Supporting Information

Enantio- and diastereo-selective synthesis of piperidines by coupling of four components in a "one-pot" sequence involving diphenylprolinol silyl ether-mediated Michael reaction

Tatsuya Urushima, Daisuke Sakamoto, Hayato Ishikawa, Yujiro Hayashi*

Department of Industrial Chemistry, Faculty of Engineering,
Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

General Remarks

All reactions were carried out under argon atmosphere and monitored by thin-layer chromatography using Merck 60 F254 precoated silica gel plates (0.25 mm thickness). FT-IR spectra were recorded on a JASCO FT/IR-410 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR) instrument. Data for ${ }^{1} \mathrm{H}$ NMR are reported as chemical shift $(\delta \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), integration, and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. High-resolution mass spectral analyses (HRMS) were carried out using Bruker ESI-TOF MS. All liquid aldehydes and solvents were distilled before use. Preparative thin layer chromatography was performed using Wakogel B-5F purchased from Wako Pure Chemical Industries, Tokyo, Japan. Flash chromatography was performed using silica gel 60 N of Kanto Chemical Co. Int., Tokyo, Japan. HPLC analysis was performed on a HITACHI Elite LaChrom Series HPLC, UV detection monitered at appropriate wavelength respectively, using CHIRALCEL OB-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, CHIRALPAK IA $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ and CHIRALPAK IB $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$.

Typical procedure of synthesis for tetrasubstituted piperidine

To a mixture of nitroalkene $(0.2 \mathrm{mmol})$ and aldehyde $(0.24 \mathrm{mmol})$ in toluene $(160 \mu \mathrm{~L})$ was added toluene solution of diphenylprolinol trimethylsilyl ether $(0.25 \mathrm{M}, 40.0 \mu \mathrm{~L})$. After the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ until complete consumption of nitroalkene, Ns -imine (0.24 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1,4 -dioxane ($200 \mu \mathrm{~L}$) were added to the reaction mixture. After the reaction mixture was stirred for 7 hours, domino aza-Henry reaction/acetalization reaction was quenched by silica gel pad with $10 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$, and concentrated in vacuo. To the mixture of residue
and triethylsilane $(159.3 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added trifluoroacetic acid ($76.5 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 7 hours while increasing temperature until $-20^{\circ} \mathrm{C}$. The reaction was quenched by addition of aq NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Combined organic layer was concentrated in vacuo. Purification by preparative thin layer chromatography (EtOAc : hexane $=1: 2$) gave corresponding piperidine derivative in 74% yield as a single diastereomer. Enantiomeric excess of piperidine derivative was determined by HPLC equipped with CHIRALPAK AD-H.

(3R, 4S, 5S, 6R)-3-methy-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenyllpiperidine (cmpound 3)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.88(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 2.27-2.43(1 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{t}, J=10.8$ $\mathrm{Hz}), 3.09(1 \mathrm{H}, \mathrm{t}, J=12.8 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{dd}, J=4.0,13.2 \mathrm{~Hz}), 4,86(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.40(1 \mathrm{H}$, $\mathrm{t}, J=10.4 \mathrm{~Hz}), 7.04(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.10-7.24(5 \mathrm{H}, \mathrm{m}), 7.25-7.38(3 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.7,35.8,54.0,54.7,65.0,92.3$,

3 $123.5,127.7,128.2,128.3,129.1,129.4,129.9,132.2,136.7,145.6,149.4$; IR (neat): v 1555, 1530, 1349, 1157, 1090, 854, 797, 744, 700, $606 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SNa}\right]: 504.1200$, found: 504.1216; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}$ -48.0 (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \mathrm{PrOH}$: hexane $=1: 4), 1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=7.7 \mathrm{~min}$, major enantiomer $\mathrm{rt}=13.1 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 207^{\circ} \mathrm{C}\right)$.

Figure 1. Determination of relative configuration

Typical procedure for one-pot synthesis of 2-allyl piperidine

To a mixture of nitroalkene $(0.2 \mathrm{mmol})$ and aldehyde $(0.24 \mathrm{mmol})$ in toluene $(160 \mu \mathrm{~L})$ was added toluene solution of diphenylprolinol trimethylsilyl ether $(0.25 \mathrm{M}, 40.0 \mu \mathrm{~L})$. After the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ until complete consumption of nitroalkene, Ns -imine $(0.24 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.5 \mathrm{mg}, 0.04 \mathrm{mmol})$ and 1,4-dioxane ($200 \mu \mathrm{~L}$) were added to the reaction mixture. After the reaction mixture was stirred for 12 hours, solvents were removed under reduced pressure. To the mixture of residue and allyltrimethylsilane ($127.0 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TiCl_{4} $(43.8 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 7 hours while increasing temperature until $-40{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of aq NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Combined organic layer was concentrated in vacuo. Purification by column chromatography (EtOAc : hexane $=1: 9$) gave corresponding piperidine derivative in 79% yield as a single diastereomer. Enantiomeric excess of piperidine derivative was determined by HPLC equipped with CHIRALPAK AD-H.

($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenylpiperidine (compound 4)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.83(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.58-2.78(2 \mathrm{H}, \mathrm{m}), 2.93(1 \mathrm{H}, \mathrm{dt}, J=9.2$, $14.8 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{t}, J=11.6 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{dt}, J=12.4,4.4 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.38$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 5.92-6.06(1 \mathrm{H}, \mathrm{m})$, 6.50-7.80 (12H, m), $7.91(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.3,29.6,39.7,51.0$,

4 $57.5,59.7,89.0,118.8,123.0,128.0,128.1,128.4,129.3,130.2,134.5,137.0,147.0,148.9$; IR (neat): $v 1553,1529$, 1349, 1312, 1160, 794, 742, 698, $609552 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for [$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaS}$]: 544.1513, found: 544.1492; $[\alpha]_{\mathrm{D}}{ }^{20^{\circ} \mathrm{C}}-187.7$ (c $1.82, \mathrm{CHCl}_{3}$); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column $\left({ }^{i} \mathrm{PrOH}\right.$: hexane $\left.=1: 80\right), 1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=27.9 \mathrm{~min}$, major enantiomer $\mathrm{rt}=31.8 \mathrm{~min}$; White solid (mp: $241{ }^{\circ} \mathrm{C}$).

Figure 2. Determination of relative configuration

(Table 2, entry 2)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.56-2.75(2 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}$, $\mathrm{br}-\mathrm{q}, J=12 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{t}, J=11.6 \mathrm{~Hz}), 3.63(3 \mathrm{H}, \mathrm{s}), 4.82(1 \mathrm{H}, \mathrm{dt}, J=12.0,4.4 \mathrm{~Hz})$, $4.98(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.87(1 \mathrm{H}$,
 $\mathrm{t}, J=10.8 \mathrm{~Hz}), 5.92-6.07(1 \mathrm{H}, \mathrm{m}), 6.20-7.70(11 \mathrm{H}, \mathrm{m}), 7.93(2 \mathrm{H}, \mathrm{d}, 8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.2,29.5$, $39.6,50.9,55.2,57.0,59.4,89.2,113.2,118.6,121.8,122.8,128.1,128.3,134,7,137.0,146.9,148.9,160.3$; IR (neat): v 1553, 1529, 1348, 1259, 1160, 1030, 834, $742,608,547 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NaS}\right]$: 574.1618, found: $574.1590 ;[\alpha]_{\mathrm{D}}{ }^{24^{\circ} \mathrm{C}}-200.9$ (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \mathrm{PrOH}$: hexane $=1: 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=18.6 \mathrm{~min}$, major enantiomer $\mathrm{rt}=12.0 \mathrm{~min}$; Yellow solid $\left(\mathrm{mp}: 185^{\circ} \mathrm{C}\right)$.
($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-6-(p-bromophenyl)-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4-phenyl piperidine

(Table 2, entry 3)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.82(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.57-2.67(1 \mathrm{H}, \mathrm{m}), 2.67-2.77(1 \mathrm{H}$, m), $2.90(1 \mathrm{H}, \mathrm{ddd}, J=9.6,12.0,14.0 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{dt}, J=12.0$, $4.8 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz})$,
 $5.87(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 5.91-6.04(1 \mathrm{H}, \mathrm{m}), 6.50-7.72(12 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 16.3,29.6,39.6,50.9,57.0,59.6,88.8,118.8,123.2,124.2,128.1,128.5,129.2,131.1,134.6,136.7,146.7$, 149.1; IR (neat): $v 1553,1530,1490,1349,1161,1088,1012,829,742,610,418 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaSBr}\right]: 624.0601$, found: 624.0617; $[\alpha]_{\mathrm{D}}{ }^{2{ }^{4} \mathrm{C}}-202.9$ (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \mathrm{PrOH}$: hexane $=1: 20$) , $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=11.7 \mathrm{~min}$, major enantiomer $\mathrm{rt}=10.0 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 203{ }^{\circ} \mathrm{C}\right)$.
($2 R, 3 R, 4 S, 5 S, 6 R)$-2-allyl-4-(p-methoxyphenyl)-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-6-phenyl piperidine (Table 2, entry 4)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.82(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.53-2.65(1 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}$, br-d, $J=14.8), 2.91(1 \mathrm{H}, \mathrm{br}-\mathrm{q}, J=11.6 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s})$, $4.82(1 \mathrm{H}, \mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz})$,
 $5.44(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 5.92-6.05(1 \mathrm{H}, \mathrm{m}), 6.30-7.70(11 \mathrm{H}, \mathrm{m}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.3,29.5,39.8,50.2,55.2,57.6,59.7,89.2,118.7,123.0,127.9,128.0,128.9,129.3$, 130.2, 134.6, 147.0, 148.9, 159.4; IR (neat): v 1552, 1530, 1348, 1253, 1160, 1031, 794, 742, 618, $414 \mathrm{~cm}^{-1}$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]$ calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NaS}\right]$: 574.1618 found 574.1646; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}-165.9$ (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \mathrm{PrOH}$: hexane $=1: 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=11.4 \mathrm{~min}$, major enantiomer $\mathrm{rt}=14.8 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 210{ }^{\circ} \mathrm{C}\right)$.
($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-4-(p-bromophenyl)-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-6-phenyl piperidine (Table 2, entry $5 \& 6$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.75(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 2.46-2.58(1 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}$, br-d, $J=14.8 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{br}-\mathrm{q}, J=12 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{dt}, J=$ $12.0,5.6 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=17.2$
 $\mathrm{Hz}), 5.80(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 5.84-5.98(1 \mathrm{H}, \mathrm{m}), 6.3-7.70(11 \mathrm{H}, \mathrm{m}), 7.83(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 16.3,29.5,39.6,50.5,57.4,59.6,88.7,118.9,122.4,123.0,128.0,129.4,130.0,134.3,136.0,146.8,149.0$; IR (neat): v 1556, 1529, 1348, 1160, 793, 742, 612, $406 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaSBr}\right]$: 624.0601, found 624.0584: $[\alpha]_{\mathrm{D}}^{23^{\circ} \mathrm{C}}-173.9$ (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{\text {i }} \mathrm{PrOH}$: hexane $=1: 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=10.1 \mathrm{~min}$, major enantiomer $\mathrm{rt}=13.1 \mathrm{~min}$; White solid (mp: $256^{\circ} \mathrm{C}$).

($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-4-(2-furyl)-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-6-phenyl piperidine (Table 2, entry 7)
 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.91(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.63-2.90(3 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{t}, J=11.2$ $\mathrm{Hz}), 4.81(1 \mathrm{H}, \mathrm{dt}, J=12.0,4.8 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 5.43$ $(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.8 \mathrm{~Hz}), 5.94-6.03(1 \mathrm{H}, \mathrm{m}), 6.22(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz})$,

 6.30-6.35 ($1 \mathrm{H}, \mathrm{m}$), 6.60-7.40 $(7 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{s}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.2,29.5$, $38.1,44.6,57.4,59.4,86.9,109.3,110.3,118.8,123.0,127.96,128.02,129.4,130.1,134.4,143.1,147.0,148.9,149.6 ;$ IR (neat): $v 1555,1530,1348,1312,1160,1088,1030,794,742,612 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(E S I):[M+N a]$ calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NaS}\right]: 534.1305$, found $534.1288:[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}-159.9$ (c 1.0, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \operatorname{PrOH}:$ hexane $=1: 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=11.3 \mathrm{~min}$, major enantiomer $\mathrm{rt}=12.5 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 235^{\circ} \mathrm{C}\right)$.($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-3-ethyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenylpiperidine (Table 2, entry 8) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.93(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.04-1.16(1 \mathrm{H}, \mathrm{m}), 1.16-1.29(1 \mathrm{H}, \mathrm{m})$, $2.42(1 \mathrm{H}, \mathrm{tt}, J=4.4,10.8 \mathrm{~Hz}), 2.65(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=14.8 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dt}, J=9.6,14.4 \mathrm{~Hz}), 3.36$ $(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{dt}, J=12.0,4.8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 5.95-6.07(1 \mathrm{H}, \mathrm{m}), 6.30-7.80(12 \mathrm{H}$,
 m), $7.91(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.8,23.0,29.1,46.0,50.4,56.8,57.4,89.3,118.7,123.0$, 127.9, 128.0, 128.3, 129.3, 130.2, 134.5, 137.2, 147.0, 148.9; IR (neat): $v 1553,1530,1348,1161,1088,994,792,741,700,609 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaS}\right]$: 558.1669, found 558.1684: $[\alpha]_{\mathrm{D}}{ }^{25^{\circ} \mathrm{C}}-171.2$ (c $1.0, \mathrm{CHCl}_{3}$) : Enantiomeric excess was determined by HPLC with a

CHIRALPAK AD-H column (${ }^{(} \operatorname{PrOH}:$ hexane $\left.=1: 10\right), 1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=8.8 \mathrm{~min}$, major enantiomer $\mathrm{rt}=10.4 \mathrm{~min}$; White solid (mp: $\left.237^{\circ} \mathrm{C}\right)$.
($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-3-n-propyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenylpiperidine (Table 2, entry

9)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.86(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.03-1.16(2 \mathrm{H}, \mathrm{m}), 1.21-1.33(1 \mathrm{H}, \mathrm{m})$, $1.38-1.50(1 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{dq}, J=17.2,5.2 \mathrm{~Hz}), 2.66(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=14.8 \mathrm{~Hz}), 2.85-3.00(1 \mathrm{H}, \mathrm{m})$, $3.36(1 \mathrm{H}, \mathrm{t}, J=11.6 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{dt}, J=12.0,4.8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J$
 $=10.0 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz}), 5.95-6.07(1 \mathrm{H}, \mathrm{m}), 6.50-7.70(13 \mathrm{H}, \mathrm{m}), 7.91(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7,19.2,29.3,31.9,43.8,50.4,58.1,57.4,89.4,118.8,123.0,127.95$, 128.02, 128.3, 129.3, 130.3, 134.5, 137.2, 147.0, 148.9; IR (neat): $v 1553,1530,1348,1161,1088,794,740,699,610,551 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaS}\right]$: 572.1826, found $572.1807 ;[\alpha]_{\mathrm{D}}^{24^{\circ} \mathrm{C}}-137.1$ (c $1.0, \mathrm{CHCl}_{3}$); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \mathrm{PrOH}$: hexane $=1: 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=6.5 \mathrm{~min}$, major enantiomer $\mathrm{rt}=13.4 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 178^{\circ} \mathrm{C}\right)$.

Large scale synthesis of 2-allyl piperidine

To a mixture of p-bromonitrostyrene ($456 \mathrm{mg}, 2.0 \mathrm{mmol}$) and propanal ($173 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) in toluene (1.2 mL) was added diphenylprolinol trimethylsilyl ether ($33 \mathrm{mg}, 0.1 \mathrm{mmol}$). After the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ until complete consumption of nitroalkene, Ns -imine ($697 \mathrm{mg}, 2.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.4 \mathrm{mmol})$ and 1,4-dioxane (2 mL) were added to the reaction mixture. After the reaction mixture was stirred for 12 hours, solvents were removed under reduced pressure. To the mixture of residue and allyltrimethylsilane ($1.27 \mathrm{~mL}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(439 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 7 hours while increasing temperature until $-40{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of aq NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Combined organic layer was concentrated in vacuo. Purification by recrystallization (MeOH) gave corresponding piperidine derivative in 66% yield as a single diastereomer with 94% ee.

Typical procedure for one-pot synthesis of 2-cyano piperidine

To a mixture of nitroalkene $(0.2 \mathrm{mmol})$ and aldehyde $(0.24 \mathrm{mmol})$ in toluene $(160 \mu \mathrm{~L})$ was added toluene solution of diphenylprolinol trimethylsilyl ether $(0.25 \mathrm{M}, 40.0 \mu \mathrm{~L})$. After the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ until complete consumption of nitroalkene, Ns -imine $(0.24 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.5 \mathrm{mg}, 0.04 \mathrm{mmol})$ and 1,4-dioxane ($200 \mu \mathrm{~L}$) were added to the reaction mixture. After the reaction mixture was stirred for 12 hours, solvents were removed under reduced pressure. To the mixture of residue and trimethlsilyl cyanide ($100.0 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ was added TiCl_{4} $(43.8 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 7 hours while increasing temperature until $-40^{\circ} \mathrm{C}$. The reaction was quenched by addition of aq NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Combined organic layer was concentrated in vacuo. Purification by column chromatography (EtOAc : hexane $=1: 5$) gave corresponding piperidine derivative in 80% yield as a single diastereomer. Enantiomeric excess of piperidine derivative was determined by HPLC equipped with CHIRALPAK AD-H.

(2S, 3R, 4S, 5S, 6R)-2-cyano-3-n-propyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenylpiperidine (Table 2,

 entry 10)${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.07(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.54-2.66(1 \mathrm{H}, \mathrm{m}), 3.39(1 \mathrm{H}, \mathrm{t}, J=11.2$ $\mathrm{Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 6.95-7.06(2 \mathrm{H}$, m), 7.12-7.25 (4H, m), $7.35(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.33-7.43(3 \mathrm{H}, \mathrm{m}), 8.05(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$
 NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 15.8,38.3,51.6,53.6,62.6,90.7,114.6,123.7,128.3,128.5,129.0,129.2,129.5,130.2$, 131.1, 134.8, 144.9, 149.8; IR (neat): v 1558, 1532, 1350, 1170, 1088, 744, 701, 615, $552 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaS}\right]$: 529.1152, found: 529.1148; $[\alpha]_{\mathrm{D}}{ }^{20^{\circ} \mathrm{C}}-82.3$ (c $0.80, \mathrm{CHCl}_{3}$); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{i} \operatorname{PrOH}$: hexane $=1: 10$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=$ 25.8 min , major enantiomer $\mathrm{rt}=43.5 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 248^{\circ} \mathrm{C}\right)$.
(2R, 3R, 4S, 5S, 6R)-6-(p-bromophenyl)-2-cyano-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4-phenyl piperidine (Table 2, entry 11)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.53-2.65(1 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{t}, J$ $=11.2 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz})$, $7.02(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.20-7.28(2 \mathrm{H}, \mathrm{m}), 7.30-7.44(5 \mathrm{H}, \mathrm{m})$,
 $8.14(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 15.8,38.2,51.4,53.5,62.0,90.4,114.5,123.8,125.0,128.3$, $128.5,129.0,129.5,131.4,132.5,134.6,144.6,150.0$; IR (neat): v 1556, 1531, 1348, 1167, 1091, 1011, 828, 744, 606,
$552 \mathrm{~cm}^{-1}$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]$ calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaSBr}\right]: 609.0240$, found: 609.0215 ; $[\alpha]_{\mathrm{D}}{ }^{20^{\circ} \mathrm{C}}-105.3$ (c 0.2, CHCl_{3}); Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (${ }^{(} \operatorname{PrOH}:$ hexane $=1: 10$), $1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=30.5 \mathrm{~min}$, major enantiomer $\mathrm{rt}=44.6 \mathrm{~min}$; White solid $\left(\mathrm{mp}: 213^{\circ} \mathrm{C}\right)$.
(2R,3R,4S,5S,6R)-4-(p-broophenyl)-2-cyano-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4-phenyl piperidine

(Table 2, entry 12)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.50-2.62(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{t}, J$
$=11.6 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz})$,
$7.02(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.06-7.23(4 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, J=7.6$

$\mathrm{Hz}), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 15.8,38.2,51.0,53.5,62.5,90.4,114.5,123.1$, 123.7, $128.3,128.5,129.1,130.2,131.0,132.7,133.9,144.7,149.8$; IR (neat): v 1557, 1532, 1350, 1170, 1088, 1011, 795, 745, $617,552 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaSBr}\right]: 609.0240$, found: 609.0217; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}-126.7$ (c 0.35, CHCl_{3}); Enantiomeric excess was determined after removing Ns group by HPLC with a CHIRALPAK AD-H column (${ }^{\text {i PrOH }}:$ hexane $\left.=1: 10\right), 1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=12.7 \mathrm{~min}$, major enantiomer $\mathrm{rt}=14.9 \mathrm{~min}$; White solid (mp: $284^{\circ} \mathrm{C}$).

Typical procedure for one-pot synthesis of 2-allyloxy piperidine

To a mixture of nitroalkene $(0.2 \mathrm{mmol})$ and aldehyde $(0.24 \mathrm{mmol})$ in toluene $(160 \mu \mathrm{~L})$ was added toluene solution of diphenylprolinol trimethylsilyl ether $(0.25 \mathrm{M}, 40.0 \mu \mathrm{~L})$. After the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ until complete consumption of nitroalkene, Ns -imine $(0.24 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1,4-dioxane ($200 \mu \mathrm{~L}$) were added to the reaction mixture. After the reaction mixture was stirred for 12 hours, solvents were removed under reduced pressure. To the mixture of residue was added p-toluenesulfonic acid ($79.9 \mathrm{mg}, 0.42 \mathrm{mmol}$) and allyl alcohol (2 mL) at room temperature. The reaction mixture was stirred for 24 hours. The reaction was quenched by addition of aq NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. Combined organic layer was concentrated in vacuo. Purification by column chromatography (EtOAc : hexane =1:7) gave corresponding piperidine derivative in 67% yield as a single diastereomer. Enantiomeric excess of piperidine derivative was determined by HPLC equipped with CHIRALPAK IA.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.92(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.43-2.54(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{t}, J=11.6$ $\mathrm{Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=6.0,12.8 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=5.2,12.4 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz})$, $5.41(1 \mathrm{H}, \mathrm{dd}, J=1.2,10.4 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dd}, J=1.2,17.2 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}), 5.75$ $(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 6.02-6.14(1 \mathrm{H}, \mathrm{m}), 7.00(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.11-7.18(3 \mathrm{H}, \mathrm{m}), 7.25-7.41$
 $(5 \mathrm{H}, \mathrm{m}), 7.98(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 15.2,41.3,49.8,57.7,70.1,88.2,89.7,118.6,123.4$, $127.9,128.2,128.3,129.2,129.4,130.5,131.0,133.0,136.8,146.6,149.2$; IR (neat): v 2931, 1555, 1531, 1349, 1165, 1011, 805, 745, $700 \mathrm{~cm}^{-1}$; HRMS (ESI): [M+Na] calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NaSBr}\right]: 560.1462$, found: 560.1442 ; $[\alpha]_{\mathrm{D}}^{22^{\circ} \mathrm{C}}$ -91.3 (c 1.1, CHCl_{3}); Enantiomeric excess was determined after removing Ns group by HPLC with a CHIRALPAK IA column (${ }^{\mathrm{i} P \mathrm{PrOH}}$: hexane $\left.=1: 80\right), 1.0 \mathrm{~mL} / \mathrm{min}$, minor enantiomer $\mathrm{rt}=26.9 \mathrm{~min}$, major enantiomer $\mathrm{rt}=23.3 \mathrm{~min}$; White solid (mp: $237^{\circ} \mathrm{C}$).

Typical procedure of removing Ns-group

To a mixture of $(2 R, 3 R, 4 S, 5 S, 6 R)$-2-allyl-3-methyl-5-nitro-1-(p-nitrobenzenesulfonyl)-4,6-diphenylpiperidine (31.3 $\mathrm{mg}, 0.06 \mathrm{mmol})$ and bezenethiol ($30.8 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) in $\mathrm{MeCN}(600 \mu \mathrm{~L})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(41.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ at room temperature. After the reaction mixture was stirred for 7 hours, the reaction was quenched by addition of saturated NaHCO_{3} aq and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (EtOAc : hexane $=1: 9$) gave corresponding piperidine derivative in quantitative yield.

($2 R, 3 R, 4 S, 5 S, 6 R$)-2-allyl-3-methyl-5-nitro-4,6-diphenylpiperidine (compound 5)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.73(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=14.0 \mathrm{~Hz}), 2.47-2.59$ $(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dt}, J=13.6,9.6 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{dt}, J=11.6,4.4 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{t}, J=11.2 \mathrm{~Hz})$, $4.36(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=17.2$ $\mathrm{Hz}), 5.69-5.82(1 \mathrm{H}, \mathrm{m}), 7.18-8.43(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 16.3,29.5,38.2$,

5 $49.5,56.6,57.8,96.1,118.6,127.5,127.8,128.8,128.9,135.1,137.9,138.5$; IR (neat): v 3064, $3031,2925,1549,1495,1456,1371,756,738,700 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24^{\circ} \mathrm{C}}+75.9\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}\right) ;$ White solid $\left(\mathrm{mp}: 120^{\circ} \mathrm{C}\right)$.

3

$\begin{array}{ll}0 & \text { ®n } \\ 0 & \pi \\ \infty & \infty \\ 0 & 0 \\ 1\end{array}$

Current Data Parameters
NAME \quad Dec16-2009-hayashi EXPNO
PROCNO

分解
$4 \mathrm{~cm}-1$
アポダイゼーション Cosine

10	$2:$	1606.41,	98.7609	$3:$	1555.31,	92.6578	$4:$	1530.24,	92.2414		
1：	2360.44,	97.6836	1495.53,	98.6550	$6:$	1455.99,	98.2297	$7:$	1348.96,	92.6941	$8:$
$9:$	1089.58,	96.7665	$10:$	1011.48,	97.8945	$11:$	854.31,	97.4254	$12:$	797.08,	95.6513
$13:$	744.39,	94.6752	$14:$	700.03,	94.4217	$15:$	605.54,	96.4697	$16:$	553.47,	96.4867
$17:$	458.98,	98.0678	$18:$	442.58,	98.0592	$19:$	417.51,	96.8920			

> 積算回数 = the number of accumulation
> セロフィリング= zero filling
> ゲイン= gain
> 日時= date
> 測定者= user name
> ファイル名= file name
> サンプル名 = sample name
> コメント = comment

面積\％レポート

ページ・ $1 / 1$


```
llorlol
```


名前 $=$ name
保持時間 $=$ retention time
面積＝area
ベースラインコード＝base line code

4

$1:$	1606.41,	96.1311	$2:$	1553.38,	72.9201	$3:$	1529.27,	74.1024	$4:$	1456.96,	92.8416
$5:$	1348.96,	80.3523	$6:$	1312.32,	87.6079	$7:$	1159.97,	81.1898	$8:$	1087.66,	89.9178
$9:$	1029.80,	90.9515	$10:$	916.99,	92.9750	$11:$	854.31,	91.1159	$12:$	793.56,	82.8749
$13:$	742.46,	81.5547	$14:$	698.11,	85.2260	$15:$	609.40,	86.0848	$16:$	551.54,	89.7190
$17:$	456.08,	95.0007	$18:$	417.51,	95.0963	$19:$	404.98,	95.2344			

面積\％レボート

面積\％レポート

4

ririrí $\dot{\sim}$

Table 2, entry 2

皘算回数
ゼャフィリン
日時
測定者
ファイル名
サンプル名
コメント

16
0 N
110／05／27 17：10
2010．05．27－allyl－imine0Me．JWS buckground

1：	3853.08,	93.7394	$2:$	3749.90,	93.2463	$3:$	3648.66,	92.9315	$4:$	2360.44,
5：	1610.27,	89.8905	$6:$	1553.38,	74.6261	$7:$	1529.27.	75.2592	8917	
$9:$	1348.00,	81.9604	$10:$	1259.29,	84.8547	$11:$	1159.97.	80.1854	1456.96.	89.7022
$13:$	1029.80,	86.8608	$14:$	834.06,	84.6133	$15:$	742.46,	83.6215	$16:$	7087.66,
$17:$	608.43,	88.0103	$18:$	546.72,	88.1051	$19:$	419.44,	92.5722	89.593	

面積\％レボート

面積\％レポート

沙快：

Table 2，entry 2

Table 2, entry 3

16
ON
2
110／05／27 1＇3：59
2010．05．27－al｜yl－imineBr．JWS
buckground

$1:$	3749.90,	94.8610	$2:$	3648.66,	94.7281	$3:$	1553.38,	78.1020	$4:$	1530.24,	78.6454
$5:$	1489.74,	90.1372	$6:$	1456.96,	93.2077	$7:$	1348.96,	84.7673	$8:$	1160.94,	84.2000
$9:$	1087.66,	91.0814	$10:$	1012.45,	90.6651	$11:$	854.31,	93.4744	$12:$	829.24,	87.7931
$13:$	742.46,	86.6691	$14:$	701.96,	91.9087	$15:$	683.64,	92.7759	$16:$	610.36,	89.3769
$17:$	544.79,	93.7563	$18:$	418.48,	91.7539	$19:$	404.01,	93.0943			

面積\％レジート

面積\％レポート

Table 2，entry 3

 (l)

Table 2, entry 4

Current Data Parameters
1.00

積算回数
やロブィング
ゲイン
日時
＂測定者
ファフル名
サンプル名
コメント
16 2
10／05／27 17：25
2010．05．27－al｜yl－styOMe．JWS buckground

$1:$	3749.90,	94.1972	$2:$	3648.66,	94.3187	$3:$	2360.44,	95.3286	$4:$	1609.31,	90.7759
$5:$	1552.42,	75.7095	$6:$	1530.24,	77.0027	$7:$	1456.96,	88.9749	8.	1348.00,	82.6352
$9:$	1309.43,	86.8220	$10:$	1252.54,	84.8333	$11:$	1159.97,	82.9342	$12:$	1087.66,	89.5625
$13:$	1030.77,	86.9818	$14:$	917.95,	92.9194	$15:$	854.31,	91.4462	$16:$	793.56,	83.6304
$17:$	742.46,	840869	$18:$	696.18,	89.6073	$19:$	618.07,	88.3015	$20:$	552.51,	90.1462

面積\％レポート

面積\％レポート
n－ッ $1 / 1$

Table 2，entry 4

Table 2, entry 5 \& 6
COSYGS

$1:$	3838.61,	95.2464	$2:$	3749.90,	94.1900	$3:$	3648.66,	93.9087	$4:$	2361.41,	94.6747
$5:$	1698.02,	94.7411	$6:$	1652.70,	94.5939	$7:$	1556.27,	85.9142	8.92	1529.27,	86.5276
$9:$	1456.96,	93.9444	$10:$	1348.00,	90.8893	$11:$	1159.97,	91.2120	$12:$	1087.66,	95.2967
$13:$	1010.52,	95.3166	$14:$	854.31,	95.3512	$15:$	792.60,	90.9266	$16:$	742.46,	91.2651
$17:$	696.18,	93.8525	$18:$	612.29,	91.5110	19.	457.05,	95.0180	$20:$	405.94,	88.4548

面積\％レポート ページ1／1

$\begin{array}{lll} & 2010 / 05 / 20 & 13: 26: 43 \\ \text { 分䉼旦日時：} & & 2010 / 05 / 20 \\ 13: 48: 13\end{array}$

面積\％レ米ート

Table 2，entry 5 \＆ 6

 $\xrightarrow{\text { L }}$

Table 2, entry 7

Current Data Parameters
NAME
May22-2010 EXPNO
PROCNO

F2 - Acquisition Parameters
Date_ 20100522

Time	0.31
INSTRUM	dp $\times 400$

積算回数	16 0		分解年ダイゼーション	$4 \mathrm{~cm}-1$
セロフィリング	0 N		アポダイゼーション	Cosine
ゲイン，	2		スキャンスピード	$2 \mathrm{~mm} / \mathrm{sec}$ ，
日時	110／06／14 18：33	－		
測定者				
ファイル名	Memory\＃3			
サンプル名	buckground			

$1:$	1607.38,	93.5819	$2:$	1555.31,	60.8342	$3:$	1530.24,	64.1437	$4:$	1455.99,	92.4149
$5:$	1348.00,	70.6667	$6:$	1312.32,	82.6566	$7:$	1160.94,	70.5792	8.	1087.66,	84.1166
$9:$	1068.37,	88.4483	$10:$	1029.80,	83.9016	$11:$	1011.48,	85.2906	$12:$	918.91,	88.9383
$13:$	854.31,	87.4751	$14:$	793.56,	74.6394	$15:$	742.46,	71.1517	$16:$	696.18,	84.2057
$17:$	612.29,	81.7224	$18:$	540.93,	86.2149	$19:$	416.55,	95.8081			

面積\％レポート

$\begin{array}{ll}\text { Systen } \\ \text { 2010 } \\ \text { 2010／05／20 } & 14: 31: 18 \\ 2010 / 05 / 20 & 14: 53: 09\end{array}$

Table 2，entry 7

面積\％レボート

Current Data Parameters NAME
NAME
PROCNO

COSYGS

積算回数
セロフィィン
ゲイン
日時
測定者
フアイル名
サンプル名
コメント

$1:$	2965.98,	73.7347	$2:$	1606.41,	74.2693	$3:$	1553.38,	18.1710	$4:$	1530.24,	19.7254
$5:$	1497.45,	71.4268	$6:$	1456.96,	66.8368	$7:$	1348.00,	28.2683	8.	1266.04,	76.5163
$9:$	1160.94,	32.5631	$10:$	1087.66,	53.4146	$11:$	1040.41,	61.2402	$12:$	994.12,	58.6781
$13:$	917.95,	66.2408	$14:$	854.31,	60.3928	$15:$	791.64,	35.6850	$16:$	740.53,	35.1338
$17:$	700.03,	42.7354	$18:$	681.71,	72.0539	$19:$	609.40,	49.8858	$20:$	552.51,	61.1717

面積\％レボート

面積\％レポート

Table 2，entry 8

Table 2, entry 9

積算回数
ゼロッグ
ゲイン
白時
測定者
ファイル名
サンプル名
コメント
$\begin{array}{ll}16 & \\ \text { ON } & \\ 2 & \\ 110 / 06 / 14 & 18: 02\end{array}$
Memory\＃10
buckground

1：	2934.16,	81.0877	$2:$	2872.45,	84.7693	$3:$	1606.41,	85.2503	$4:$	1553.38,	50.1605
$5:$	1530.24,	50.9511	$6:$	1497.45,	82.2895	$7:$	1456.96,	80.5819	8.	1348.00,	57.0850
$9:$	1160.94,	60.5678	$10:$	1087.66,	72.7407	$11:$	997.98,	76.8001	$12:$	916.99,	81.3162
$13:$	854.31,	76.7396	$14:$	793.56,	63.5758	$15:$	739.57,	63.8382	$16:$	699.07,	65.2761
$17:$	681.71,	78.9093	$18:$	610.36,	68.8981	$19:$	551.54,	72.9877			

面積\％レポート

vvx

面積\％レポート

Table 2，entry 9

Table 2, entry 10

積算回数
せロフィィリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント
16
ON
$\begin{array}{lll}110 / 04 / 18 & 18: 39\end{array}$
Memory\＃4
buckground

$1:$	3734.48,	96.9382	$2:$	3648.66,	96.8322	$3:$	2361.41,	96.9632	$4:$	1558.20,	84.4362
$5:$	1532.17,	86.0705	$6:$	1456.96,	94.0423	$7:$	1349.93,	87.3148	$8:$	1169.62,	91.9946
$9:$	1087.66,	93.9600	$10:$	855.28,	96.7861	$11:$	797.42,	94.5983	$12:$	744.39,	91.4742
$13:$	701.00,	93.6006	$14:$	681.71,	95.6174	$15:$	615.18,	93.8878	$16:$	551.54,	94.6752
$17:$	417.51,	90.5264									

面積\％レポート

面積\％レポート

Table 2，entry 10

Table 2, entry 11

Current Data Parameters
NAME
EXPNO
PROCNO
F2 - Acquisition Parameter
Date
$\begin{array}{r}20100527 \\ \hline 16.36\end{array}$
INSTRUM dpx400
PROBHD 5 mm QNP $\begin{array}{r}\text { dpx400 } \\ 1 \mathrm{H} / 29\end{array}$

$\begin{array}{lr}\text { TD } & 32768 \\ \text { SOLVENT } & \text { CDC13 } \\ \text { NS } & 8\end{array}$
$\begin{array}{lr}\text { NS } & 8 \\ \text { DS } & 0 \\ \text { SWH } & 8223.685 \mathrm{~Hz}^{2} \\ \text { FIDRES } & 0.250967 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { SIDRES } & 8223.685 \mathrm{~Hz} \\ \text { AQ } & 0.250967 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { AQ } & 1.9923444 \mathrm{sec} \\ \text { RG } & 3649.1 \mathrm{usec} \\ \text { DW } & 60.800 \mathrm{usec} \\ \text { DE } & 6.00 \mathrm{usec}\end{array}$ 6.00 use
303.2 K 303.2
00000000 1.00000000 sec
0.00000000 sec

CHANNEL f1
$1=-=====$
1 H
10.70 use 10.70 usec
4.00 dB
400.1324710 MHz

F2	- Processing parameters
SI	16384
SF	400.1300092
WDW	EM
SSB	0
LB	0.30
GB	0
PC	1.00

$\begin{array}{lr}\text { Current Data } & \text { Parameters } \\ \text { NAME } & \text { May27-2010 } \\ \text { EXPNO } & 63\end{array}$

F2 - Acqu	sition Parameters 20100527
Time	16.41
INSTRUM	dpx400
PROBHD	5 mm QNP 1H/29
PULPROG	zgpg 30
TD	65536
SOLVENT	CDC13
NS	100
DS	2
SWH	31847.133 Hz
FIDRES	0.485949 Hz
AQ	1.0289652 sec
RG	41285.1
DW	15.700 usec
DE	6.00 usec
TE	303.2 K
D1	2.00000000 sec
d11	0.03000000 sec
DELTA	1.89999998 sec
MCREST	0.00000000 sec
MCWRK	0.01500000 sec
$========$ CHANNEL $\mathrm{f} 1 \quad========$ NUC1 13 C P1 9.30 usec PL1 3.00 dB SFO1 100.6254358 MHz	

========= CHANNEL $f 2$
CPDPRG2 2 ANNEL $£ 2==$ CPDPRG2 waltz16 $\begin{array}{lr}\text { PCPD2 } & 80.0 \\ \text { PL2 } & 3.0 \\ \text { PL12 } & 22.0\end{array}$
400.1316005 dB
400.1316005 MHz

- Processing parameter 32768
100.6127708

EM
0
0
1.00 Hz
0 1.40

積算回数	16
セロフィイング	ON
ゲイン	2
日時	$110 / 0 \dot{3} / 14 \quad 17: 35$
測定者	
ファイル名	Memory\＃16
サンプル名	buckground
コメント	

$$
\begin{array}{ll}
\text { 分解 } & 4 \mathrm{~cm}-1 \\
\text { アポダイゼーション } & \text { Cosine } \\
\text { スキャンスピード } & 2 \mathrm{~mm} / \mathrm{sec}
\end{array}
$$

buckground
コメント

$1:$	3107.72,	94.5962	$2:$	1607.38,	88.3293	$3:$	1556.27,	63.7332	$4:$	1531.20,	61.6338
$5:$	1487.81,	84.6973	$6:$	1455.99,	91.1635	$7:$	1348.00,	61.3532	8.	1166.72,	69.4989
$9:$	1090.55,	76.5136	$10:$	1010.52,	77.0015	$11:$	855.28,	79.4824	$12:$	828.28,	72.8439
$13:$	762.71,	84.2619	$14:$	744.39,	70.6882	$15:$	701.00,	77.0998	$16:$	682.68,	76.9000
$17:$	605.54,	74.2207	$18:$	551.54,	76.7844	$19:$	459.94,	86.7585	$20:$	413.66,	90.4452

面積\％レポート


```
ystem
\(\begin{array}{ll}\text { 2010／05／30 } & \text { 15：06：30 } \\ \text { 2010／05／30 } & \text { 16：19：18 }\end{array}\)
```

vvm

面積\％レポート

$\begin{array}{llll}\text { 分析日時：} & 2010 / 06 / 01 & 13: 29: 1 \\ \text { 们刷日時：} & 2010 / 06 / 01 & 14: 34: 4\end{array}$

Table 2，entry 11

16
ON
2
$110 / 06 / 15^{\prime} 13: 23$

Memory\＃3
buckground
分解
分解思ダイゼーション
スキャンス：゚ード
$4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$

$1:$	3105.80,	95.3425	$2:$	1607.38,	94.4681	$3:$	1557.24,	68.7705	$4:$	1532.17,	68.7658
$5:$	1488.78,	88.7740	$6:$	1457.92,	92.9211	$7:$	1349.93,	68.5338	$8:$	1314.25,	87.6051
$9:$	1218.79,	94.6198	$10:$	1169.62,	79.2183	$11:$	1087.66,	85.7008	$12:$	1010.52,	86.1135
$13:$	854.31,	88.9193	$14:$	815.74,	89.1193	$15:$	794.53,	83.1792	$16:$	745.35.	73.2796
$17:$	700.03,	88.5048	$18:$	682.68,	87.1034	$19:$	617.11,	76.2598	$20:$	551.54	83.6058

面積\％レポート
面積\％レポート

Table 2，entry 12

16
ON
1
110／04／27 14：19
Memory\＃6
buckground

$1:$	3852.11,	95.0523	$2:$	3734.48,	94.3275	$3:$	3648.66,	94.4703	$4:$	2931.27,	95.5866
$5:$	1683.55,	94.6548	$6:$	1652.70,	94.7148	$7:$	1555.31,	72.4886	$8:$	1531.20,	73.9118
$9:$	1456.96,	87.5470	$10:$	1348.96,	78.1091	$11:$	1164.79,	80.6703	12.	1088.62,	89.8855
$13:$	1010.52,	87.4015	$14:$	854.31,	91.7762	$15:$	805.13,	88.3263	$16:$	745.35,	84.5702
$17:$	700.03,	85.9594	$18:$	684.61,	89.0377	$19:$	615.18,	91.0708	$20:$	553.47,	90.0238

$\begin{array}{lll}\text { 分析最時：} & 2010 / 06 / 16 & 20: 46: 12 \\ \text { 明時：} & 2010 / 06 / 16 & 21: 36: 03\end{array}$

1： 208 nm .4
nm結果
名

equation 5

面積\％レ杳ート

1:	3064.33,	82.3288	$2:$	3030.59,	78.2336	$3:$	2924.52,	64.9168	$4:$	1639.20,	81.6557
$5:$	1548.56,	12.7935	$6:$	1494.56,	72.1405	$7:$	1455.99,	64.2195	$8:$	1371.14,	63.6569
$9:$	1146.47,	79.9904	$10:$	1078.98,	80.5164	$11:$	1029.80,	84.6565	$12:$	998.95,	80.4762
$3:$	916.02,	75.0801	$14:$	755.96,	50.6008	$15:$	737.64,	56.3262	$16:$	700.03,	28.2570
$7:$	660.50,	82.2213	$18:$	622.89,	80.8433	$19:$	545.76,	75.5402	$20:$	510.08,	85.9245

