ELECTRONIC SUPPLEMENTARY INFORMATION The Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells Steven K. Hau,^a You-Jung Cheng, ^a Hin-Lap Yip,^{a,b} Yong Zhang,^a Hong Ma^a and Alex K.-Y. Jen*^{a,b} Department of Materials Science and Engineering,^a Institute of Advanced Materials and Technology,^b University of Washington, Seattle, WA, 98195 ## 1. Differential Scanning Calorimetry (DSC) of Fullerene-Based Self-Assembled Materials The differential scanning calorimetry (DSC) was performed using DSC2010 (TA instruments) under a heating rate of 10 °C min⁻¹ and a nitrogen flow of 50 mL min⁻¹. Figure S1. Differential scanning calorimetry of fullerene-based self-assembled materials used at the interface of ZnO/P3HT:PCBM for inverted solar cell devices. (a) C_{60} -COOH ## 2. Contact angle and surface energy measurements of the C_{60} -SAMs Contact angle and surface energy measurements were performed on a Remé-Hart 100 goniometer. Two probe solvents (de-ionized water, di-iodomethane) were used for the calculation of the surface energy. Figure S2. (a) Contact angle and (b) surface energy measurements of C_{60} -SAMs on ZnO-NPs processed by solution spincoating or solution immersion.