Supporting Information

A Fluorescence Perspective on the Differential Interaction of Riboflavin and Flavin Adenine Dinucleotide with Cucurbit[7]uril

Sharmistha Dutta Choudhury*, Jyotirmayee Mohanty, Achikanath C. Bhasikuttan and Haridas Pal*

Radiation \& Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, INDIA

Note S1

Following Scheme 2,
$\mathrm{K}_{1}=[\mathrm{B}] /[\mathrm{A}], \Rightarrow[\mathrm{B}]=[\mathrm{A}] \mathrm{K}_{1}$
$\mathrm{K}_{1}{ }^{\prime}=\left[\mathrm{B}^{\prime}\right] /[\mathrm{A}] \Rightarrow\left[\mathrm{B}^{\prime}\right]=[\mathrm{A}] \mathrm{K}_{1}{ }^{\prime}$
$\mathrm{K}_{2}=[\mathrm{BH}] /[\mathrm{AH}] \Rightarrow[\mathrm{BH}]=[\mathrm{AH}] \mathrm{K}_{2}$
$\mathrm{K}_{2}{ }^{\prime}=\left[\mathrm{B}^{\prime} \mathrm{H}\right] /[\mathrm{AH}] \Rightarrow\left[\mathrm{B}^{\prime} \mathrm{H}\right]=[\mathrm{AH}] \mathrm{K}_{2}{ }^{\prime}$
Further, $\mathrm{K}_{\mathrm{B}}=[\mathrm{BH}] /[\mathrm{B}][\mathrm{H}] \Rightarrow[\mathrm{BH}]=\mathrm{K}_{\mathrm{B}}[\mathrm{B}][\mathrm{H}]$
$\mathrm{K}_{\mathrm{A}}=[\mathrm{AH}] /[\mathrm{A}][\mathrm{H}] \Rightarrow[\mathrm{AH}]=\mathrm{K}_{\mathrm{A}}[\mathrm{A}][\mathrm{H}]$
$\mathrm{K}_{\mathrm{B}^{\prime}}=\left[\mathrm{B}^{\prime} \mathrm{H}\right] /\left[\mathrm{B}^{\prime}\right][\mathrm{H}] \Rightarrow\left[\mathrm{B}^{\prime} \mathrm{H}\right]=\mathrm{K}_{\mathrm{B}}\left[\mathrm{B}^{\prime}\right][\mathrm{H}]$
Also from Scheme 2, $\mathrm{K}_{\mathrm{B}} \mathrm{K}_{1}=\mathrm{K}_{2} \mathrm{~K}_{\mathrm{A}}$
and $\mathrm{K}_{\mathrm{A}} \mathrm{K}_{2}{ }^{\prime}=\mathrm{K}_{1}{ }^{\prime} \mathrm{K}_{\mathrm{B}}{ }^{\prime}$
From eq. 8 and 9, it follows that for $K_{B}>K_{A}, K_{2}>K_{1}$ and for $K_{B}>\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{2}{ }^{\prime}>\mathrm{K}_{1}{ }^{\prime}$

For all the above equations, $[\mathrm{A}]=\mathrm{RF}_{\text {lactam, } \mathrm{A}},[\mathrm{B}]=\mathrm{RF}_{\text {lactim, }, \mathrm{B}},\left[\mathrm{B}^{\prime}\right]=\mathrm{RF}_{\text {lactim, } \mathrm{B}^{\prime}}$ and $[\mathrm{H}]=[\mathrm{CB} 7]$ The observed binding constant is given as,
$\mathrm{K}_{\text {obs }}=\frac{[\mathrm{BH}]+[\mathrm{AH}]+\left[\mathrm{B}^{\prime} \mathrm{H}\right]}{\left([\mathrm{B}]+[\mathrm{A}]+\left[\mathrm{B}^{\prime}\right]\right)[\mathrm{H}]}$
$\Rightarrow \mathrm{K}_{\mathrm{obs}}=\frac{\mathrm{K}_{\mathrm{B}}[\mathrm{B}][\mathrm{H}]+\mathrm{K}_{\mathrm{A}}[\mathrm{A}][\mathrm{H}]+\mathrm{K}_{\mathrm{B}^{\prime}}\left[\mathrm{B}^{\prime}\right][\mathrm{H}]}{\left([\mathrm{B}]+[\mathrm{A}]+\left[\mathrm{B}^{\prime}\right]\right)[\mathrm{H}]}$
Or $\mathrm{K}_{\mathrm{obs}}=\frac{\mathrm{K}_{\mathrm{B}} \mathrm{K}_{1}+\mathrm{K}_{\mathrm{A}}+\mathrm{K}_{\mathrm{B}^{\prime}} \mathrm{K}_{1}^{\prime}}{\mathrm{K}_{1}+1+\mathrm{K}_{1}^{\prime}}$
Alternatively using eqs. 3 and 4,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{obs}}=\frac{\left(\mathrm{K}_{2}+1+\mathrm{K}_{2}^{\prime}\right) \mathrm{K}_{\mathrm{A}}}{\mathrm{~K}_{1}+1+\mathrm{K}_{1}^{\prime}} \tag{13}
\end{equation*}
$$

Since from eq. $10, \mathrm{~K}_{2}+\mathrm{K}_{2}{ }^{\prime}>\mathrm{K}_{1}+\mathrm{K}_{1}{ }^{\prime}$, so it follows that $\mathrm{K}_{\mathrm{obs}}>\mathrm{K}_{\mathrm{A}}$.
In other words, the preferential binding of CB7 with the lactim forms, leads to a larger conversion between the complexed lactam form to the complexed lactim forms ([AH] to [BH] and $\left[B^{\prime} H\right]$), and the observed binding constant is thus expected to be larger than the binding constant for the pure lactam form.

