Accessing ultrashort reaction times in particle formation with SAXS experiments: ZnS precipitation on the microsecond time scale

W. Schmidt ${ }^{\dagger *}$, P. Bussian ${ }^{\dagger}$, M. Lindén ${ }^{\ddagger}$, H. Amenitsch ${ }^{\S}$, P. Agren ${ }^{\dagger}$, M. Tiemann ${ }^{\ddagger}, F$. Schüth ${ }^{\dagger}$

${ }^{\dagger}$ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany

\ddagger Center for Functional Materials, Department of Physical Chemistry, Åbo Akademi University, Porthansgatan 3-5, FIN-20500 Turku, Finland

§ Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria

Email: schmidt@kofo.mpg.de

Experimental Setup

Photos of Experimental Setup

gas-tight housing
containing the experimental setup

liquid jet cell in housing

Tubular Reactor Concept

batch experiment

Reagent 1
time axis

Reagent 2

tubular reactor

Laminar or turbulent flow?

(a)

Fic. 5-73. Continuous surfaces. (a) Continuous flat surface. (b)
Continuous cylindrical surface. [Sakiadis, Am. Inst. Chem. Engrs., J., 7, 221, 467 (1961).]

Taken from: R.H. Perry, C.H. Chilton, Chemical Engineers‘ Handbook, 5th ed., McGrawHill Inc., New York, 1973, p. 5-55-5-58.

Flow $=$ V/time $=5.5 \mathrm{ml} \mathrm{min}^{-1}=>5.510^{-6} \mathrm{~m}^{3} \mathrm{~min}^{-1}$

$$
=9.210^{-8} \mathrm{~m}^{3} \mathrm{~s}^{-1}
$$

$\mathrm{x}=\mathrm{V} / \mathrm{A}, \mathrm{v}=\mathrm{x} /$ time
$=>\mathrm{v}=\mathrm{V} /\left(\mathrm{A}^{*}\right.$ time $)=$ Flow $/ \mathrm{A}$
$\mathrm{A}=\pi \mathrm{r}^{2}=3.14 * 625 \mu \mathrm{~m}^{2}=1.9610^{3} \mu \mathrm{~m}^{2}=1.9610^{-9} \mathrm{~m}^{2}$
$\mathrm{v}=$ Flow/A $=9.210^{-8} \mathrm{~m}^{3} \mathrm{~s}^{-1} / 1.9610^{-9} \mathrm{~m}^{2}=47 \mathrm{~m} \mathrm{~s}^{-1}$
$\left(\mathrm{N}_{\mathrm{Re}}\right)_{\mathrm{X}, \text { crit }}=\mathrm{vpx} / \mu=200000$
(Perry, p. 5-56) for continuous cylindrical surface
$=>\mathrm{x}_{\text {crit }}=\mathrm{N}_{\text {Re }} \mu /(\mathrm{vp})$
$\mathrm{v}=$ velocity $\left[\mathrm{m} \mathrm{s}^{-1}\right]$
$r=$ radius of cylinder [m]
$\mathrm{x}=$ distance to cylinder edge [m]
$\mu=$ fluid viscosity $\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right]$
$\rho=$ fluid density $\left[\mathrm{kg} \mathrm{m}^{3}\right]$
$\delta=$ thickness of boundary layer [m] (laminar flow)
$\rho^{20^{\circ} C_{H 2 S}}=\mathrm{m} / \mathrm{V}=34 \mathrm{~g} / 24 \mathrm{dm}^{3}=3410^{-3} \mathrm{~kg} / 2410^{-3} \mathrm{~m}^{3}=1.42 \mathrm{~kg} \mathrm{~m}^{3}$
dyn. viscosity: $\eta_{\mathrm{H} 2 \mathrm{~S}}=11.710^{-6} \mathrm{~Pa} \mathrm{~s}=1.1710^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}=\mu$

$$
\begin{aligned}
&=>x_{\text {crit }}=N_{R e, \text { crit }} \mu /(v \rho) \\
&=200000 * 1.1710^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1} /\left(47 \mathrm{~m} \mathrm{~s}^{-1} * 1.42 \mathrm{~kg} \mathrm{~m}^{3}\right) \\
&=0.035 \mathrm{~m}=>\text { after } 35 \mathrm{~mm}^{3} \text { turbulent gas flow! }
\end{aligned}
$$

Thickness boundary layer (Perry, Handbook of Chem. Eng.)

Original (Perry)

Boundary layer thickness δ can be determined from plot (from δ / r at given ξ)

$$
\xi=4\left((\mu x) /\left(v p r^{2}\right)\right)^{1 / 2}
$$

${ }^{\log (\xi)}$
Using x in $\xi=4\left((\mu x) /\left(v p r^{2}\right)\right)^{1 / 2}$ and calculating δ from polynomial
$y=0,0005 x^{4}-0,0032 x^{3}+0,0072 x^{2}+1,1215^{x}-0,0094$
one can calculate the following plot of δ with respect to x which can be again fitted by a polynomial as shown in the plot

Thus (for $v=47 \mathrm{~m} / \mathrm{s}$ and $50 \mu \mathrm{~m}$ nozzle), δ can be calculated by the polynomial $\delta=-0,1771 x^{6}+2,9376 x^{5}-19,006 x^{4}+60,776 x^{3}-102,26 x^{2}+112,41 x+2,5771$

How much H_{2} S through boundary layer?

Flux through boundary layer:
j = -D (dc/dz) = -D (dc/ס)
$\mathrm{D}=$ self diffusion coefficient $=0.2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}=2.010-5 \mathrm{~m}^{2} \mathrm{~s}^{-1}$
(gases in air typically $0.1-0.25 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$)
$\mathrm{c}_{0}\left(\mathrm{H}_{2} \mathrm{~S}\right)=41.7 \mathrm{~mol} \mathrm{~m}^{-3}\left(=>1000^{*}\left(1 / 24 \mathrm{dm}^{3}\right) ; 24 \mathrm{dm}^{3}:=1 \mathrm{~mol}\right)$
$\mathrm{dc}=\mathrm{cO}-\mathrm{c}_{\text {jet }}=41.7 \mathrm{~mol} \mathrm{~m}^{-3} \quad$ (assumption no $\mathrm{H}_{2} \mathrm{~S}$ in jet, all consumed)
calculation of the flux through boundary layer over the jet results a set of data, which can be used to calculate the input of $\mathrm{H}_{2} \mathrm{~S}$ into the jet

That calculation was done by treating the boundary layer as small sections increasing stepwise in thickness (for each section the thickness of the layer and the respective flux were assumed to be constant). The respective times required to pass those short fractions of the boundary layer surface were calculated from the velocity of the jet.

Reynolds number:
$\left(N_{R e}\right)_{x}=v \rho x / \mu=29272$ for $x=5 \mathrm{~mm}=>$ lamilar flow $\left(\left(N_{R e}\right)_{x, \text { crit }}=210^{5}\right)$

Is formation of particle possible?

$=>c\left(\mathrm{H}_{2} \mathrm{~S}\right)=1.0310^{-12} \mathrm{~mol} / 7.7810^{-14} \mathrm{~m}^{3}=13.24 \mathrm{~mol} \mathrm{~m}^{-3} \quad$ (for $0.5 \mu \mathrm{~m}$ layer!) $=0.0132 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{c}\left(\mathrm{Zn}^{2+}\right)=1 \mathrm{~mol} \mathrm{dm}^{-3}=1000 \mathrm{~mol} \mathrm{~m}^{-3}$
diffusion constant of $\mathrm{H}_{2} \mathrm{~S}$ in water: $\mathrm{D}^{\mathrm{H} 2 \mathrm{O}}{ }_{(\mathrm{H} 2 \mathrm{~S})}=1.4110^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

Particles: $\mathrm{r}_{\mathrm{g}}=12 \mathrm{~nm}, \mathrm{t}_{\mathrm{P}}=17 \mu \mathrm{~s}, \sigma_{\mathrm{P}}=410^{3} \mathrm{~kg} \mathrm{~m}^{3}, \mathrm{M}_{\mathrm{Zns}}=98.410^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$ $\Rightarrow V_{P}=7.2410^{-24} \mathrm{~m}^{3}=>\mathrm{m}_{\mathrm{P}}=2.9010^{-20} \mathrm{~kg} \Rightarrow \mathrm{n}_{\mathrm{P}}=2.9410^{-19} \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{~S}\right.$ needed) $\left\langle x^{2}\right\rangle=2 D t \quad \Rightarrow \quad x=(2 D t)^{1 / 2}=2.1910^{-7} \mathrm{~m} \quad \Rightarrow$ diff. sphere $V_{\text {sph }}=4.4010^{-20} \mathrm{~m}^{3}$ sphere of diameter $4.3810^{-7} \mathrm{~m}(438 \mathrm{~nm}=2 x)$ contains $5.8310^{-19} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$

Particles: $\mathrm{r}_{\mathrm{g}}=17 \mathrm{~nm}, \mathrm{t}_{\mathrm{P}}=21 \mu \mathrm{~s}, \sigma_{\mathrm{P}}=410^{3} \mathrm{~kg} \mathrm{~m}^{-3}, \mathrm{M}_{\mathrm{Zns}}=98.410^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$ $\Rightarrow V_{P}=2.0610^{-23} \mathrm{~m}^{3} \Rightarrow \mathrm{~m}_{\mathrm{P}}=8.2310^{-20} \mathrm{~kg} \Rightarrow \mathrm{n}_{\mathrm{P}}=8.3610^{-19} \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{~S}\right.$ needed $)$ $\left\langle x^{2}\right\rangle=2 D t \quad \Rightarrow \quad x=(2 D t)^{1 / 2}=2.43410^{-7} \mathrm{~m} \quad \Rightarrow$ diff. sphere $V_{\text {sph }}=6.0410^{-20} \mathrm{~m}^{3}$ sphere of diameter $4.8710^{-7} \mathrm{~m}(487 \mathrm{~nm}=2 \mathrm{x})$ contains $7.9910^{-19} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$

