## SUPPORTING INFORMATION:

# A Practical Approach to Structurally Diverse Monoimine Salts and Nonsymmetrical Metallosalphen Complexes 

Eduardo C. Escudero-Adán, Marta Martínez Belmonte, Jordi Benet-Buchholz, Arjan W. Kleij*

Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain

## Contents:

Page S2: $\quad$ Synthesis of Zn (salphen) complexes 1a-12a.
Page S23: Synthesis of monoimine $\mathrm{NBu}_{4}$ salts $\mathbf{1 b - 1 2 b}$.
Page S46: NMR comparison between compounds $\mathbf{4 b}, \mathbf{9 b}$ and $\mathbf{1 0 b}$.
Page S47: Synthesis of complexes 13-17.
Page S55: Displacement ellipsoid plot for 2b.
Page S56: Displacement ellipsoid plot for $\mathbf{1 0 b}$.
Page S57: NMR investigation of the use of a salphen ligand as substrate.

Synthesis of Zn (salphen) complexes 1a-12a


1a

To a solution of 1,2-phenylenediamine ( $0.48 \mathrm{~g}, 4.44 \mathrm{mmol}$ ) and 3-nitro-salicylaldehyde $(1.40 \mathrm{mg}, 8.38 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added solid $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.18 \mathrm{~g}$, $5.38 \mathrm{mmol})$ in MeOH . The reaction mixture was stirred for 18 h and filtered to yield the product as a yellow solid ( $1.95 \mathrm{~g}, 4.15 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right): \delta=9.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.90-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.84\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{ArH}), 7.75\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.46-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.61(\mathrm{t}$, $\left.{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyridine- $d_{5}$ ): $\delta=165.69,163.69$, 145.19, 142.04, 141.01, 131.09, 129.44, 124.86, 118.09, 111.91. MS (MALDI+, dctb): $m / z=468.0(\mathrm{M})^{+}$(calcd. 468.0), 938.1 $(2 \mathrm{M})^{+}$(calcd. 938.1). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ : C 47.50, H 3.19, N 11.08; Found: C 47.39, H 3.02, N 10.76.




2a

To a solution of 4,5-dichloro-1,2-phenylenediamine ( $0.24 \mathrm{~g}, 1.35 \mathrm{mmol}$ ) and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.41 \mathrm{~g}, 1.87 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added 3-nitrosalicylaldehyde ( $0.52 \mathrm{~g}, 3.11 \mathrm{mmol}$ ). The reaction mixture was filtered after 1 h yielding a yellow solid ( $659.9 \mathrm{mg}, 1.23 \mathrm{mmol}, 91 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=9.10$ (s, $2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ ), $8.26(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.86\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.74(\mathrm{~d}$, $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 6.62\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ MHz , pyridine- $d_{5}$ ): $\delta=165.86,164.81,145.45,142.19,140.68,132.26,131.54,124.57$, 120.27, 116.53, 111.98. MS (MALDI + , dctb): $m / z=538.0(\mathrm{M}+\mathrm{H})^{+}$(calcd. 537.9), $1076.0(2 \mathrm{M})^{+}$(calcd 1075.8). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 43.16$, H 2.17, N 10.07; Found: C 42.97, H 2.16, N 10.35 .




This compound was prepared according to a previously reported procedure. ${ }^{1}$

[^0]

4a

A mixture of 4-nitro-1,2-phenylenediamine ( $164.7 \mathrm{mg}, 1.08 \mathrm{mmol}$ ), $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ( $342.4 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) and 3,5 -dichloro-salicylaldehyde ( $545.1 \mathrm{mg}, 2.85 \mathrm{mmol}$ ) in $\mathrm{MeOH}(60 \mathrm{~mL})$ was stirred for 0.5 h during which a precipitate was formed. The reaction mixture was filtered yielding a red solid ( $591.1 \mathrm{mg}, \quad 1.05 \mathrm{mmol}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=9.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.77\left(\mathrm{~d},{ }^{4} J\right.$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.27\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.08\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}$ ), $7.64\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.62\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.59\left(\mathrm{~d},{ }^{4} J=\right.$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $7.57\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , DMSO- $d_{6}$ $+20 \%$ DMF- $d_{7}$ ): $\delta=165.67,165.27,165.23,164.47,146.42,144.83,139.91,134.04$, $133.48,133.10,127.51,127.26,122.50,120.45,118.37,115.20,115.06,112.80$. MS (MALDI+, dctb): $m / z=560.9(\mathrm{M}+\mathrm{H})^{+}$(calcd. 560.9). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 41.38$, H 1.91, N 7.24; Found: C 41.31, H 1.92, N 7.11.




5a

To a solution of 4,5-dichloro-1,2-phenylenediamine ( $153.6 \mathrm{mg}, 0.868 \mathrm{mmol}$ ) and 3,5-di-chloro-salicylaldehyde ( $340.5 \mathrm{mg}, 1.78 \mathrm{mmol}$ ) in THF/MeOH ( $75: 25 \mathrm{~mL}$ ) was added $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(240.1 \mathrm{mg}, 1.09 \mathrm{mmol})$. The reaction mixture was filtered after 1.5 h yielding a yellow to orange solid ( 409.3 mg ). A second fraction ( 49.2 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $458.5 \mathrm{mg}(0.782 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=9.06$ (s, 2 H , $\mathrm{CH}=\mathrm{N}), 8.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.58\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.51\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ArH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyridine- $d_{5}$ ): $\delta=167.15,164.14,140.58,134.67$, 134.33, 132.05, 129.57, 121.37, 120.16, 116.67. MS (MALDI + , dctb): $m / z=585.8(\mathrm{M})^{+}$ (calcd. 585.8), 1171.6 (2M) ${ }^{+}$(calcd 1171.6). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 39.74, H 1.67, N 4.63 ; Found: C 39.83, H 1.66, N 4.56.




6a

To a solution of 4,5-dichloro-1,2-phenylenediamine ( $174.9 \mathrm{mg}, 0.988 \mathrm{mmol}$ ) and 5-bromo-salicylaldehyde ( $0.40 \mathrm{~g}, 1.99 \mathrm{mmol}$ ) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.37 \mathrm{~g}, 1.69 \mathrm{mmol})$. The reaction mixture was filtered after 1 h yielding a yellow to orange solid ( 483.4 mg ). A second fraction ( 114.9 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $598.3 \mathrm{mg}(0.987 \mathrm{mmol}, 99 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=9.05$ ( s , $2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ ), $8.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.60\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.33\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz},{ }^{4} J=\right.$ $2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.67\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyridine$\left.d_{5}\right): \delta=173.39,164.71,140.46,138.81,138.41,131.44,127.12,122.07,119.99$, 104.51. MS (MALDI + , dctb): $m / z=605.8(\mathrm{M})^{+}($calcd. 605.8$), 1212.6(2 \mathrm{M}+\mathrm{H})^{+}($calcd 1212.6). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 36.87$, H 2.32, N 4.30; Found: C 36.78, H 1.82, N 4.24.




7a

To a solution of 4,5-dichloro-1,2-phenylenediamine ( $85.4 \mathrm{mg}, 0.482 \mathrm{mmol}$ ) and 3-bromo-salicylaldehyde ( $197.0 \mathrm{mg}, 0.980 \mathrm{mmol}$ ) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(198.8 \mathrm{mg}, 0.906 \mathrm{mmol})$. The reaction mixture was filtered after 2 h yielding a yellow to orange solid ( 248.5 mg ). A second fraction ( 29.0 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $277.5 \mathrm{mg}(0.458 \mathrm{mmol}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=9.07$ (s, 2 H , $\mathrm{CH}=\mathrm{N}), 8.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.68\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.47\left(\mathrm{~d},{ }^{3} J=7.9\right.$ $\mathrm{Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 6.49 ( $\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , $20 \%$ pyridine $-d_{5}+80 \%$ DMF- $d_{7}$ ): $\delta=168.69,166.26,140.99,138.60,137.48,131.38$, 121.56, 120.40, 119.18, 114.91. MS (MALDI+, dctb): $m / z=605.8(\mathrm{M})^{+}($calcd. 605.8), $1211.5(2 \mathrm{M})^{+}$(calcd 1211.5). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 38.47$, H 1.94, N 4.49; Found: C 38.21, H 1.91, N 4.38.


 8a

This compound was prepared according to a previously reported procedure. ${ }^{2}$

[^1]

9a

To a warm solution of 4-nitro-1,2-phenylenediamine ( $0.21 \mathrm{~g}, 1.37 \mathrm{mmol}$ ) and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~g}, 1.82 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added 5 -bromosalicylaldehyde ( $0.57 \mathrm{~g}, 2.84 \mathrm{mmol}$ ) dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$. The reaction mixture was filtered after 1 h yielding a red solid ( 510.9 mg ). A second fraction ( 210.6 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $721.5 \mathrm{mg}(1.24 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=9.21(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.78\left(\mathrm{~d},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.25\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz}\right.$, ${ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $8.09\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.73\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $7.66\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.34-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.68-6.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyridine- $d_{5}$ ): $\delta=174.01,173.50,166.09,165.48$, 147.14, 146.13, 141.07, 139.06, 139.01, 138.56, 127.32, 127.09, 123.18, 122.06, 122.0, 118.80, 113.78, 113.62, 104.77, 104.59. MS (MALDI + , pyrene): $m / z=580.8(\mathrm{M})^{+}$(calcd. 580.7). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{CBr}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Zn} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ : C 39.41, H 2.32, N 6.89; Found: C 39.44, H 2.09, N 6.73.




To a solution of 4-bromo-1,2-phenylenediamine ( $0.14 \mathrm{~g}, 0.749 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.26 \mathrm{~g}, 1.18 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added 5 -bromosalicylaldehyde ( $0.32 \mathrm{~g}, 1.59 \mathrm{mmol}$ ) dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. The reaction mixture was filtered after 1 h yielding a yellow solid ( 336.8 mg ). A second fraction ( 58.9 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $395.7 \mathrm{mg}(0.642 \mathrm{mmol}, 86 \%)$. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta$ $=9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.14\left(\mathrm{~d},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.83\left(\mathrm{~d},{ }^{3} J=\right.$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 7.58-7.63 (m, 3H, ArH), 7.31-7.34 (m, 2H, ArH), $6.67\left(\mathrm{~d},{ }^{3} J=9.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \operatorname{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=171.26,171.11,163.22$, 162.48, 140.56, 138.47, 137.54, 137.36, 136.82, 136.66, 130.13, 125.55, 120.87, 120.84, 120.52, 119.85, 118.73, 102.87, 102.85. MS (MALDI+, dctb): $m / z=615.8(\mathrm{M})^{+}$ (calcd. 615.8), $1231.5(2 \mathrm{M})^{+}$(calcd 1231.5). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ : C 37.33, H 2.19, N 4.35; Found: C 36.99, H 2.12, N 4.23.




11a

To a solution of 1,2-phenylenediamine ( $86.3 \mathrm{mg}, 0.80 \mathrm{mmol}$ ) and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ( $285.4 \mathrm{mg}, 1.30 \mathrm{mmol}$ ) in $\mathrm{MeOH}(40 \mathrm{~mL}$ ) was added 3,5-dinitro-salicylaldehyde ( 348.3 $\mathrm{mg}, 1.64 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$. The reaction mixture was filtered after 15 min yielding a yellow solid ( 276.5 mg ). A second fraction ( 63.4 mg ) was obtained by further stirring the mother liquor for 16 h , cooling to $-30^{\circ} \mathrm{C}$ and filtration. Total yield: $339.9 \mathrm{mg}(0.607 \mathrm{mmol}, 76 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=9.23$ (s, 2 H , $\mathrm{CH}=\mathrm{N}), 8.83\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 8.72\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.97-7.98(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyridine- $d_{6}$ ): $\delta=168.52$, 163.23, 144.15, 140.78, 137.06, 133.01, 130.51, 125.77, 123.37, 118.80. MS (MALDI-, dctb): $m / z=558.0(M)^{+}$(calcd. 558.0). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 41.58$, H 2.09, N 14.55; Found: C 41.33, H 2.09, N 14.04.




12a

This compound was prepared according to a previously reported procedure. ${ }^{3}$

[^2]Synthesis of monoimine $\mathrm{NBu}_{4}$ salts $\mathbf{1 b - 1 2 b}$.


1b
$\mathrm{NBu}_{4}$

To a suspension of Zn (salphen) 1a ( $286.8 \mathrm{mg}, 0.611 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(1 \mathrm{M}$ in MeOH$)$ until full dissolution of the solid material occurred. The colour of the mixture turned deep red and was filtered after 5 min . Then the filtrate was concentrated and cooled to $-30^{\circ} \mathrm{C}$ to give the product as red crystals ( $155.3 \mathrm{mg}, 0.312 \mathrm{mmol}, 51 \%$ based on 1a). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz DMSO- $d_{6}$ ): $\delta=8.92$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ ), $7.89\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.73\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=\right.$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.66\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $6.54\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), $5.93\left(\mathrm{t},{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), $4.95(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.14-3.18 (m, 8H, NBu), 1.53-1.60 (m, 8H, NBu), 1.26-1.36 (m, 8H, NBu), $0.94\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=168.00$, $155.65,143.16,139.18,137.78,131.82$, 131.38, 129.85, 125.82, 116.62, 116.37, 114.12, 105.39, 57.50, 23.04, 19.17, 13.45. MS (ESI+, MeOH): $m / z=242.3(\mathrm{M}-$ anion $)^{+}$(calcd. 242.3). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ : C 67.41, H 9.36, N 10.84; Found: C 67.64, H 9.50, N 10.97.




2b

To a suspension of Zn (salphen) 2a ( $177.6 \mathrm{mg}, 0.330 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(1 \mathrm{M}$ in MeOH$)$ until full dissolution of the solid material occurred. The colour of the mixture turned red and was filtered after 5 min . Then the filtrate was concentrated and cooled to $-30^{\circ} \mathrm{C}$ to give the product as red crystals (108.4 $\mathrm{mg}, 0.191 \mathrm{mmol}, 58 \%$ based on 2a). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.89(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}), 7.92\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.75\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}$ ), $6.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.95\left(\mathrm{t},{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), 5.40 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.14-3.18 (m, 8H, NBu), 1.52-1.60 (m, 8H, NBu), 1.25-1.35 (m, 8H, NBu), $0.92\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=168.53$, 158.30, 143.60, 140.83, 138.88, 132.25, 131.02, 130.67, 127.52, 117.96, 116.88, 114.44, 105.06, 58.41, 23.61, 19.52, 13.03. MS (ESI-, MeOH): $m / z=323.9$ (M $\left.\mathrm{NBu}_{4}\right)^{-}$(calcd. 324.0). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}:$ C 61.37 , H 7.81, N 9.87; Found: C 61.75, H 8.30, N 9.43.




3b

To a suspension of Zn (salphen) 3a (208.6 mg, 0.403 mmol ) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.7 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . The yellow reaction mixture was then filtered after 10 min . Then the filtrate was concentrated and cooled to $-30^{\circ} \mathrm{C}$ to give the product as orange crystals ( $84.5 \mathrm{mg}, 0.162 \mathrm{mmol}, 40 \%$ based on 3a). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=8.80$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.55\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), $7.03\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.82-6.86$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 6.64\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.53\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH ), 4.91 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $3.14-3.18(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.50-1.61(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.27-1.36$ $(\mathrm{m}, 8 \mathrm{H}, \mathrm{NBu}), 0.94\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $d_{6}+$ $10 \%$ pyridine $-d_{5}$ ): $\delta=167.34,156.14,143.06,138.23,130.13,127.19,125.25,124.61$, 124.37, 116.52, 116.36, 114.02, 108.51, 57.56, 23.05, 19.15, 13.30. MS (ESI-, MeOH): $m / z=279.0\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$(calcd. 279.0). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 65.89, H 8.71, N 7.95; Found: C 65.93, H 8.79, N 7.91.




4b

To a suspension of Zn (salphen) $\mathbf{4 a}$ ( $171.1 \mathrm{mg}, 0.304 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.6 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . The red reaction mixture was then filtered after 10 min . and the filtrate first kept at rt to give a first fraction of red crystals ( 48.0 mg ). From the mother liquor another crop was obtained ( 36.2 mg ) by cooling to $-30^{\circ} \mathrm{C}$. Total yield: 84.2 mg ( $0.148 \mathrm{mmol}, 49 \%$ based on $4 \mathbf{4}$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=8.91$ (s, 1 H , $\mathrm{CH}=\mathrm{N}), 7.82\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.66-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.08\left(\mathrm{~d},{ }^{4} J\right.$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), 6.56 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.14-3.18 (m, $8 \mathrm{H}, \mathrm{NBu}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.26-1.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 0.93\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $\mathrm{NBu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz, DMSO- $d_{6}+10 \%$ DMF- $d_{7}$ ): $\delta=167.89,158.28$, 150.92, 137.05, 136.15, 130.93, 127.74, 124.97, 123.65, 122.59, 111.79, 111.64, 109.04, 57.66, 23.15, 19.25, 13.33. MS (ESI-, MeOH): $m / z=323.9\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$ (calcd. 324.0). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}$ : C 60.09 , H 7.88, N 9.67; Found: C 60.02, H 7.73, N 9.91.




5b

To a suspension of Zn (salphen) 5a ( $147.8 \mathrm{mg}, 0.252 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.5 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . The yellow reaction mixture was then filtered after 10 min . and the filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 114.0 mg of orange crystals $(0.193$ $\mathrm{mmol}, 76 \%$ based on 5a). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $7.57\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), $7.06\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ ), $6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.81$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$ ), 5.35 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $3.14-3.18(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu})$, 1.27-1.36 (m, 8H, NBu), $0.94\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , DMSO- $d_{6}$ ): $\delta=167.61,157.57,143.49,138.25,130.69,127.53,126.36,124.69$, $123.65,117.52,116.54,113.89,108.72,57.51,23.04,19.19,13.45$. MS (ESI-, MeOH): $m / z=348.9\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$(calcd. 348.9). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C} 58.89$, H 7.33, N 7.10; Found: C 58.87, H 7.57, N 7.08.




6b

To a suspension of Zn (salphen) 6a ( $156.7 \mathrm{mg}, 0.258 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.6 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . The yellow reaction mixture was then filtered after 10 min . and the orange filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 90.9 mg of orange crystals ( $0.151 \mathrm{mmol}, 59 \%$ based on 6a). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=8.69$ (s, 1 H , $\mathrm{CH}=\mathrm{N}), 7.68\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.85\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz},{ }^{4} J=3.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.08\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 5.29\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 3.14-3.18 (m, 8H, NBu), 1.53-1.61 (m, 8H, NBu), 1.27-1.36 (m, 8H, NBu), $0.94\left(\mathrm{t},{ }^{3} J=\right.$ $7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=173.93$, 157.67, 143.27, 138.84, 134.95, 128.83, 125.87, 124.31, 118.00, 117.43, 116.69, 114.00, 113.70, 97.61, 57.53, 23.05, 19.20, 13.44. MS (ESI-, MeOH): $m / z=358.9\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$(calcd. 358.9). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{BrN}_{3} \mathrm{O} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ : C 57.05 , H 7.43, N 6.88; Found: C $57.15, \mathrm{H}$ 7.59, N 6.84 .




7b

To a suspension of $\mathrm{Zn}($ salphen $) 7 \mathbf{a}(154.7 \mathrm{mg}, 0.255 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.5 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . The yellow reaction mixture was then filtered after 10 min . and the orange filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 102.2 mg of orange crystals $\left(0.170 \mathrm{mmol}, 67 \%\right.$ based on 7a). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.83(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}), 7.62\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.25\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.80\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 5.28(\mathrm{br}$ $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.14-3.17(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.26-1.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu})$, $0.94\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=169.40$, $159.10,143.35,134.90,126.62,125.80,123.70,119.77,117.34,116.60,115.76$, $113.74,107.19,57.50,23.05,19.16,13.44$. $\mathrm{MS}(\mathrm{ESI}-, \mathrm{MeOH}): m / z=358.9(\mathrm{M}-$ $\left.\mathrm{NBu}_{4}\right)^{-}$(calcd. 358.9). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{BrN}_{3} \mathrm{O}$ : C 57.91, H 7.37, N 6.99; Found: C 57.44, H 7.70, N 6.86.




8b

To a suspension of Zn (salphen) $\mathbf{8 a}(0.41 \mathrm{~g}, 0.833 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(1.0 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . Then another portion of $\mathrm{NBu}_{4} \mathrm{OH}$ was added ( 1.5 mL ) and the mixture shortly warmed. The yellow reaction mixture was filtered after 15 min . and the yellow/orange filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 187.3 mg of orange crystals ( $0.367 \mathrm{mmol}, 44 \%$ based on 8a). ${ }^{1}$ H NMR ( 400 MHz , DMSO- $d_{6}$ ): $\delta=8.84$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.62\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.94\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.63\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.52\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=\right.$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 6.17 (d, ${ }^{3} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $4.81\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.14-3.18(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{NBu}), 1.52-1.60(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.26-1.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 0.93 (t, $\left.{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=172.93$, 158.30, 142.47, 139.75, 130.14, 128.31, 124.07, 122.74, 121.98, 121.90, 121.33, $116.53,113.60,57.47,31.64,23.03,19.14,13.43$. MS (ESI-, MeOH): $m / z=267.1$ (M - $\left.\mathrm{NBu}_{4}\right)^{-}$(calcd. 267.1). Anal. calcd. for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$ : C 75.09, H 10.88, N 7.96; Found: C 74.79, H 10.73, N 7.85.




9b

To a suspension of Zn (salphen) 9a ( $142.2 \mathrm{mg}, 0.244 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.6 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . Then the red-brown mixture was filtered after 10 min . and the filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 75.2 mg of red/brown crystals $(0.130$ mmol, $53 \%$ based on 9a). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $7.80\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.76\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.65\left(\mathrm{~d},{ }^{4} J=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.87\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.68\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), $6.51\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.11\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 3.14-3.18(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu})$, $1.52-1.60(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.26-1.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 0.93\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=173.80,158.29,150.79,137.47,136.03,135.18$, 128.30, 125.93, 125.91, 124.13, 122.31, 111.43, 97.80, 57.51, 23.06, 19.11, 13.44. MS $(\mathrm{ESI}-\mathrm{MeOH}): \quad m / z=335.9\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$(calcd. 336.0). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{BrN}_{4} \mathrm{O}_{3} \cdot 1.5 \mathrm{H} 2 \mathrm{O}$ : C 57.61, H 8.00, N 9.27; Found: C 57.38, H 7.75, N 8.75.




10b

To a suspension of Zn (salphen) $\mathbf{1 0 a}$ ( $148.7 \mathrm{mg}, 0.241 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.6 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . Then the yellow/orange mixture was filtered after 5 min . and the filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield 61.1 mg of yellow/orange crystals ( $0.0999 \mathrm{mmol}, 41 \%$ based on 10a). The compound is isolated as a mixture of isomers where the position of the bromine atom in the aromatic bridging fragment is either meta or para with respect to the imine N . The NMR data for the major isomer is reported. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.67\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $6.81\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz},{ }^{4} J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.79\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.72\left(\mathrm{~d},{ }^{3} J=\right.$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.61\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.07\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), 5.16 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $3.14-3.18(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.53-1.60(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 1.26-1.36$ (m, 8H, NBu), $0.94\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=173.58,156.79,144.71,137.94,134.49,128.63,125.62,124.70,118.40,118.00$, 115.51, 106.89, 97.28, 57.51, 23.04, 19.19, 13.46. HRMS (ESI-, MeOH): calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}$ : 366.9082; found: 366.9094. MS (ESI-, MeOH): m/z = 368.8 (M -$\left.\mathrm{NBu}_{4}\right)^{-}$(calcd. 368.9). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$ : C 55.33, H 7.53, N 6.68; Found: C 54.98, H 7.28, N 6.55.




11b

To a suspension of Zn (salphen) 11a ( $139.3 \mathrm{mg}, 0.249 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.5 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . Then the dark reddish mixture was filtered after 10 min . and the filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield in due course 74.1 mg of dark redbrown crystals ( $0.136 \mathrm{mmol}, 55 \%$ based on 11a). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=$ $8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.66\left(\mathrm{~d},{ }^{4} J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.60\left(\mathrm{~d},{ }^{4} J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, 6.92-6.95 (m, 2H, ArH), $6.70\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.55\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 5.06 (br s, 2H, NH2), 3.14-3.18 (m, 8H, NBu), 1.53-1.61 (m, 8H, NBu), $1.27-1.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NBu}), 0.94\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NBu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz}$, DMSO- $d_{6}$ ): $\delta=169.27,153.34,143.45,138.87,136.65,129.92,127.07,126.92$, 125.32, 125.07, 116.92, 116.34, 114.47, 57.51, 23.03, 19.17, 13.42. MS (ESI-, MeOH): $m / z=301.0\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}\left(\right.$calcd. 301.1). HRMS (ESI-, MeOH): calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{5}$ : 301.0573; found: 301.0584. Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 63.36$, H 8.37, N 12.74; Found: C 63.55, H 8.75, N 12.73.




12b

To a suspension of Zn (salphen) 12a ( $165.6 \mathrm{mg}, 0.290 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of $\mathrm{NBu}_{4} \mathrm{OH}(0.6 \mathrm{~mL}$ of a 1 M solution in MeOH$)$ and the mixture shortly shaken at rt . Then the yellow/orange mixture was filtered after 10 min . and the filtrate concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield a first fraction ( 12.7 mg ) of yellow/orange crystals. This fraction was identified as pure 12b. Hereafter, 2 subsequent fractions were collected and analyzed by 1 H NMR but proved to be a mixture of the two possible monoimine salts. Yield of 12b: $0.0238 \mathrm{mmol}(8 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=8.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.62\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}$ ), $7.22\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.80-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.63$ (d, $\left.{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.53\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 5.81(\mathrm{t}$, $\left.{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$. MS (ESI-, MeOH$): m / z=291.0\left(\mathrm{M}-\mathrm{NBu}_{4}\right)^{-}$(calcd. 291.0). Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{BrN}_{3} \mathrm{O} \cdot{ }^{1} / 2 \mathrm{H}_{2} \mathrm{O}$ : C 64.31, H 8.75, N 7.76; Found: C 64.54, H 9.22, N 7.58. ${ }^{4}$


[^3]NMR comparison between compounds $\mathbf{4 b}, \mathbf{9 b}$ and $\mathbf{1 0 b}$.
In the case of $\mathbf{4 b}$ and $\mathbf{9 b}$ exclusive isolation of one isomer is observed while for $\mathbf{1 0 b}$ two isomers in an approximate $3: 1$ ratio is noted; see spectra below. All spectra recorded in DMSO- $d_{6}$, only the aromatic region is shown here.

4b

9b
 10b


## Synthesis of complexes 13-17.



13

Monoimine salt $\mathbf{1 b}(38.9 \mathrm{mg}, 0.0780 \mathrm{mmol})$ was combined with 3,5dichlorosalicylaldehyde ( $18.5 \mathrm{mg}, 0.0969 \mathrm{mmol}$ ) in $\mathrm{MeOH}(15 \mathrm{~mL})$. Then $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(19.6 \mathrm{mg}, 0.0873 \mathrm{mmol})$ disolved in $\mathrm{MeOH}(5 \mathrm{ml})$ was added and almost immediately a suspension was obtained. After 1 h , the reaction mixture was filtered yielding an orange/brown solid ( $29.7 \mathrm{mg}, 0.0556 \mathrm{mmol}, 71 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=$ $9.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.35-8.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.28-8.30(\mathrm{~m}, 1 \mathrm{H}$, ArH), $8.05-8.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.83\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.76\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), 7.51-7.56 (m, 2H, ArH), $6.86\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}+20 \%$ pyridine- $d_{5}+10 \%$ DMF- $\left.d_{7}\right): \delta=160.39,159.76,156.54$, 156.22 , 147.79, 142.71, 141.38, 135.59, 134.44, 132.69, 130.26, 130.02, 126.85, $126.05,123.31,118.72,118.57,117.10,114.83,112.89$. MS (MALDI+, dctb): $m / z=$ $535.0(\mathrm{M})^{+}$(calcd. 535.0). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Pd} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 42.09, \mathrm{H} 2.65, \mathrm{~N}$ 7.36; Found: C 41.69, H 2.23, N 7.82.




Monoimine salt 1b ( $60.5 \mathrm{mg}, 0.121 \mathrm{mmol}$ ) was combined with 3,5-di-nitrosalicylaldehyde ( $31.7 \mathrm{mg}, 0.149 \mathrm{mmol}$ ) in $\mathrm{MeOH}(15 \mathrm{~mL})$. Then $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(39.3$ $\mathrm{mg}, 0.179 \mathrm{mmol}$ ) disolved in $\mathrm{MeOH}(5 \mathrm{ml})$ was added and almost immediately an orange suspension was obtained. After 1 h , the reaction mixture was filtered yielding a yellow solid ( $52.7 \mathrm{mg}, 0.102 \mathrm{mmol}, 85 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=9.24$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.80\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.70\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}), 7.94\left(\mathrm{~d},{ }^{3} J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.84-7.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.74-7.77(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.62\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , pyrdine- $d_{5}$ ): $\delta=167.96,164.77,163.19,162.03,144.68,143.26,141.32,140.59$, 139.80, 136.17, 132.09, 130.44, 129.62, 128.76, 124.91, 124.00, 122.87, 117.82, 117.63, 111.24. MS (MALDI+, dctb): $m / z=513.0(\mathrm{M})^{+}($calcd. 513.0 $), 1028.1(2 \mathrm{M})^{+}$ (calcd. 1028.0). HRMS (MALDI+, dctb): calcd for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Zn}: 512.9905$; found: 512.9950. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Zn} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ : C 44.34, H 2.60, N 12.93; Found: C 44.33, H 2.54, N 12.14 .




Monoimine salt $\mathbf{5 b}$ ( $41.9 \mathrm{mg}, 0.0708 \mathrm{mmol}$ ) was combined with 3-methoxy-5-allylsalicylaldehyde ${ }^{5}(20.1 \mathrm{mg}, 0.105 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$. Then $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(23.6$ $\mathrm{mg}, 0.0948 \mathrm{mmol}$ ) disolved in $\mathrm{MeOH}(10 \mathrm{ml})$ was added. In due course a brownish suspension was obtained which was filtered after 45 min to yield a brown solid ( 30.2 $\mathrm{mg}, 0.0520 \mathrm{mmol}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.41$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.10(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~s}, 1 \mathrm{H}$, ArH), 5.92-6.03 (m, 1H, allyl), 5.08-5.16 (m, 2H, allyl), 3.84 (s, 3 H , OMe), 3.25 (d, ${ }^{3} \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}$, allyl). A proper ${ }^{13} \mathrm{C}$ NMR could not be obtained because the compound was too insoluble. MS (MALDI+, dctb): $m / z=579.9(\mathrm{M})^{+}$(calcd. 597.9). Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Ni}^{2} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}$ : C 48.62, H 2.95, N 4.72; Found: C 48.54, H 3.05, N 4.60.


[^4]
$$
\mathrm{R}=\mathrm{NO}_{2}
$$

Monoimine salt 1b ( $85.1 \mathrm{mg}, 0.171 \mathrm{mmol}$ ) was combined with ( $S$ )-3,3'-diformyl-2, ${ }^{\prime}$ '-dihydroxy-1,10-binaphthalene ${ }^{6}(27.5 \mathrm{mg}, 0.0803 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(20 / 20 \mathrm{~mL})$. Then $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(46.8 \mathrm{mg}, 0.213 \mathrm{mmol})$ disolved in $\mathrm{MeOH}(10 \mathrm{ml})$ was added. In due course an orange suspension was obtained which was filtered after 18 h to yield a red/brown solid ( 26.3 mg ). As second fraction was obtained by concentration and cooling of the mother liquor affording another 24.0 mg of product. Total yield: 50.3 mg ( $0.0531 \mathrm{mmol}, 66 \%$ based on the bis-aldehyde reagent). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right): \delta=9.31(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.97\left(\mathrm{~d},{ }^{3} J=7.6\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.78\left(\mathrm{t},{ }^{3} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.59\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ArH), $7.54\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$ ), $7.49\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.43$ ( $\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 7.04-7.08 (m, 2H, ArH), 6.94-6.99 (m, 4H, ArH), $6.41\left(\mathrm{t},{ }^{3} J=\right.$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz, DMSO- $d_{6}$ ): $\delta=165.24,164.85,163.57$, $162.59,141.56,141.24,139.86,139.60$, 137.78, 137.61, 129.63, 129.41, 129.04, 128.24, 127.88, 127.25, 124.85, 124.35, 123.37, 123.23, 119.74, 116.97, 111.08, 110.72. MS (MALDI + , dctb): $m / z=947.1(\mathrm{M}+\mathrm{H})^{+}($calcd. 947.1$), 1895.2(2 \mathrm{M}+\mathrm{H})^{+}$ (calcd. 1895.1). Anal. calcd. for $\mathrm{C}_{48} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Zn}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}:$ C 54.61, H 3.82, N 7.96; Found: C 54.26, H 3.25, N 7.78 .

[^5]

$$
\mathrm{R}=\mathrm{NO}_{2}
$$

Monoimine salt 1b ( $79.5 \mathrm{mg}, 0.159 \mathrm{mmol}$ ) was combined with $(S)$-3,3'-diformyl-2, $\mathbf{2}^{\prime}$ -dihydroxy-1,10-binaphthalene ${ }^{7}(26.6 \mathrm{mg}, 0.0777 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(30 / 20 \mathrm{~mL})$. Then $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(39.5 \mathrm{mg}, 0.159 \mathrm{mmol})$ disolved in $\mathrm{MeOH}(10 \mathrm{ml})$ was added. In due course a precipitate was formed. After 1 h this was collected and analyzed by ${ }^{1} \mathrm{H}$ NMR. This fraction ( 16.2 mg ) turned out to be a mixture of components, viz. the monoNi and bis-Ni complex. The mother liquor was then further stirred for 18 h , to yield a second fraction as a dark brown solid, which turned out to be the desired bis-Ni complex. Yield: $30.5 \mathrm{mg}\left(0.0326 \mathrm{mmol}, 42 \%\right.$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta=$ $8.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.84\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ArH ), $7.77\left(\mathrm{~d},{ }^{3} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.62\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.48\left(\mathrm{t},{ }^{3} J=7.2\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.38\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.30\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right)$, $7.18\left(\mathrm{t},{ }^{3} J\right.$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 6.89\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 6.35$ ( $\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ). The compound was too insoluble for a proper ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement. MS (MALDI+, dctb): $m / z=934.0(\mathrm{M})^{+}$(calcd. 934.1). Anal. calcd. for $\mathrm{C}_{48} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Ni}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ : C 59.42, H 3.32, N 8.66; Found: C 59.87, H 3.02, N 8.11.


[^6]Displacement ellipsoid plot for $\mathbf{2 b}$.


Displacement ellipsoid plot for 10b.



NMR investigation of the use of a salphen ligand as substrate.


Solvent used in each case: DMSO- $d_{6}$.
The reaction of the salphen ligand with $\mathrm{NBu}_{4} \mathrm{OH}$ was carried out as follows: to a mixture of the salphen ligand ( $153.0 \mathrm{mg}, 0.283 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added 0.5 mL of $\mathrm{NBu}_{4} \mathrm{OH}(1 \mathrm{M}$ solution in MeOH$)$. A clear red-orange solution was obtained from which some crystalline material separated in due course (an approximate 20 mg ). Further cooling did not lead to more crystallization. The solid material was isolated by filtration, dried and subjected to ${ }^{1} \mathrm{H}$ NMR analysis (see above). The recorded NMR trace was compared with authentic samples of the bis-imine and mono-imine compounds.

Observation:

1. The major component in the reaction product is the starting bis-imine (i.e., the salphen $-\mathrm{H}_{2}$ ligand).
2. Indication of the formation of some aldehyde is noted (at $\delta=10 \mathrm{ppm}$ ).
3. Indication of some mono-imine formation (see peak around 4.7 ppm ).
4. The isolated product is far from pure and contains (at least) 3 different cocrystallized species.

[^0]:    ${ }^{1}$ See: Kleij, A. W.; Kuil, M.; Lutz, M.; Tooke, D. M.; Spek, A. L.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Inorg. Chim. Acta 2006, 359, 1807-1814.

[^1]:    ${ }^{2}$ Escudero-Adán, E. C.; Benet-Buchholz, J.; Kleij, A. Inorg. Chem. 2007, 46, 7265-7267.

[^2]:    ${ }^{3}$ Martínez Belmonte, M.; Wezenberg, S. J.; Haak, R. M.; Anselmo, D.; Escudero-Adán, E. C.; BenetBuchholz, J.; Kleij, A. W. Dalton Trans. 2010, 39, 4541-4550.

[^3]:    ${ }^{4}$ There was not enough material available for a ${ }^{13} \mathrm{C}$ NMR.

[^4]:    ${ }^{5}$ This reagent is commercially available through ACROS organics.

[^5]:    ${ }^{6}$ See: Belokon, Y. N.; Chusov, D.; Borkin, D. A.; Yashkina, L. V.; Bolotov, P.; Skrupskaya, T.; North, M. Tetrahedron Asymm. 2008, 19, 459. Note that we used the (S)-isomer of BINOL instead in the synthetic protocol.

[^6]:    ${ }^{7}$ See: Belokon, Y. N.; Chusov, D.; Borkin, D. A.; Yashkina, L. V.; Bolotov, P.; Skrupskaya, T.; North, M. Tetrahedron Asymm. 2008, 19, 459. Note that we used the (S)-isomer of BINOL instead in the synthetic protocol.

