Merging Nucleophilic and Hydrogen Bonding Catalysis: An anion Binding Approach to the Kinetic Resolution of Propargylic Amines

Eric G. Klauber, Chandra Kanta De, Tejas K. Shah and Daniel Seidel*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.

Supporting Information

General Information: Reagents and solvents were purchased from commercial sources and were used as received. Toluene was freshly distilled from sodium under nitrogen prior to use. Reactions were run under a nitrogen atmosphere. Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light and anisaldehyde stain, followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on an ATI Mattson Genesis Series FT-Infrared spectrophotometer. Proton nuclear magnetic resonance spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ were recorded on a Varian VNMRS-500 MHz instrument and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ at 2.05 ppm , $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at $2.50 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 5.32 ppm$)$. Data are reported as app $=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, comp = complex; $\mathrm{br}=$ broad; integration; coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}-\mathrm{NMR}$) spectra were recorded on a Varian VNMRS-500 MHz instrument or Varian VNMRS- 400 MHz instrument and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.0 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ at 29.8 ppm , $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at $39.5 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 53.8 ppm$)$. Mass spectra were recorded on a Finnigan LCQ-DUO mass spectrometer or on a Finnigan 2001 Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. HPLC analysis was carried out on an Agilent 1100 series instrument with auto sampler and multiple wavelength detectors. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Perkin Elmer 343 polarimeter at 589 nm at $20^{\circ} \mathrm{C}$. Conversions and s-factors were calculated in accord with standard procedures. ${ }^{1}$ Propargyl amines were prepared according to literature methods. ${ }^{2,3}$

General Procedure for Kinetic Resolutions:

A flame dried round bottom flask was charged with benzoic anhydride ($34.0 \mathrm{mg}, 0.150 \mathrm{mmol}$, 0.6 equiv.) and $4 \AA$ MS (100 mg). DMAP ($1.52 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv.) in 1 mL of toluene was added. Freshly distilled toluene ($21.0 \mathrm{~mL}, 0.01 \mathrm{M}$) was added and the reaction mixture was cooled to $78{ }^{\circ} \mathrm{C}$ over 15 min and a solution of catalyst ($7.82 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv.) in 2 mL of toluene was added. After 15 min , a solution of amine $(0.25 \mathrm{mmol})$ in 1 mL of toluene was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours. The reaction was quenched by adding 3.0 M MeMgCl in THF $(0.500 \mathrm{mmol}, 0.167 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirring was continued for another 10 minutes. Excess Grignard reagent was quenched with $1 \mathrm{M} \mathrm{aq} \mathrm{HCl}(5 \mathrm{~mL})$ solution. The reaction mixture was allowed to warm to room temperature and was extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with 5 mL of 1 M HCl , then brine. The combined organic extracts were then dried with anhydrous sodium sulfate. The organic layer was concentrated under reduced pressure and the crude product was purified by flash chromatography.

The unreacted amine was isolated by basifying the aqueous layer with $15 \% \mathrm{NaOH}(\mathrm{pH} 10)$ and subsequent extraction with diethyl ether ($5 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, and then dried with anhydrous sodium sulfate. The organic layer was concentrated under reduced pressure. The crude material was benzoylated following a standard procedure.

The second runs were conducted using the general procedure without any modifications.
The conversion, $\mathbf{C}_{\mathbf{H P L C}}$, for each catalytic reaction was calculated ${ }^{1}$ using the following equation:
$\boldsymbol{C}_{\boldsymbol{H P L C}}=\frac{\boldsymbol{e e _ { S M }}}{\boldsymbol{e e _ { P } + e e _ { S M }}}$, where $\mathbf{e e}_{\mathrm{p}}$ is the enantiomeric excess of the amide product and $\mathbf{e e}_{\text {SM }}$ is the enantiomeric excess of the recovered amine.

The s-factor was calculated using the calculated conversion and ee from either the product, $\mathbf{e e}_{\mathbf{p}}$, or recovered starting material, $\mathbf{e e}_{\mathbf{S M}}$, following the equation:

$$
\begin{gathered}
s=\frac{\ln \left(\left(1-C_{H P L C}\right)\left(1-e e_{P}\right)\right)}{\ln \left(\left(1-C_{H P L C}\right)\left(1+e e_{P}\right)\right)} \\
s=\frac{\ln \left(\left(1-C_{H P L C}\right)\left(1-e e_{S M}\right)\right)}{\ln \left(\left(1-C_{H P L C}\right)\left(1+e e_{S M}\right)\right)}
\end{gathered}
$$

General Procedure for Preparation of Catalysts

Catalysts were prepared from 1-((1R,2R)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea ${ }^{4}$ and N -hydroxysuccinimide (NHS) esters. ${ }^{6,7}$ As an alternative to the use of activated esters, the corresponding acid chlorides can also be employed. However, in our hands, this resulted in lower overall catalyst yields.

In a flamed dried round bottom flask, NHS ester (1.5 equiv.) was added to a solution of aminothiourea $(0.26 \mathrm{mmol}, 100 \mathrm{mg}, 1.0$ equiv.) in THF ($2.6 \mathrm{ml}, 0.1 \mathrm{M}$). The reaction mixture was stirred at rt and monitored by TLC ($1: 1 \mathrm{Hex} / \mathrm{EtOAc})$. After full conversion of the aminothiourea, the reaction mixture was concentrated under reduced pressure and the crude material was purified by flash chromatography on silica gel.

Preparation and Characterization Data of Catalysts

$N, N^{\prime}-((1 R, 2 R)$-cyclohexane-1,2-diyl)bis(3,5-bis(trifluoromethyl)benzamide) (2): In a flamed dried
 round bottom flask was added NHS ester (2.5 equiv.) to a solution of diaminocyclohexane ($0.26 \mathrm{mmol}, 100 \mathrm{mg}, 1.0$ equiv.) in THF (2.6 ml , $0.1 \mathrm{M})$. The reaction mixture was stirred at rt overnight. The reaction mixture was concentrated under reduced pressure. The product was precipitated by addition of 5 ml of ether. The product was filtered and washed with ether to yield pure catalyst as a white solid in 93% yield (242 mg). $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.50$ (Hexanes/EtOAc 7:3 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}-93.3$ (c 1.0, acetone); IR (KBr) 3266, 2951, 1638, 1544, 1281, 1129, 908, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.38(\mathrm{~s}, 4 \mathrm{H}), 8.25(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 164.3,137.4,131.3\left(\mathrm{q}, J_{C-F}=33.8\right.$ Hz,$), 128.1,124.8(\mathrm{~m}), 123.5\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 54.8,31.8,24.9 . ; m / z(\mathrm{ESI}-\mathrm{MS}) 595.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)formamide (3a): Acetic
 formic anhydride (prepared by stirring 1.0 equiv. of acetic anhydride and 1.1 equiv. of formic acid for 2 h at $\left.55^{\circ} \mathrm{C}\right)(2.6 \mathrm{mmol}, 229 \mathrm{mg}, 10$ equiv.) was added dropwise at $0^{\circ} \mathrm{C}$ to a stirred solution of the aminothiourea (0.26 $\mathrm{mmol}, 100 \mathrm{mg}, 1.0$ equiv.) and triethylamine ($0.52 \mathrm{mmol}, 0.073 \mathrm{ml}, 2.0$ equiv.) in THF ($2.6 \mathrm{ml}, 0.1 \mathrm{M}$). The reaction mixture was warmed to rt and monitored by TLC ($1: 1 \mathrm{Hex} / \mathrm{EtOAc}$). After full conversion of the aminothiourea, the reaction mixture was concentrated under reduced pressure and the crude material was purified by flash chromatography on silica gel. The pure product was obtained as a white solid in 81% yield (87 mg). $\mathrm{mp}=136-138^{\circ} \mathrm{C} ; \mathrm{Rf}=0.21$ (Hexanes/EtOAc $1: 1 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+93.6$ (c 1.0, CHCl_{3}); IR (KBr) 3298, 2931, 1664, 1560, 1474, 1387, 1275, 1133, 882, $679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}$,
$J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{comp}, 2 \mathrm{H}), 1.47-1.33$ (comp, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,162.5,140.5,132.1\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right), 123.4$, $123.3\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 118.4,56.9,53.9,32.6(2), 25.1,24.8 . ; ~ m / z($ ESI-MS $) 414.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)acetamide (3b):

The general procedure was followed to yield a white solid in 78% yield $(87 \mathrm{mg}) . \mathrm{mp}=195-197^{\circ} \mathrm{C} ; \mathrm{Rf}=0.21($ Hexanes $/$ EtOAc $1: 1 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}$ +66.4 (c 1.0, CHCl_{3}); IR (KBr) 3301, 3108, 2927, 1629. 1551, 1474, 1390, 1316, 1183, 881, $678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 9.65$ $(\mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{comp}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{comp}, 2 \mathrm{H})$, 1.46-1.36 (comp, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 181.2,171.4,142.4,131.2\left(\mathrm{q}, J_{C-F}=33.8\right.$ $\mathrm{Hz}), 123.7\left(\mathrm{q}, J_{C-F}=270.0 \mathrm{~Hz}\right), 122.2,116.5,58.5,53.0,32.1,31.9,25.1,24.6,22.5 . ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $428.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)pivalamide (3c):
 The general procedure was followed to yield a white solid in 72% yield $(88 \mathrm{mg}) . \mathrm{mp}=158-160{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.42$ (Hexanes/EtOAc $1: 1 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}$ +112.2 (c 1.0, CHCl_{3}); IR (KBr) 3314, 2938, 1620, 1536, 1385, 1276, 1132, $969,880,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H})$, $8.00-7.95(\mathrm{comp}, 3 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{comp}, 2 \mathrm{H}), 1.47$ (comp, 4H), $1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.3,180.6,140.9,131.8\left(\mathrm{q}, J_{C-F}=32.5\right.$ $\mathrm{Hz}), 124.7,123.3\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 118.4,56.6,55.4,39.1,32.9,32.8,27.5,25.3,25.0 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-$ MS) $469.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-3,5-bis(trifluoromethyl)-
 benzamide (4a): The general procedure was followed to yield a white solid in 92% yield (149 mg). $\mathrm{mp}=162-164{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.38$ (Hexanes/EtOAc 7:3 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+16.7$ (c 1.0, CHCl_{3}); IR (KBr) 3311, 2942, 1647, 1548, 1384, 1278, 1128, 885, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (comp, 3H), $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H})$, $2.29(\mathrm{comp}, 2 \mathrm{H}), 1.94(\mathrm{comp}, 2 \mathrm{H}), 1.52(\mathrm{comp}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 181.9,166.1,139.8,136.3,132.3\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right), 127.7$, $125.6,123.9,123.1\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right.$, $), 123.0\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 119.0,57.33,57.0,32.4,32.2$, 24.9 (2).; m/z (ESI-MS) $625.8[\mathrm{M}+\mathrm{H}]^{+}$.

The title compound was further characterized by X-ray crystallography:

The enantiopure catalyst $\mathbf{4 a}$ was crystallized from hexanes/ethyl acetate through slow diffusion at room temperature.

The requisite CIF file has been submitted to the journal.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-3,5-dinitrobenzamide

(4b): The general procedure was followed to yield a white solid in 78% yield (117 mg). $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.17$ (Hexanes/EtOAc 7:3 v / v); $[\alpha]_{\mathrm{D}}{ }^{20}-67.0$ (c 1.0, acetone); IR (KBr) 3303, 2939, 1654, 1544, 1343, 1279, 1133, 729, $682 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 9.38(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{comp}, 2 \mathrm{H}), 9.05(\mathrm{~m}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{comp}, 2 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}$, $1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{comp}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H})$, 1.51-1.41 (comp, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 181.6,162.9,148.8,141.8,138.1$, 131.3 (q, $J_{C-F}=33.8 \mathrm{~Hz}$), 127.7, $123.6\left(\mathrm{q}, J_{C-F}=270.0 \mathrm{~Hz}\right), 123.2,120.9,117.2(\mathrm{~m}), 58.1,54.9,31.9,31.7,24.8$, 24.8.; m / z (ESI-MS) $579.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-4-(trifluoromethyl)

benzamide (4c): The general procedure was followed to yield a white solid in 95% yield (137 mg). $\mathrm{mp}>250^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.42$ (Hexanes/EtOAc $1: 1 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}-30.9$ (c 1.0, acetone); IR (KBr) 3266, 2943, 1639, $1545,1327,1278,1128,680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta$ $9.44(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), 7.78-7.74 (comp, 3H), 7.67 (s, 1H), 4.58 (m, 1H), 4.07 (m, 1H), $2.28(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (comp, 2H), 1.63-1.41 (comp, 4H);
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 181.6,166.6,132.6\left(\mathrm{q}, J_{C-F}=32.0 \mathrm{~Hz}\right), 131.2\left(\mathrm{q}, J_{C-F}=33.0 \mathrm{~Hz}\right)$, $128.4,125.5(\mathrm{~m}), 123.6,123.2\left(\mathrm{q}, J_{C-F}=271.6 \mathrm{~Hz}\right), 117.1,58.0,54.8,32.0,31.9,24.9,24.9 . ; m / z(\mathrm{ESI}-$ MS) $557.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-4-methoxybenzamide

(4d): The general procedure was followed to yield a white solid in 89% yield (120 mg). $\mathrm{mp}=154-156^{\circ} \mathrm{C}$; Rf $=0.29$ (Hexanes/EtOAc $1: 1 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}-55.2$ (c 1.0, acetone); IR (KBr) 3289, 3065, 2944, 1628, 1540, 1504, 1384, 1277, 1179, 1131, 844, $680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.70$ (comp, 4H), 7.53 (s, 1H), 7.37 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.75,(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{comp}, 2 \mathrm{H}), 1.98(\mathrm{comp}, 2 \mathrm{H}), 1.63-1.46(\mathrm{comp}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.3,169.3,163.1,140.7,131.6\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right.$), $124.41(\mathrm{~m})$, $123.2\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 114.4,57.3,56.1,55.5,32.9(2), 25.3,25.1 . ; m / z($ ESI-MS $) 519.8[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)benzamide (4e): The
 general procedure was followed to yield a white solid in 92% yield (117 $\mathrm{mg}) . \mathrm{mp}=83-85^{\circ} \mathrm{C} ; \mathrm{Rf}=0.42($ Hexanes $/$ EtOAc $1: 1 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}-27.0(\mathrm{c}$ 1.0, acetone); IR (KBr) 3301, 2939, 1637, 1544, 1384, 1277, 1179, 1132, 969, 885, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.30(\mathrm{~s}, 1 \mathrm{H})$, 8.20 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (comp, 4H), 7.51 (comp, 2H), 7.44 (app t, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{appt}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.27 (comp, 2H), 1.98 (comp, 2H), 1.63-1.44 (comp, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.2$, $169.8,140.6,133.8,132.6,131.6\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right), 129.0,124.1,123.2\left(\mathrm{q}, J_{C-F}=272.5 \mathrm{~Hz}\right), 118.3$ (m), 57.2, 56.2, 32.9, 32.8, 25.3, 25.1.; m / z (ESI-MS) $489.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-2,3,4,5,6-pentafluoro-
 benzamide (4f): The general procedure was followed to yield a white solid in 87% yield (131 mg). $\mathrm{mp}=153-155{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.33$ (Hexanes/EtOAc 7:3 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}-11.5$ (c 1.0, acetone); IR (KBr) 3282, 2943, 1655, 1518, 1384, 1278, 1181, 1135, 994, 971, 886, 681 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.61$ $(\mathrm{s}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H})$, 2.31-2.26 (comp, 2H), 1.99-1.94 (comp, 2H), 1.59-1.42 (comp, 5H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $182.0,159.3,144.7(\mathrm{~m}), 142.7(\mathrm{~m}), 141.9(\mathrm{~m}), 138.9(\mathrm{~m}), 139.9,136.9,132.3$ (q, $J_{C-F}=33.8 \mathrm{~Hz}$), $123.8,123.1\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 111.0(\mathrm{~m}), 57.4,56.8,32.6,32.3,25.1,24.9 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 579.9$ $[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2((4(trifluoromethyl)benzyl)amino) cyclohexyl)-
 thiourea (5): The catalyst was prepared according to the literature procedure. ${ }^{4}$ Aminothiorea ($100 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv.) and NaBH_{4} ($11 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.1$ equiv.) were stirred in anhydrous $\mathrm{MeOH}(0.74 \mathrm{ml}, 0.35 \mathrm{M})$ at rt. 4-(trifluoromethyl)benzaldehyde (47 $\mathrm{mg}, 0.27 \mathrm{mmol}, 1.05$ equiv.) was added slowly. After 20 min , the reaction was quenched by adding saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ followed by conc. $\mathrm{NH}_{4} \mathrm{OH}$. The reaction mixture was stirred for an additional 20 \min, then extracted with DCM ($5 \times 20 \mathrm{ml}$). The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography on silica gel (hexanes, $\mathrm{EtOAc}, \mathrm{MeOH}, \mathrm{NH}_{4} \mathrm{OH}(400: 100: 5: 1)$ to yield a white solid in 89% yield (130 mg). $\mathrm{mp}=$ $113-115^{\circ} \mathrm{C} ; \mathrm{Rf}=0.17$ (Hexanes/EtOAc 1:1 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+67.8$ (c 1.0, CHCl_{3}); IR (KBr) 3312, 2947,

1560, 1390, 1278, 1068, 881, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 80^{\circ} \mathrm{C}\right) \delta 8.22(\mathrm{~s}, 2 \mathrm{H}), 7.61-$ 7.56 (comp, 5H), $4.12(\operatorname{app~s}, 1 \mathrm{H}), 3.93(\operatorname{app~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\operatorname{app~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ $(\mathrm{m}, 1 \mathrm{H}), 2.07-1.99$ (comp, 2H), 1.67 (comp, 2H), 1.30-1.26 (comp, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 80^{\circ} \mathrm{C}\right) \delta 181.4,142.1,143.0,130.9\left(\mathrm{q}, J_{C-F}=32.5 \mathrm{~Hz}\right), 129.1,125.4\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right)$, 125.0, 122.8, 116.4, 60.8, 57.9, 50.5, 32.0, 31.5, 24.8, 26.9.; m/z (ESI-MS) $540.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-4-methylbenzenesulfon-

amide (6): Tosyl chloride ($0.28 \mathrm{mmol}, 54 \mathrm{mg}, 1.1$ equiv.) was added to a stirred solution of the aminothiourea ($0.26 \mathrm{mmol}, 100 \mathrm{mg}, 1.0$ equiv.) and triethylamine ($0.31 \mathrm{mmol}, 0.044 \mathrm{ml}, 1.2$ equiv.) in THF $(2.6 \mathrm{ml}, 0.1 \mathrm{M})$. The reaction mixture was stirred at rt and monitored by TLC (1:1 Hex/EtOAc). After full conversion of the aminothiourea, the reaction mixture was concentrated under reduced pressure and the crude material was purified by flash chromatography on silica gel. The pure product was obtained as a white solid in 75% yield (106 mg). $\mathrm{mp}=173-175^{\circ} \mathrm{C} ; \mathrm{Rf}=0.21$ (Hexanes/EtOAc $7: 3 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+40.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3349, 2939, 1544, 1475,1386, 1277, 1134, 980, 883, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.69(\mathrm{comp}, 4 \mathrm{H}), 1.36-1.15(\mathrm{comp}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $181.4,144.0,139.9,138.0,137.1\left(\mathrm{q}, J_{C-F}=33.8 \mathrm{~Hz}\right), 130.0,126.7,123.5,123.2\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right)$, 59.5, 57.2, 34.1, 32.2, 24.7, 24.6, 21.6.; m/z (ESI-MS) $539.9[\mathrm{M}+\mathrm{H}]^{+}$.

Characterization Data of Products

(R)-N-(4-phenylbut-3-yn-2-yl)benzamide (8a): Following the general procedure, compound 8a was
 obtained as a white solid in 43% yield (27.4 mg). $\mathrm{mp}=124-126^{\circ} \mathrm{C} ; \mathrm{Rf}=0.33$ (Hexanes/EtOAc 8:2 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+45.8$ (c 1.0, $\mathrm{CHCl}_{3}, 87.8 \% e e$); IR (KBr) 3279, 2977, 1633, 1529, 1487, 1278, 758, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81$ (comp, 2H), 7.50-7.36 (comp, 5H), 7.24-7.16 (comp, 2H), 6.79 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7$, 134.4, $131.8,128.8,128.6,128.5,127.4,122.8,89.8,82.7,38.4,22.8 . ; m / z$ (ESI-MS) 250.1 $[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=10.9 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=13.7 \mathrm{~min}$.

The recovered starting material was benzoylated and the ee was determined by HPLC (81.2\%ee, Senantiomer). Calculated conversion $=48 ; \mathbf{s}=39$.

Second run: conversion $=48 ; \mathbf{s}=\mathbf{3 9}$ (benzoylated product: $27.2 \mathrm{mg}, 44 \%$ yield, $87.8 \% \mathrm{ee}$; benzoylated starting material: $81.6 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration of the recovered amine $7 \mathrm{a}\left([\alpha]_{\mathrm{D}}{ }^{20}-34\right.$ (c $0.9, \mathrm{CHCl}_{3}, 81.2 \% e e$) was assigned by comparison with the compound reported in the literature ${ }^{7}$ ($[\alpha]_{\mathrm{D}}{ }^{20}-27.5$ (c $0.8, \mathrm{CHCl}_{3}$, $>98 \% e e$).
(R)-N-(4-(p-tolyl)but-3-yn-2-yl)benzamide (8b): Following the general procedure, compound $\mathbf{8 b}$ was
 obtained as a white solid in 42% yield (27.8 mg). $\mathrm{mp}=152-154^{\circ} \mathrm{C} ; \mathrm{Rf}=0.29$ (Hexanes/EtOAC $8: 2 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+49.7$ (c 1.0, $\mathrm{CHCl}_{3}, 89.3 \%$ ee); IR (KBr) 3276, $2978,1629,1525,1488,1277,824,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ $(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{comp}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=67.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.5, 138.7, 134.4, 131.9, 131.8, 129.3, 128.8, 127.3, 119.7, 88.9, 82.9, 38.5, 23.0, 21.7.; m/z (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.8 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=36.8 \mathrm{~min}$.

The recovered starting material was benzoylated and the ee was determined by HPLC (70.0\% ee, Senantiomer). Calculated conversion $=44 ; \mathbf{s}=37$.

Second run: conversion $=42 ; \mathbf{s}=\mathbf{3 3}$ (benzoylated product: $26.5 \mathrm{mg}, 40 \%$ yield, $89.0 \% \mathrm{ee}$; benzoylated starting material: $64.2 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(R)- N-(4-(m-tolyl)but-3-yn-2-yl)benzamide (8c): Following the general procedure, compound $\mathbf{8 c}$ was
 obtained as a white solid in 42% yield (28.0 mg). $\mathrm{mp}=91-93^{\circ} \mathrm{C} ; \mathrm{Rf}=0.29$ (Hexanes/EtOAC $8: 2 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+52.8$ (c 1.0, $\mathrm{CHCl}_{3}, 89.0 \%$ ee); IR (KBr) 3282, 2978, 1632, 1536, 1487, 1280, 783, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{comp}, 2 \mathrm{H}), 7.26-7.18(\mathrm{comp}, 3 \mathrm{H}), 7.13$ $(\mathrm{m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=6.8$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,138.2,134.4,132.6,131.9,129.5$, 129.0, 128.8, 128.4, 127.2, 122.6, 89.2, 83.0, 38.5, 23.0, 21.4.; m / z (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.6$ \min (major) and $\mathrm{t}_{\mathrm{R}}=12.4 \mathrm{~min}$.

The recovered starting material was benzoylated and the ee was determined by HPLC $(84.0 \% e e, S$ enantiomer). Calculated conversion $=48 ; \mathbf{s}=45$.

Second run: conversion $=48 ; \mathbf{s}=43$ (benzoylated product: $28.0 \mathrm{mg}, 42 \%$ yield, $89.0 \% e e$; benzoylated starting material: $81.0 \% e e, S$-enantiomer).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})- \boldsymbol{N}-(4-(o-tolyl)but-3-yn-2-yl)benzamide (8d): Following the general procedure, compound $\mathbf{8 d}$ was O obtained as a white solid in 43% yield (28.3 mg). $\mathrm{mp}=93-95{ }^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.29$
 (Hexanes/EtOAC $8: 2 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+50.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}, 82.0 \% e e\right)$; IR (KBr) 3273, 2978, 1634, 1531, 1488, 1273, 761, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{comp}, 3 \mathrm{H}), 7.22-7.10(\mathrm{comp}, 3 \mathrm{H}), 6.88(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7$, 140.5, 132.2, 131.8, 129.7, 128.8, 128.6, 127.4, 125.7, 122.6, 105.0, 93.8, 81.6, 38.6, 23.0, 20.9.; m/z (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, $n-$
hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.5 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=13.3 \mathrm{~min}$.
The recovered starting material was benzoylated and the $e e$ was determined by HPLC ($66.2 \% e e, S$ enantiomer). Calculated conversion $=45 ; \mathbf{s}=\mathbf{2 0}$.

Second run: conversion $=42 ; \mathbf{s}=\mathbf{1 7}$ (benzoylated product: $27.0 \mathrm{mg}, 41 \%$ yield, $81.3 \% \mathrm{ee}$; benzoylated starting material: $58.2 \% e e, S$-enantiomer).

The absolute configuration was assigned by analogy.
(R)-N-(4-(4-chlorophenyl)but-3-yn-2-yl)benzamide (8e): Following the general procedure,
 compound $\mathbf{8 e}$ was obtained as a white solid in 36% yield (25.6 mg). $\mathrm{mp}=152-$ $154{ }^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.30\left(\right.$ Hexanes $/$ EtOAC $8: 2 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+53.1$ (c 1.0, $\mathrm{CHCl}_{3}, 88.0 \%$ ee); IR (KBr) 3263, 2989, 1637, 1527, 1490, 1273, 761, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44$ (comp, 2H), 7.35 (comp, 2H), 7.27 (comp, 2H), 6.44 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (m, 1H), 1.59 (d, $J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,134.7,134.3,133.2,131.9$, $128.9,128.8,127.3,121.3,90.6,81.7,38.4,22.8 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 284.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ \mathrm{i}$-PrOH $=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=$ 11.3 min and $\mathrm{t}_{\mathrm{R}}=14.2 \mathrm{~min}$ (major).

The recovered starting material was benzoylated and the ee was determined by HPLC ($75.4 \% e e, S$ enantiomer). Calculated conversion $=46 ; \mathbf{s}=\mathbf{3 6}$.

Second run: conversion $=46 ; \mathbf{s}=40$ (benzoylated product: $27.2 \mathrm{mg}, 38 \%$ yield, $89.2 \% \mathrm{ee}$; benzoylated starting material: $75.6 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by X-ray crystallography:

The enantioenriched amide $\mathbf{8 e}$ (89% ee) was recrystallized from hexanes/ether and was recovered in $>99 \%$ ee. The highly enantioenriched $\mathbf{8 e}$ was crystallized from hexanes/ether through slow diffusion at room temperature to yield x-ray quality crystals. The requisite CIF file has been submitted to the journal.
(R)- \boldsymbol{N}-(4-(3-chlorophenyl)but-3-yn-2-yl)benzamide (8f): Following the general procedure,
 compound $\mathbf{8 f}$ was obtained as a white solid in 40% yield (28.6 mg). $\mathrm{mp}=95-97$ ${ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.30($ Hexanes $/$ EtOAC $8: 2 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+43.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}, 91.8 \% \mathrm{ee}\right)$; IR (KBr) 3287, 2979, 1629, 1528, 1122, 786, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{comp}, 3 \mathrm{H}), 7.30-$ $7.20(\mathrm{comp}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,134.3,134.2,131.8,130.1,129.7,128.4$, 128.8, 128.8, 127.3, 124.3, 90.9, 81.4, 38.3, 22.7.; m/z (ESI-MS) $284.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.1 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}$.
The recovered starting material was benzoylated and the ee was determined by HPLC $(80.0 \% e e, S$ enantiomer). Calculated conversion $=47$; $\mathbf{s}=57$.

Second run: conversion $=47$; $\mathbf{s}=55$ (benzoylated product: $27.6 \mathrm{mg}, 39 \%$ yield, $91.4 \% \mathrm{ee}$; benzoylated starting material: $80.2 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})- \boldsymbol{N}-(4-(2-chlorophenyl)but-3-yn-2-yl)benzamide (8g): Following the general procedure,
 compound 8 g was obtained as a white solid in 42% yield (30.2 mg). $\mathrm{mp}=98-100$ ${ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.30($ Hexanes $/$ EtOAC $8: 2 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}-16.1$ (c $1.0, \mathrm{CHCl}_{3}, 82.2 \% e e$); IR (KBr) $3278,2979,1628,1529,1117,754,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.81 (m, 2H), 7.50-7.35 (comp, 5H), 7.24-7.15 (comp, 2H), 6.69 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,136.3$, 134.3, 133.6, 131.9, 129.6, 129.4, 128.8, 127.3, 126.6, 122.7, 95.0, 79.6, 38.6, 22.7.; $m / z(E S I-M S) 284.1[M+H]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min}$.

The recovered starting material was benzoylated and the $e e$ was determined by HPLC ($67.4 \% e e, S$ enantiomer). Calculated conversion $=45 ; \mathbf{s}=21$.

Second run: conversion $=45 ; \mathbf{s}=\mathbf{2 1}$ (benzoylated product: $31.5 \mathrm{mg}, 44 \%$ yield, $82.3 \% \mathrm{ee}$; benzoylated starting material: $68.0 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(R)-N-(4-(4-(trifluoromethyl)phenyl)but-3-yn-2-yl)benzamide (8h): Following the general procedure, compound $\mathbf{8 h}$ was obtained as a white solid in 41% yield $(32.7 \mathrm{mg})$. 127.3, 126.7, 125.4 (q, $J_{C-F}=3.7 \mathrm{~Hz}, 1 \mathrm{C}$), 125.2, 123.0, 92.2, 81.4, 38.3, 22.6.; m/z (ESI-MS) 318.1 $[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=10.3 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}$ (major).

The recovered starting material was benzoylated and the ee was determined by HPLC ($67.2 \% e e, S$ enantiomer). Calculated conversion $=44 ; \mathbf{s}=\mathbf{2 8}$.

Second run: conversion $=45 ; \mathbf{s}=\mathbf{2 9}$ (benzoylated product: $33.4 \mathrm{mg}, 42 \%$ yield, $86.6 \% \mathrm{ee}$; benzoylated starting material: $70.8 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(R)-N-(4-(naphthalen-1-yl)but-3-yn-2-yl)benzamide (8i): Following the general procedure,

$$
\begin{aligned}
& \text { compound 8i was obtained as a white solid in } 41 \% \text { yield }(30.8 \mathrm{mg}), \mathrm{mp}=129-131 \\
& { }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.40(\mathrm{Hexanes} / \mathrm{EtOAC} 8: 2 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}^{20}+42.6(\mathrm{c} 1.0, \mathrm{CHCl}, 79.9 \% e e) ; \mathrm{IR} \\
& (\mathrm{KBr}) 3283,2979,1626,1529,1342,1280,800,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \\
& \left.\mathrm{CDCl} l_{3}\right) \delta 8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.82(\mathrm{comp}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 7.58-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.46-7.40(\mathrm{comp}, 3 \mathrm{H}), 6.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~m}, \\
& 1 \mathrm{H}), 1.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \text { NMR }\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,134.4,133.6,
\end{aligned}
$$ 133.4, 131.9, 130.9, 129.2, 128.8, 128.5, 127.3, 127.1, 126.7, 126.2, 125.4, 120.4, 94.5, 80.9, 38.7, 23.1.; m / z (ESI-MS) $300.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=18.0 \mathrm{~min}$.

The recovered starting material was benzoylated and the ee was determined by HPLC ($72.4 \% e e, S$ enantiomer). Calculated conversion $=48 ; \mathbf{s}=19$.

Second run: conversion $=48 ; \mathbf{s}=18$ (benzoylated product: $31.2 \mathrm{mg}, 42 \%$ yield, $78.8 \% \mathrm{ee}$; benzoylated starting material: $72.4 \% e e, S$-enantiomer).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})- $\mathbf{N - (1 - p h e n y l p e n t - 1 - y n - 3 - y l) b e n z a m i d e ~ (8 j) : ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~ p r o c e d u r e , ~ c o m p o u n d ~} \mathbf{8 j}$ was
 obtained as a white solid in 45% yield (29.3 mg). $\mathrm{mp}=108-110{ }^{\circ} \mathrm{C} ; \mathrm{Rf}=0.35$ (Hexanes/EtOAC 8:2 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+47.2$ (c 1.0, $\mathrm{CHCl}_{3}, 89.5 \% e e$); IR (KBr) 3278, 2964, 1628, 1529, 1489, 1276, 758, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82$ (comp, 2H), $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44$ (comp, 4H), 7.32-7.30 (comp, 3H), $6.40(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,134.4,131.9,131.8,128.7,128.5,128.4,127.2,122.8$, 88.4, 83.6, 44.0, 29.5, 10.3.; m / z (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i$ $\operatorname{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=14.3 \mathrm{~min}$.

The recovered starting material was benzoylated and the $e e$ was determined by HPLC $(81.1 \% e e, S$ enantiomer). Calculated conversion $=48 ; \mathbf{s}=45$.

Second run: conversion $=48 ; \mathbf{s}=46$ (benzoylated product: $28.4 \mathrm{mg}, 43 \%$ yield, $88.6 \% \mathrm{ee}$; benzoylated starting material: $86.2 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration of the recovered amine $7 \mathbf{j}$ ($[\alpha]_{\mathrm{D}}{ }^{20}+6.3$ (c $0.9, \mathrm{CHCl}_{3}, 81.1 \%$ ee) was assigned by comparison with the compound reported in the literature ${ }^{7}\left([\alpha]_{\mathrm{D}}{ }^{20}+12\right.$ (c $1.2, \mathrm{CHCl}_{3},>98 \%$ $e e)$.
(\boldsymbol{R})- \boldsymbol{N}-(4-methyl-1-phenylpent-1-yn-3-yl)benzamide (8k): Following the general procedure,
 compound $\mathbf{8 k}$ was obtained as a white solid in 40% yield (28.2 mg). $\mathrm{mp}=90-93^{\circ} \mathrm{C}$; $\mathrm{Rf}=0.41$ (Hexanes/EtOAC $8: 2 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+48.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}, 90.8 \% \mathrm{ee}\right) ; \mathrm{IR}$ (KBr) 3319, 2961, 1633, 1521, 1489, 1306, 1265, 754, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{comp}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{comp}, 4 \mathrm{H}), 7.32-7.29$ (comp, 3H), $6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H})$, 1.12 (comp, 6 H) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,132.0,131.9,128.8,128.9$, 128.5, 127.3, 123.0, 87.2, 84.4, 48.5, 33.5, 19.3, 18.1.; m/z (ESI-MS) $278.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=11.6 \mathrm{~min}$.

The recovered starting material was benzoylated and the $e e$ was determined by HPLC ($84.0 \% e e, S$ enantiomer). Calculated conversion $=48 ; \mathbf{s}=\mathbf{5 5}$.

Second run: conversion $=47$; $\mathbf{s}=57$ (benzoylated product: $29.8 \mathrm{mg}, 43 \%$ yield, $91.6 \% e e$; benzoylated starting material: $81.4 \% e e, S$-enantiomer).

The absolute configuration of the recovered amine $7 \mathbf{k}$ ($[\alpha]_{\mathrm{D}}{ }^{20}-2.0$ (c $0.9, \mathrm{CHCl}_{3}, 84.0 \% e e$) was assigned by comparison with the compound reported in the literature ${ }^{8}\left([\alpha]_{\mathrm{D}}{ }^{20}-2.8\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}, 85 \%\right.\right.$ $e e)$.
(R)-N-(1,3-diphenylprop-2-ynyl)benzamide (81): Following the general procedure (but run for 8
 hours prior to quench), compound $\mathbf{8 1}$ was obtained as a white solid in 29% yield $(23.1 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{20}-5.0$ (c $\left.1.0, \mathrm{CHCl}_{3}, 78.6 \% e e\right)$; The spectral data were consistent with the reported literature values. ${ }^{9}$ HPLC Daicel Chiralpak AD-H, n-hexane $/ i$ $\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.2 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}=14.4$ min (major).

The recovered starting material was benzoylated and the $e e$ was determined by HPLC ($41.2 \% e e, S$ enantiomer). Calculated conversion $=34 ; \mathbf{s}=\mathbf{1 2}$.

Second run: conversion $=35 ; \mathbf{s}=11$ (benzoylated product: $23.0 \mathrm{mg}, 29 \%$ yield, $76.2 \% \mathrm{ee}$; benzoylated starting material: 40.6% ee, S-enantiomer).

The absolute configuration of $\mathbf{8 1}\left([\alpha]_{\mathrm{D}}{ }^{20}-5.3\right.$ (c $\left.1.0, \mathrm{CHCl}_{3}, 78.6 \% e e\right)$ was assigned by comparison with the compound reported in the literature ${ }^{9}\left([\alpha]_{\mathrm{D}}{ }^{23}-5.7\right.$ (c $\left.0.8, \mathrm{CHCl}_{3}, 92 \% e e\right)$.
(R)-N-(1-phenylnon-4-yn-3-yl)benzamide (8m): The catalytic reaction was run following the general
 procedure. After three hours the reaction was quenched by adding 3.0 M MeMgCl in THF ($0.500 \mathrm{mmol}, 0.167 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ and stirring was continued for another 10 minutes. Excess Grignard reagent was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL) solution. The reaction mixture was allowed to warm to room temperature and was extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The unreacted amine was separated from the product by flash chromatography (Hexanes/EtOAc 80:20 \rightarrow EtOAc). The product was obtained as a white solid in 41% yield (30.8 mg). $\mathrm{mp}=53-55^{\circ} \mathrm{C} ; \mathrm{Rf}=0.25\left(\right.$ Hexanes $/ E t O A c 9: 1 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+18.3$ (c 1.0, CHCl_{3}, $76.2 \% e e$); IR (KBr) 3280, 2925, 1630, 1525, 1283, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{comp}, 2 \mathrm{H}), 7.31-7.18(\mathrm{comp}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H})$, 2.91-2.78 (comp, 2H), 2.23 (app d of t, $J=7.0 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14-2.00 (comp, 2H), 1.56-1.40 (comp, 5H), $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,141.6,134.4,131.8,128.7$, 128.7, 127.1, 126.2, 84.8, 79.0, 42.5, 37.9, 32.3, 31.0, 22.2, 18.6, 13.8.; m/z (ESI-MS) $216.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OJ-H, n-hexane $i-\operatorname{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=$ 13.1 min (major) and $\mathrm{t}_{\mathrm{R}}=15.2 \mathrm{~min}$.

The recovered starting material was benzoylated and the $e e$ was determined by HPLC ($66.0 \% e e, S$ enantiomer). Calculated conversion $=46 ; \mathbf{s}=15$.

Second run: conversion $=46 ; \mathbf{s}=15$ (benzoylated product: $31.2 \mathrm{mg}, 42 \%$ yield, $76.4 \% \mathrm{ee}$; benzoylated starting material: $65.8 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-N-(dodec-3-yn-2-yl)benzamide ($\mathbf{8 n}$): The catalytic reaction was run following the general
 procedure. After three hours the reaction was quenched by adding 3.0 M MeMgCl in THF ($0.500 \mathrm{mmol}, 0.167 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ and stirring was continued for another 10 minutes. Excess Grignard reagent was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution. The reaction mixture was allowed to warm to room temperature and was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The unreacted amine was separated from the product by flash chromatography (Hexanes/EtOAc 90:10 \rightarrow 50:50 Hexanes/EtOAc). The product was obtained as a clear oil in 38\% yield (27.0 mg). $\mathrm{Rf}=0.23$ (Hexanes/EtOAc $9: 1 \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}+18.5$ (c 1.0, $\mathrm{CHCl}_{3}, 69.0 \%$ ee); IR (KBr) 3301, 2926, 1640, 1531, 1269, 1173, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (comp, 2H), 7.50 (app tt, $J=7.5 \mathrm{~Hz}, J=1.0 \mathrm{~Hz} 1 \mathrm{H}$), $7.38(\mathrm{comp}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 2.15$ (app dt, $J=7.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.50-1.44 (comp, 5 H), 1.37-1.32 (m, 2H), 1.30-1.22 (comp, 8H), 0.86 $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,134.2,131.3,128.4,126.9,83.0,80.2,37.8$, 31.7, 29.1, 29.0, 28.8, 28.6, 22.8, 22.5, 22.8, 22.5, 18.5, 14.0.; m / z (ESI-MS) $286.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak OD-H, n-hexane $/ i$-PrOH $=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.5 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}=10.2 \mathrm{~min}$ (major).

The recovered starting material was benzoylated and the ee was determined by HPLC ($72.2 \% e e, S$ enantiomer). Calculated conversion $=51 ; \mathbf{s}=\mathbf{1 2}$.

Second run: conversion $=53$; $\mathbf{s}=11$ (benzoylated product: $27.6 \mathrm{mg}, 39 \%$ yield, $67.4 \% \mathrm{ee}$; benzoylated starting material: $74.6 \% \mathrm{ee}, S$-enantiomer).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-N-(tetradec-5-yn-7-yl)benzamide (80): The catalytic reaction was run following the general
 procedure. After three hours the reaction was quenched by adding 3.0 M MeMgCl in THF ($0.500 \mathrm{mmol}, 0.167 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ and stirring was continued for another 10 minutes. Excess Grignard reagent was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution. The reaction mixture was allowed to warm to room temperature and was extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The unreacted amine was separated from the product by flash chromatography (Hexanes/EtOAc 90:10 $\rightarrow 50: 50$ Hexanes/EtOAc). The product was obtained as a white solid in 45% yield (35.1 mg). $\mathrm{mp}=38-40^{\circ} \mathrm{C} ; \mathrm{Rf}=0.38($ Hexanes $/$ EtOAc $9: 1 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+15.3$ (c 1.0, $\mathrm{CHCl}_{3}, 72.2 \% e e$); IR (KBr) 3288, 2926, 1639, 1524, 1277, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\operatorname{app~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\operatorname{app} \mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=7.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.64(\mathrm{comp}, 2 \mathrm{H}), 1.48-$ 1.41 (comp, 4H), 1.40-1.34 (m, 2H), 1.31-1.25 (comp, 8H), 0.89-0.86 (comp, 6H); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,134.2,131.2,128.2,126.9,83.4,79.3,42.2,36.2,31.6,30.6,29.1,29.0,25.6$, 22.5, 21.8, 18.2, 13.9, 13.4.; m/z (ESI-MS) $314.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i$ $\operatorname{PrOH}=98 / 2$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.7 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=14.1 \mathrm{~min}$.

The recovered starting material was benzoylated and the ee was determined by HPLC (73.3\% ee, Senantiomer). Calculated conversion $=50 ; \mathbf{s}=\mathbf{1 3}$.

Second run: conversion $=50 ; \mathbf{s}=14$ (benzoylated product: $34.2 \mathrm{mg}, 44 \%$ yield, $73.0 \% \mathrm{ee}$; benzoylated starting material: $73.5 \% e e, S$-enantiomer).

The absolute configuration was assigned by analogy.

References:

1. Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
2. Ma, S.; Wu, B.; Jiang, X. J. Org. Chem. 2005, 70, 2588.
3. Salvador, R.; Simon, D. Zvi; Leonard, L. Psychoactive propargylamine derivatives. Eur. Pat. WO 93/20804, 1993.
4. Li, D. R.; He, A.; Falck, J. R. Org. Lett. 2010, 12, 1756.
5. Vaidyanathan, G.; Zalutsky, M. R. Nat. Protoc. 2006, $1,1655$.
6. Heidlas, J. E.; Lees, W. J.; Pale, P.; Whitesides, G. M. J. Org. Chem. 1992, 57, 146.
7. Enders, D.; Schankat, J. Helv. Chim. Acta. 1993, 76, 402.
8. Aschwanden, P.; Stephenson, C. R. J.; Carriera, E. M. Org. Lett. 2006, 8, 2437.
9. Bishop, J. A.' Lou, S.; Schause, S. E. Angew. Chem. Int. Ed. 2009, 48, 4337.

HPLC profile of 8a
Daicel Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 b}$

Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of 8c
Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of 8d

Daicel Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 e}$
Daicel Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 f}$
Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 g}$
Daicel Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 h}$

Daicel Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 i}$

Daicel Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 j}$

Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 k}$
Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 1}$
Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 m}$

Daicel Chiralpak OJ-H, n-hexane $/ i-\operatorname{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$

HPLC profile of $\mathbf{8 n}$
Daicel Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}$

Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}$

${ }^{13} \mathrm{C}$ NMR of 2

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}$

\ulcorner	1		1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}$

\iint

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b}$

\checkmark	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR of 3 c

	1		1	1	1	1	1		1	1	1	1	1	,	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

[^0]

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a}$

「	1		1	1	1	1	1	1	1	1	1	1	1		1	1	1	1		\checkmark
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^1]
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}$

$\int()^{1}$

Ω

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$

\checkmark	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR of 4 c

${ }^{1} \mathrm{H}$ NMR of 4 d
 MUASMMLn

${ }^{13}$ C NMR of 4d

\ulcorner		1	1	1	1	1	T	1	1	1	1	1	T	1	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 e}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 e}$

\ulcorner	1	1	1	1	1	1	1	T	1	1	1	1	1	,	,	1	1	1	,	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

S-48

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 f}$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1		T	1	1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H} N M R$ of 5

$$
\iiint \iint
$$

${ }^{13} \mathrm{C}$ NMR of 5

「	1		1	1	1	1	1	1	1	1	1	1	1		1	1	1	1		\checkmark
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of 6

${ }^{13} \mathrm{C}$ NMR of 6

「	1	T	1	1	1	1	1	1	1	1	1	1	1	1	T	1	1	T	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 a}$

$\left.\int\right]$

${ }^{13} \mathrm{C}$ NMR of 8 a

	1	1	1	I		1	1	1	1	1	1	1	1	1	1	1		
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

	1	1	1	T	T	1	1	1	1	1	1	1	1	1	1		1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 c}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 c}$

	1	1	1		1	1	1	1	1	1	1	1	1	1	1			
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 d}$

${ }^{13} \mathrm{C}$ NMR of 8 d

	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	,	,
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

	1	1	1	T	T	1	1	1	1	1	1	1	1	1	1			
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 f}$

$$
\iiint \sqrt{\int} \int \sqrt{ }
$$

${ }^{13} \mathrm{C}$ NMR of 8 f

	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 g}$

$$
\iiint \sqrt{\int}
$$

${ }^{13}$ C NMR of $\mathbf{8 g}$

	1	1	1	,		1	1	1	1	1	1	1	1	1	1			
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20		$10 \quad 0$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 h}$

${ }^{13} \mathrm{C}$ NMR of 8 h

Γ	1	1	1		T	1	1	1	1	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90 (ppm)	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 i}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 i}$

	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8} \mathbf{j}$

	1	1	1		1	1	1	1	1	1	1	1	1	1	1			
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 k}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 k}$

	1	1	1	I		1	1	1	1	1	1	1	1	1	1	1		
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

[^2]

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 n}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 n}$

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]: S-38

[^1]: S-40

[^2]: S-76

