Supporting Information for 'Crystal Structures of Anaplastic Lymphoma Kinase in Complex with ATP-competitive Inhibitors'

Synthesis of PHA-E589, NMS-E107 and NMS-E828

The synthesis of the compound $\mathbf{1}$ (Scheme 1) has been reported in the International Patent Application WO2007099171 and the preparation of scaffold 3 has been described by Brasca and coworkers (1). The carboxylic acid derivative (4-(4-methylpiperazin-1-yl)-2nitrobenzoic acid) is commercially available (Tyger) and the corresponding acyl chloride A was prepared according to the procedure reported by Fancelli and coworkers (2) for the analog (4-(4-methylpiperazin-1-yl)benzoyl chloride. The 3,5-difluoromandelic acid is commercially available (Sigma-Aldrich); the corresponding acetyl derivative I [(acetyloxy)(3,5-difluorophenyl)acetic acid] and the corresponding acylchloride II [(acetyloxy)(3,5-difluorophenyl)acetyl chloride] were prepared analogously to acetylmandelic acid and acetylmandelyl chloride as described by Thayer (3).
Acyl chloride of FMOC-D-Proline III is commercially available (3B Scientific Corp).
Scheme 1. Preparation of compound 2 (PHA-E429)

a: DIEA, DCM anhydrous, II, room-temperature, overnight; b: MeOH, TEA, $60^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (38\% yield over two steps)

Scheme 2. Preparation of compounds 7 (NMS-E107) and 8 (NMS-E828)

a: TFA, DCM, rt, 6 h; b: TBTU, DIEA, DCM, I, rt, overnight, 74\%; c: DIEA, DCM, A, $50^{\circ} \mathrm{C}, 24 \mathrm{~h}, 61 \%$; d: $10 \% \mathrm{Pd} / \mathrm{C}$, cyclohexene, THF, EtOH, $\mathrm{H}_{2} \mathrm{O}, 23 \% \mathrm{HCl}, 70^{\circ} \mathrm{C}, 4 \mathrm{~h}$, 88%; e: $\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 4 \mathrm{~h}, 67 \%$; f: PS-TEA, DCM, III, rt, overnight, 36%; g: MeOH : piperidine $8: 2$, rt, $72 \mathrm{~h}, 80 \%$.

ESI(+) high-resolution mass spectra (HRMS) were obtained on a Waters Q-Tof Ultima directly connected with micro HPLC 1100 Agilent.
${ }^{1} \mathrm{H}$ NMR spectra were acquired at $25^{\circ} \mathrm{C}$ in DMSO-d6 on a Varian Inova Inova 400 spectrometer operating at 400 MHz and equipped with a $5 \mathrm{~mm}{ }^{1} \mathrm{H}\left\{{ }^{15} \mathrm{~N}-{ }^{31} \mathrm{P}\right\}$ Z-axis-PFG

Indirect Detection Probe. Residual not-deuterated solvent signal was used as reference with $\delta=2.50 \mathrm{ppm}$ for DMSO-d5. Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{bs}=$ broad singlet, $\mathrm{bd}=$ broad doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{td}=$ triplet of doublet, $\mathrm{m}=$ multiplet), coupling constants, and number of protons.

Compound 2 (PHA-E429)
HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}+\mathrm{H}^{+} 525.2420$ found 525.2406
${ }^{1}$ H NMR (400 MHz, DMSO-d $_{6}$) $\delta 12.40$ (br. s., 1 H), 10.55 (br. s., 1 H), 7.87 (br. s., 2H), 7.16 (tt, $J=2.41,9.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.12$ (m, 2H), 6.98 (br. s., 2H), 5.93 (d, $J=7.07$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=7.19 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.56$ (m, 4H), 2.26 (br. s., 3 H), 1.71 (br. s., 3 H), 1.65 (br. s., 3 H)

Compound 7 (NMS-E107)
HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}+\mathrm{H}^{+} 540.2529$ found 540.2532
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.77-12.43(\mathrm{~m}, 1 \mathrm{H}), 10.02-10.35(\mathrm{~m}, 1 \mathrm{H}), 7.42-$
$7.70(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=9.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.08-$
$6.34(\mathrm{~m}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=6.34 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=6.95 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$
4.87 (m, 2H), 3.18 (br. s., 4H), 2.36-2.46(m, 4H), 2.21 (s, 3H), 1.53-1.77 (m, 6H)

Compound 8 (NMS-E828)
HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}+\mathrm{H}^{+} 637.3057$ found 637.3051
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.46$ (br. s., 1H), 12.06 (br. s., 1H), 10.64 (br. s., 1H), $8.16-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H})$, 6.58-6.81 (m, 1H), 5.85-6.00 (m, 1H), $5.28(\mathrm{dd}, \mathrm{J}=2.87,7.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.97(\mathrm{~m}$, 2 H), 3.70 (td, $J=4.86,9.18 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (br. s., 4H), 2.75-3.12 (m, 2H), 2.37-2.47 (m, 4H), 2.22 (s, 3H), 1.75-2.10 (m, 2H), 1.73 (br. s., 3H), 1.66-1.70 (m, 3H), 1.54 $1.71(\mathrm{~m}, 2 \mathrm{H})$

REFERENCES.

1. Brasca, M.G., Albanese, C., Amici, R., Ballinari, D., Corti, L., Croci, V., Fancelli, D., Fiorentini, F., Nesi, M., Orsini, P., Orzi, F., Pastori, W., Perrone, E., Pesenti, E., Pevarello, P., Riccardi-Sirtori, F., Roletto, F., Roussel, P., Varasi, M., Vulpetti, A. and Mercurio C. (2007) 6-Substituted pyrrolo[3,4c]pyrazoles: an improved class of CDK2 inhibitors. ChemMedChem. 2(6), 84152.
2. Fancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., Catana, C., Forte, B., Giordano, P., Giorgini, M.L., Mantegani, S., Marsiglio, A., Meroni, M., Moll, J., Pittalà, V., Roletto, F., Severino, D., Soncini, C., Storici, P., Tonani, R., Varasi, M., Vulpetti, A. and Vianello, P. (2005) Potent and selective Aurora inhibitors identified by the expansion of a novel scaffold for protein kinase inhibition. J. Med. Chem. 48(8), 3080-3084.
3. Thayer, F.K. (1941) Acetylmandelic acid and Acetylmandelyl chloride, in Organic Synthesis Collective Vol. 1 (Gilman, H., Ed.) 2nd ed., pp 12-13, John Wiley \& Sons, New York.
