Ligand-Directed and pH-Controlled Assembly of Chiral 3d-3d Heterometallic Metal-Organic Frameworks

Zhi Su, † Jian Fan, † Taka-aki Okamura, ‡ Wei-Yin Sun* † and Norikazu Ueyama ‡

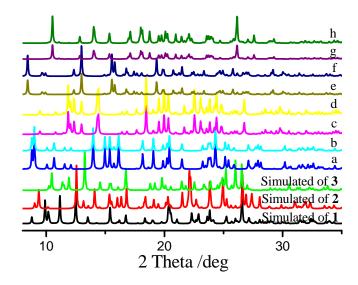

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China and Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

 Table S1
 Hydrogen bonding distances (Å) and angles (°) for complex 1

D–H ··· A	d(D-H)	d(H···A)	d(D ···A)	$\angle(D-H\cdots A)$
C2-H1····O16	0.9500	2.3900	3.339(16)	175
C13-H6····O2#1	0.9500	2.3000	2.963(15)	126
C31-H7····O10#2	0.9500	2.3700	3.178(15)	142
C51-H10····O4#1	0.9500	2.5200	3.231(14)	131
C53-H12····O8#2	0.9500	2.3900	2.979(15)	120
C104-H14····O7#3	0.9500	2.5700	3.479(12)	159
C111-H15····O1	0.9500	2.2100	3.159(14)	173
C113-H17····O2#4	0.9500	2.5300	3.458(14)	165
C131-H18····O7	0.9500	2.2200	3.162(11)	171
C133-H20····O8#3	0.9500	2.4400	3.364(12)	166
C205-H22····O17#5	0.9500	2.5300	3.36(2)	146
C305-H25····O13#6	0.9500	2.5500	3.427(17)	153

Symmetry transformations used to generate equivalent atoms: #1 1-y, 1+x-y, z; #2 1+x-y, x,

^{-1/2+}z; #3 1-x+y, 2-x, z; #4 -x+y, 1-x, z; #5 1-y, x-y, z; #6 y, -x+y, 1/2+z.

Figure S1. PXRD patterns of simulated of complexes **1-3**, products of ZnCl₂ with tib, 1,2,4-H₃BTC under pH values of $8 \sim 9$ (a) and $5 \sim 6$ (b), products of CoCl₂·6H₂O with tib, 1,2,4-H₃BTC under pH values of $8 \sim 9$ (c) and $5 \sim 6$ (d), products of ZnCl₂ with tib, 1,3,5-H₃BTC under pH values of $8 \sim 9$ (e) and $5 \sim 6$ (f), products of CoCl₂·6H₂O with tib, 1,3,5-H₃BTC under pH values of $8 \sim 9$ (g) and $5 \sim 6$ (h), respectively.

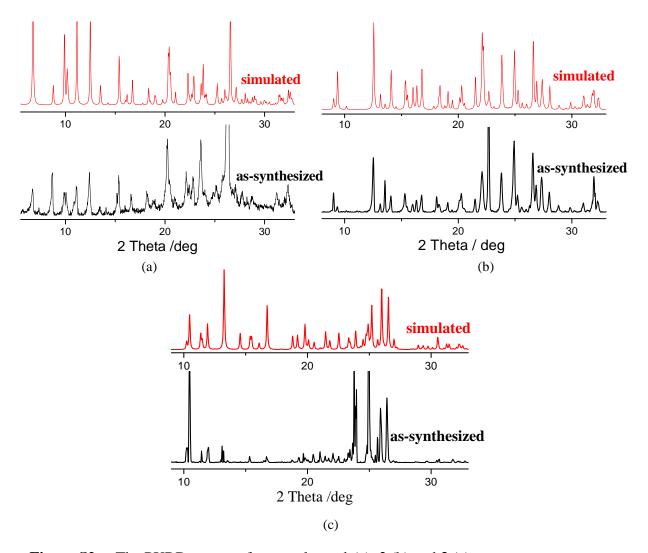
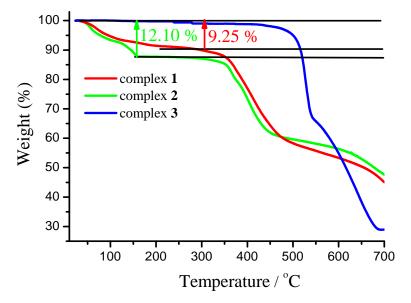
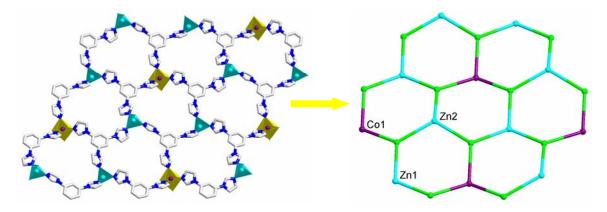
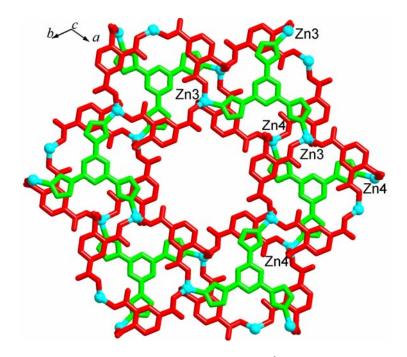
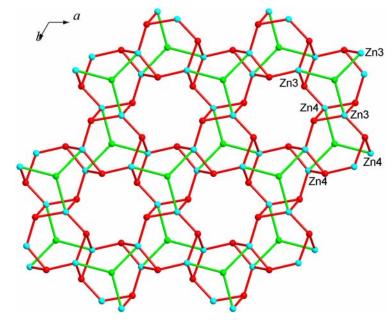
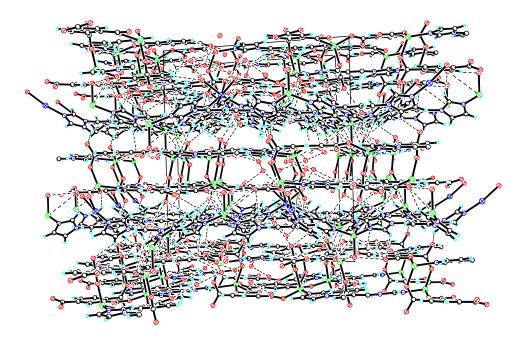


Figure S2. The PXRD patterns for complexes 1 (a), 2 (b) and 3 (c).


Figure S3. The TG curves of complexes 1, 2 and 3.


Figure S4. The polyhedral and topological view of 2D $[Zn_2Co(tib)_3(H_2O)_5]^{6+}$ part in 1.

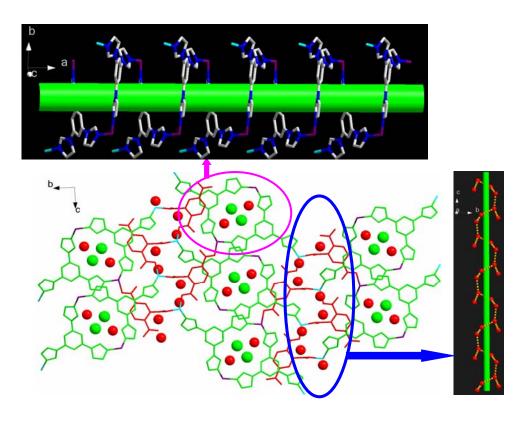

Figure S5. The 2D network of $[Zn_6(tib)_2(BTC)_6]^{6-}$ part in 1.

Figure S6. The topological view of 2D $[Zn_6(tib)_2(BTC)_6]^{6-}$ part in 1.

Figure S7. The 3D framework of **1**.

Figure S8. The 3D framework of **2** and the helical chains along a (up), and c (right) directions, respectively.

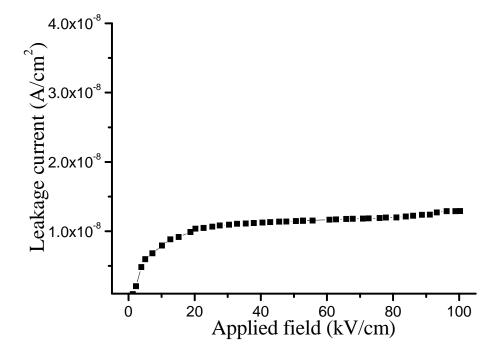


Figure S9. Plot of leakage current vs. applied field for 1.