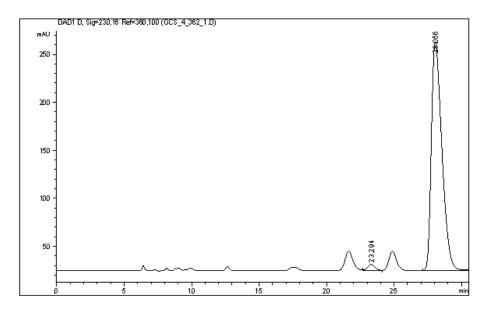
Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area ۴
1	22.639	VV	0.6119	7922.60010	197.54913	63.2253
2	27.782	BB	0.7645	4608.14990	92.61582	36.7747
Total	з:			1.25308e4	290.16496	



Instrument 1 07/08/2010 10:18:06 PM

Data File C:\CHEM32\1\DATA\GCS_4_355_2.D Sample Name: GCS_4_355_2

Acq. Operator	:	Giorgio
Acq. Instrument	:	Instrument l Location : Vial l
Injection Date	:	07/02/2010 06:10:00 PM
Acq. Method	:	C: \CHEM32\1\METHODS\GRAEME\DUMMY.M
Last changed	:	07/02/2010 06:08:32 PM by Giorgio
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4 355 2.D\DA.M (DUMMY.M)
Last changed	:	07/02/2010 06:43:41 PM by Giorgio
Sample Info	:	GCS_4_355_2 OD column, 98:2 hexane:IPA, 0.5 mL/min, 10
		bar



Instrument 1 07/08/2010 10:22:29 PM

Data File C:\CHEM32\l\DATA\GCS_4_362_1.D Sample Name: GCS_4_362_1.D

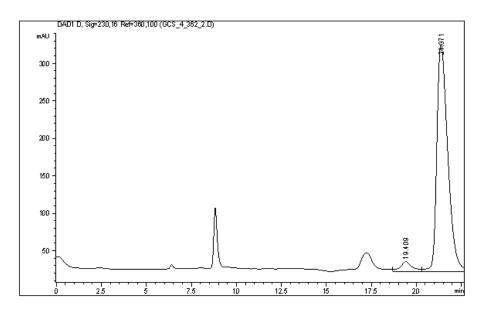
Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument 1	Location : Vial 1
Injection Date	:	09/02/2010 07:32:00 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\GRAEM	E\DUMMY.M
Last changed	:	09/02/2010 06:49:06 PM by	Giorgio
		(modified after loading)	
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4_36	2_1.D\DA.M (DUMMY.M)
Last changed	:	06/08/2010 03:57:15 PM	
Sample Info	:	GCS 4 362 1 (N-Boc pyrrol:	idine, i-PrLi/(+)-sp surrogate
		in Et20, trapping with be	enzaldehyde
		OD column, hexane:IPA 98	:2, 0.5 mL/min, 10 bar

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier a	a Dilution	Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

#	RetTime [min]	•••	Width [min]	Area [mAU*s] 	Height [mAU]	Area %
1	23.294 28.056	vv	0.5690	241.05862 1.28763e4	6.37705	1.8377
Total	s :			1.31174e4	243.96323	


Instrument 1 07/08/2010 10:25:46 PM

.H 、∠Ph

Boc OH

Data File C:\CHEM32\1\DATA\GCS_4_362_2.D Sample Name: GCS_4_362_2.D

Acq. Operator :	Giorgio	
Acq. Instrument :	Instrument 1	Location : Vial 1
Injection Date :	09/02/2010 08:31:04 PM	
Acq. Method :	C:\CHEM32\1\METHODS\GRAEME\I	UMMY.M
Last changed :	09/02/2010 08:26:33 PM by G:	iorgio
	(modified after loading)	
Analysis Method :	C:\CHEM32\1\DATA\GCS 4 362 2	2.D\DA.M (DUMMY.M)
Last changed :	09/02/2010 08:53:34 PM by G:	iorgio
Sample Info :	GCS 4 362 2 (N-Boc pyrrolid:	ine, i-PrLi/(+)-sp surrogate
	in Et20, trapping with ben:	zaldehyde
	OD column, hexane:IPA 98:2	0.5 mL/min. 10 har

Area Percent Report

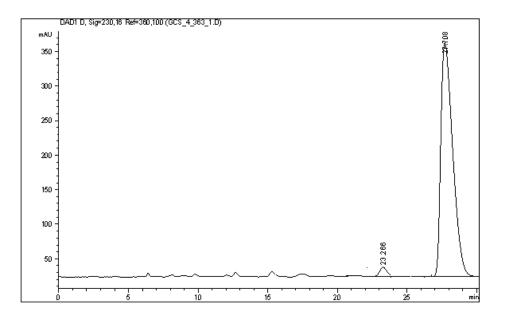
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

#	RetTime [min]	•••	[min]	Area [mAU*s]	Height [mAU]	Area ۴
	19.409		0.6603	 610.57922	12.99093	4.5665
2	21.371	VBA	0.6469	1.27601e4	303.26263	95.4335
Total	s :			1.33707e4	316.25356	

Instrument 1 07/08/2010 10:26:58 PM

Page 1 of 1


н

Boc ÖH anti-10

٦h

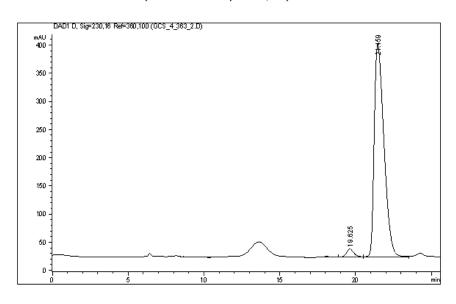
Data File C:\CHEM32\1\DATA\GCS_4_363_1.D Sample Name: GCS_4_363_1.D

Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument l	Location : Vial 1
Injection Date	:	09/02/2010 04:29:48	PM
Acq. Method	:	C:\CHEM32\1\METHODS'	\GRAEME\DUMMY.M
Last changed	:	09/02/2010 03:50:23	PM by Graeme
		(modified after load	ding)
Analysis Method	:	C:\CHEM32\1\DATA\GCS	S 4 363 1.D\DA.M (DUMMY.M)
Last changed	:	09/02/2010 04:59:47	PM by Giorgio
Sample Info	:	GCS 4 363 1 (N-Boc p	pyrrolidine, i-PrLi/(+)-sp surrogate
		in THF, trapping wi	ith benzaldehyde)
		OD column, hexane:Il	PA 98:2, 0.5 mL/min, 9 bar

المتعدمة ال

Multiplier	:	Signal 1.0000 1.0000 Factor with	ISTDs	
Signal 1: DAD1 D, Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	8
 1 23.266 WV 2 27.708 BBA	0.5821	526.16022	14.01259	2.5511
Totals :		2.06248e4	352.75533	

Instrument 1 07/08/2010 09:57:03 PM

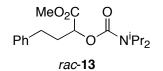

Page 1 of 1

Ph

Boc ÓH syn-9 Data File C:\CHEM32\1\DATA\GCS_4_363_2.D Sample Name: GCS_4_363_2.D

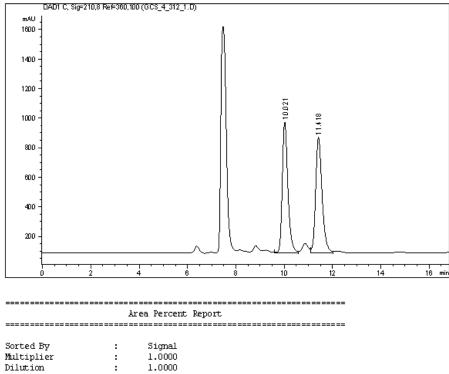
Acq. Operator	:	Giorgio		
Acq. Instrument	:	Instrument l	Location :	Vial 1
Injection Date	:	09/02/2010 05:05:59	PM	
Acq. Method	:	C:\CHEM32\1\METHODS\	GRAEME\DUMMY.M	
Last changed	:	09/02/2010 04:59:48	PM by Giorgio	
		(modified after load	ing)	
Analysis Method	:	C:\CHEM32\1\DATA\GCS	4 363 2.D\DA.M (DUMMY	.M)
Last changed	:	09/02/2010 05:31:23	PM by Giorgio	
Sample Info	:	GCS 4 363 2 (N-Boc p	<pre>yrrolidine, i-PrLi/(+)</pre>	-sp surrogate
		in THF, trapping wi	th benzaldehyde)	
		OD column, hexane:IP	A 98:2, 0.5 mL/min, 9	bar

Area Percent Report


Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	a Dilution	Factor with	ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

#	[min]		Width [min]	• •	Height [mAU]	Area ۴
1	19.625 21.459	BV	0.4925	 453.21350 1.67694e4	14.04364	2.6315
Totals	:			1.72226e4	390.43878	

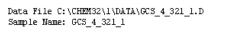


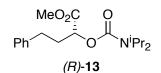
Instrument 1 07/08/2010 10:00:55 PM

Data File C:\CHEM32\1\DATA\GCS_4_312_1.D Sample Name: GCS_4_312_1

Acq. Operator	:	Giorgio
Acq. Instrument	:	Instrument l Location : Vial l
Injection Date	:	09/10/2009 11:52:47 AM
Acq. Method	:	C: \CHEM32\1\METHODS\JGR\DUMMY.M
Last changed	:	07/10/2009 06:41:47 PM by Giorgio
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4 312 1.D\DA.M (DUMMY.M)
Last changed	:	09/10/2009 12:09:54 PM by Giorgio
Sample Info	:	GCS 4 312 1, (0 alkyl carbamate, racemic lithiation/tra
		pping in THF)
		OD column 95:5 Hexane -IPA 0.5 mL/min

Dilution Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 C, Sig=210,8 Ref=360,100


Peak #	Ret Time [min]			Area [mAU*s]	Height [mAU]	Area ۴
1	10.021	W	0.2471	1.43925e4	887.89490	49.8141
2	11.418	W	0.2804	1.44999e4	781.76660	50.1859
Total	s :			2.88925e4	1669.66150	

*** End of Report ***

Instrument 1 13/08/2010 12:36:20 PM

Acq. Operator	Giorgio
Acq. Instrument	Instrument l Location : Vial 1
Injection Date	20/10/2009 11:24:24 AM
Acq. Method	C: \CHEM32\1\METHODS\GRAEME\DUMMY.M
Last changed	20/10/2009 10:54:12 AM by Johannes
	(modified after loading)
	C:\CHEM32\1\DATA\GCS 4_321_1.D\DA.M (DUMMY.M)
Last changed	22/10/2009 04:15:21 PM
	(modified after loading)
Method Info	t-butyldimethylphosphine sulfide trapped with pivaldehyde diastereome
	2
Sample Info	GCS 4 321 1, (o-alkyl carbamate, s-BuLi/(-)-sp in THF,
	trapping with methyl chloroformate)
	OD column 95:5 Hexane -IPA 0.5 mL/min
),8 Re≑360,100 (GCS 4 321 1.D)
mAU 1	(0 HEP-000, DD (0 CO_4_021_1.D)
700-	
1	
600-	
500 -	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	s Dilution	Factor with	ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	뭅
1	9.963	VV	0.2421	4360.53174	270.44171	38.5792
2	11.352	W	0.3034	6942.28223	338.37476	61.4208

Instrument 1 22/10/2009 04:15:52 PM

400

300 -

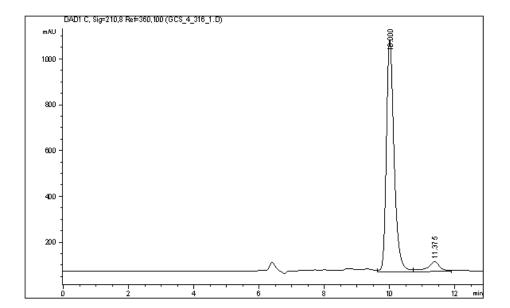
200

100

Page 1 of 2

11.352

12


mir

88

10

Data File C:\CHEM32\1\DATA\GCS_4_316_1.D Sample Name: GCS_4_316_1

Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument l	Location : Vial 1
Injection Date	:	13/10/2009 12:13:18 AM	
Acq. Method	:	C:\CHEM32\1\METHODS\JGR\DU	MMY.M
Last changed	:	13/10/2009 12:07:33 AM by	Giorgio
		(modified after loading)	
Analysis Method	:	C:\CHEM32\1\DATA\GCS 4 316	5 1.D\DA.M (DUMMY.M)
Last changed	:	13/10/2009 12:26:13 AM by	Giorgio
Sample Info	:	GCS 4 316 1 (0-alkyl carba	mate, s-BuLi/(+)-sp surrogate
		in THF, trapping with met	hyl chloroformate)
		OD column 95:5 Hexane -IPA	0.5 mL/min

Area Percent Report									
Multiplier	:		n ISTDs						
Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 									
1 10.000 VV 2 11.375 VV									
Totals :		1.79310e4	1057.84710						

Instrument 1 16/10/2009 05:41:32 AM

Page 1 of 1

MeO₂Ç

(R)-**13**

Ph

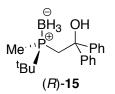
С

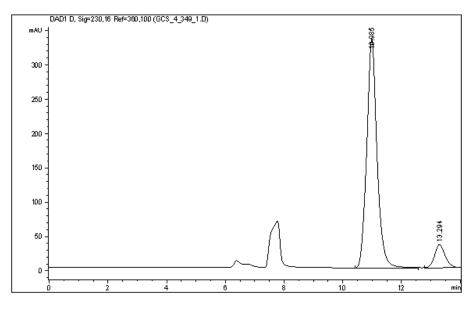
NⁱPr₂

Acq. Op	
Injecti Acq. Me Last ch	
Last ch Sample	
	DAD1 D, Sig=230,16 Ref=360,100 (GCS_4_310_1.D)
mAU 20 -	
0 -	
-20 -	
-40 - -60 -	
-80 -	
	λrea Percent Report
Sorted i Multipl Dilutia	ier : 1.0000
Signal	l: DAD1 D, Sig=230,16 Ref=360,100
# [:	こTime Type Width Area Height Area nin] [min] [m&U*s] [m&U] %
1 1	1.101 BB 0.2979 2154.12622 107.46767 49.8565 3.487 BB 0.3414 2166.52515 96.70338 50.1435
Totals	4320.65137 204.17105

Instrument 1 22/10/2009 05:21:31 PM

Page 1 of 1


⊖ BH₃ OH


rac-15

^tBu∕/ / Me ⊂Ph Ph

Data File C:\CHEM32\1\DATA\GCS_4_349_1.D Sample Name: GCS_4_349_1

	-		
Acq. Operator	:	Giorgio	
Acq. Instrument	:	Instrument l	Location : Vial 1
Injection Date	:	13/01/2010 11:04:48	3 AM
Acq. Method	:	C:\CHEM32\1\METHODS\	5\SOS-METHOD A.M
Last changed	:	13/01/2010 10:00:17	7 AM by ZM
		(modified after load	ading)
Analysis Method	:	C:\CHEM32\1\DATA\GCS	CS 4_349_1.D\DA.M (SOS-METHOD A.M)
Last changed	:	06/08/2010 03:30:02	2 PM
		(modified after load	ading)
Sample Info	:	GCS 4 349 1 (phosphi	nine borane, s-BuLi/(+)-sp surrogate
		in THF	
		OD column 95:5 Hex:1	IPA, 0.5 ml/min 11 bar

_____ Area Percent Report _____ __ ___ __ ___

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier @	Dilution	Factor with	ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area ۴
1	10.985	BB	0.3563	8147.12695	334.35358	90.6407
2	13.294	BBA	0.3744	841.24713	33.79466	9.3593
Total	s :			8988.37408	368.14824	

Totals :

Instrument 1 06/08/2010 03:34:52 PM

References for supporting information:

- (1) Bauer, W.; Schleyer, P. v. R. Magn. Reson. Chem. 1988, 26, 827.
- (2) Morrison, R. C.; Hall, R. W.; Schwindeman, J. A.; Kamienski, C. W.; Engel, J. F. *Eur. Pat. Appl.*EP 92-202236 A1 19930203.
- (3) (a) Bauer, W.; Winchester, W. R.; Schleyer, P. v. R. *Organometallics* **1987**, *6*, 2371. (b) Bauer, W.; Schleyer, P. v. R. *Adv. Carbanion Chem.* **1992**, *1*, 89.
- (4) Gallagher, D. J.; Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1992, 114, 5872.
- (5) Burchat, A. F. Chong, J. M.; Nielsen, N. J. Organomet. Chem. 1997, 281.
- (6) Dixon, A. J.; McGrath, M. J.; O'Brien, P. Org. Synth. 2006, 83, 141.
- (7) Stead, D.; O'Brien, P.; Sanderson, A. Org. Lett. 2008, 10, 1409.
- (8) Dieter, R. K.; ShengJIan, L. J. Org. Chem. 1997, 62, 7726.
- (9) Bilke, J. L.; Moore, S. P.; O'Brien, P.; Gilday, J. Org. Lett. 2009, 11, 1935.
- (10) McGrath, M. J.; O'Brien, P. Synthesis 2006, 2233.
- (11) Behrens, K.; Fröhlich, R.; Meyer, O.; Hoppe, D. Eur. J. Org. Chem. 1998, 2397.
- (12) Crepy, K. V. L.; Imamoto, T. Org. Synth. 2005, 52, 22.
- (13) Johansson, M. J.; Schwartz, L.; Amedjkouh, M.; Kann, N. Tetrahedron: Asymmetry, 2004, 15, 3531.
- (14) McGrath, M. J.; O'Brien, P. J. Am. Chem. Soc. 2005, 127, 16378.