A Non-Templated Approach for Tuning the Spectral Properties of cyanine-based Fluorescent NanoGUMBOS

Susmita Das,¹ David Bwambok,¹ Bilal El-Zahab,¹ Joshua Monk,² Sergio L. de Rooy,² Santhosh

Challa,¹ Min Li,¹ Francisco R. Hung,² Gary A. Baker,³ Isiah M Warner^{1,*}

¹Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803

²Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge,

Louisiana-70803

³Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

SUPPORTING INFORMATION

* To whom correspondence should be made: <u>iwarner@lsu.edu</u>

NIR GUMBOS	С		Н		Ν	
	Theory	Found	Theory	Found	Theory	Found
[HMT][AOT]	70.82	69.38	8.49	8.63	3.37	3.35
[HMT][NTf ₂]	53.98	53.99	4.82	4.79	6.09	6.19
[HMT][TFPB]	64.31	61.97	5.21	4.92	4.05	3.61
[HMT][BETI]	50.72	50.19	4.19	4.21	5.34	5.32
[HMT][TFP4B]	47.02	50.91	3.18	4.66	1.29	0.84

Table S1. Elemental analysis of HMT GUMBOS

Figure S1. (i) Normalized absorption spectra of HMT nanoGUMBOS (ii)Normalized absorption spectra of same sized (~ 70 nm) HMT nanopartilces, insetTEM images of (a)[HMT][AOT], (b)[HMT][NTf₂] and (c)[HMT][BETI]

Figure S2. Fluorescence quantum yield of the HMT nanoGUMBOS (blue) and [HMT][I] (red) in Water Obtained with ICG as a standard.

Figure S3. Fluorescence emission anisotropy of dilute ethanolic solutions of HMT anion pairs

Figure S4. Postulated cation assemblies for a HMT H-aggregate (A) and a HMT J-aggregate (B). Stacking angle, Φ , depends on ΔZ and ΔD . A) HMT as a perfect H-aggregate, $\Phi = 90$. B) HMT as a perfect J-aggregate, $\Phi_{tran} = TAN^{-1} (\Delta Z/D_{N,N+})$.

Characterization by ¹H NMR and ¹⁹F NMR

[HMT][**NTf**₂], ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 7.84 (d, 1H), 7.55 (m, 1H), 7.39 (d, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.34 (s, 1H), 7.24 (s, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.52 (t, 1H), 6.07 (d, 1H), 5.30 (s, 2H), 3.57 (s, 6H), 1.68 (s, 6H), 1.57 (s, 6H). ¹⁹F NMR (236 MHz, DMSO-d₆), δ (ppm): -79.2

[HMT][BETI], ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 7.83 (d, 1H), 7.56 (m, 1H), 7.39 (d, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.34 (s, 1H), 7.24 (s, 1H), 7.21 (s, 1H), 7.20 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.52 (t, 1H), 6.07 (d, 1H) , 5.31 (s, 2H), 3.56 (s, 6H), 1.68 (s, 6H), 1.57 (s, 6H). ¹⁹F NMR (236 MHz, DMSO-d₆), δ (ppm): -79.0, -79.2 .

[HMT][**TFPB**], ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 8.51 (s, 1H), 8.15 (s, 2H), 7.84 (d, 1H), 7.55 (m, 1H), 7.39 (d, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.34 (s, 1H), 7.24 (s, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.52 (t, 1H), 6.07 (d, 1H), 5.30 (s, 2H), 3.57 (s, 6H), 1.68 (s, 6H), 1.57 (s, 6H). ¹⁹F NMR (236 MHz, DMSO-d₆), δ (ppm): -62.7, -63.0, -63.1.

[HMT][**TFP4B**], ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 7.84 (d, 1H), 7.55 (m, 1H), 7.50 (s, 4H), 7.39 (d, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.34 (s, 1H), 7.26 (s, 8H), 7.24 (s, 1H), 7.22 (s, 1H),

7.20 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.52 (t, 1H), 6.07 (d, 1H) , 5.30 (s, 2H), 3.57 (s, 6H), 3.25 (s, 24H), 1.68 (s, 6H), 1.57 (s, 6H). $^{19}{\rm F}$ NMR (236 MHz, DMSO-d_6), δ (ppm): -71.8.

[HMT][**AOT**], ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 7.82 (d, 1H), 7.55 (m, 1H), 7.38 (d, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.34 (s, 1H), 7.24 (s, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 6.52 (t, 1H), 6.07 (d, 1H) , 5.30 (s, 2H), 6.23 (t, 1H), 4.24 (d, 4H), 4.95 (d, 2H), 2.35 (m, 2H), 3.57 (s, 6H), 1.68 (s, 6H), 1.57 (s, 6H), 1.54 (m, 4H), 1.25 (m, 10H), 0.84 (t, 12H).

Figure S5-1. ¹H NMR (CDCl₃, 400MHz) of [HMT][AOT].

Figure S5-2a. ¹H NMR (CDCl₃, 400MHz) of [HMT][NTf₂].

Figure S5-2b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][NTf₂]

Figure S5-3a. ¹H NMR (CDCl₃, 400MHz) of [HMT]TFPB]

Figure S5-3b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][TFPB].

Figure S5-4a. 1H NMR (CDCl₃, 400MHz) of [HMT][BETI]

Figure S5-4b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][BETI]

Figure S5-5a. ¹H NMR (CDCl₃, 400MHz) of [HMT][TFP4B]

Figure S5-5b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][TFP4B]