Synthesis of the ABCDEFG Ring System of

Maitotoxin

K. C. Nicolaou,* Robert J. Aversa, Jian Jin, and Fatima Rivas
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093

Corresponding author e-mail: kcn@scripps.edu

Supporting Information

Experimental Data for Compounds

General Procedures. All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), toluene, benzene, diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), acetonitrile (MeCN), ethylene glycol dimethyl ether (DME), and methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were obtained by passing commercially available predried, oxygen-free formulations through activated alumina columns. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further
purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid and cerium sulfate, and heat as developing agents. E. Merck silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker DRX-600, DRX-500, AMX-500 or AMX-400 instruments and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, quin $=$ quintuplet, sext $=$ sextet, $\operatorname{sep}=$ septet, $b r=$ broad. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Electrospray ionization (ESI) mass spectrometry (MS) experiments were performed on an API 100 Perkin Elmer SCIEX single quadrupole mass spectrometer at 4000 V emitter voltage. High-resolution mass spectra (HR-MS) were recorded on a VG ZAB-ZSE mass spectrometer using MALDI (matrix-assisted laser-desorption ionization) or ESI (electrospray ionization).

Alcohol 10a. To a stirred solution of furan $\mathbf{1 0}^{1}(55.1 \mathrm{~g}, 393 \mathrm{mmol}, 1.0$ equiv $)$ in THF (400 mL)

at $-78{ }^{\circ} \mathrm{C}$ was added n -BuLi $(2.5 \mathrm{M}$ in hexanes, $157 \mathrm{~mL}, 393 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , at which point a solution of butyrolactone (11, $29.6 \mathrm{~mL}, 393 \mathrm{mmol}$, 1.0 equiv) in THF (400 mL) at $-78{ }^{\circ} \mathrm{C}$ was added by cannula. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2.5 h , and then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(800 \mathrm{~mL})$. The biphasic mixture was extracted with EtOAc $(3 \times 300 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc $4: 1$ to $1: 4$) yielded alcohol 10a ($55.1 \mathrm{~g}, 243 \mathrm{mmol}, 62 \%$ yield) as a yellow foam and recovered furanal $10\left(10.87 \mathrm{~g}, 78 \mathrm{mmol}, 20 \%\right.$ yield). 10a: $R_{\mathrm{f}}=0.15$ (silica gel, hexanes:EtOAc 2:3); IR (film) $v_{\max } 3422,2955,2892,1671,1603,1520,1402,1338,1263$, 1199, 1105, 1026, 939, $805 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.98 (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=189.7$, 155.4, 152.6, 117.2, 110.3, 65.3, 62.2, 35.1, 26.7 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+$ H^{+}]: 227.0914, found 227.0916.

Pivaloate 12. To a stirred solution of alcohol $10 \mathrm{a}\left(64.7 \mathrm{~g}, 286 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0

L) at $25{ }^{\circ} \mathrm{C}$ were added $\operatorname{PivCl}(42.3 \mathrm{~mL}, 343 \mathrm{mmol}, 1.2$ equiv $), \mathrm{Et}_{3} \mathrm{~N}(119.1$ $\mathrm{mL}, 857 \mathrm{mmol}, 3.0$ equiv), and DMAP ($3.49 \mathrm{~g}, 28.6 \mathrm{mmol}, 0.1$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(750 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) yielded pivaloate 12 ($83.4 \mathrm{~g}, 269 \mathrm{mmol}, 94 \%$ yield) as a yellow oil. 12: $R_{\mathrm{f}}=0.37$ (silica gel, hexanes:EtOAc 3:2); IR (film) $v_{\max }$ 2971, 2900, $1724,1678,1588,1522,1480,1399,1366,1284,1199,1155,1107,1033,940,891,805,771$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (s, 1 H), 4.15-4.09 (m, 4 H), 4.07-4.03 (m, 2 H), 2.91 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06 (quin, $J=7.2 \mathrm{~Hz}$, 2 H), 1.19 (s, 9 H) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=188.5,178.4,155.4,152.6,117.0$, 110.3, 97.3, 65.3, 63.5, 38.7, 34.7, 27.2, 23.0 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+$ H^{+}]: 311.1489, found 311.1491.

Secondary alcohol 12a. To a vigorously stirred solution of pivaloate $12(61.0 \mathrm{~g}, 197 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(1: 1,400 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $n-\mathrm{Bu}_{4} \mathrm{NCl}(16.4 \mathrm{~g}$, $59 \mathrm{mmol}, 0.3$ equiv), $\mathrm{HCO}_{2} \mathrm{Na}(133.7 \mathrm{~g}, 1.97 \mathrm{~mol}, 10$ equiv) and cat. 13 (1.23 $\mathrm{g}, 1.97 \mathrm{mmol}, 0.01$ equiv), and the reaction mixture was stirred vigorously for 48 h at $25^{\circ} \mathrm{C}$. The reaction mixture was diluted in $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$, and the biphasic mixture was extracted with EtOAc ($3 \times 400 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) gave secondary alcohol 12a [59.5 g, $190 \mathrm{mmol}, 97 \%$ yield, 94% ee (as measured by ${ }^{1} \mathrm{H}$ NMR analysis of the corresponding Naproxen ${ }^{\circledR}$ spectroscopic ester)] as a pale
yellow oil. 12a: $R_{\mathrm{f}}=0.23$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{32}=+7.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.15\right)$; IR (film) $v_{\max } 3473,2961,2891,1724,1480,1399,1366,1286,1159,1102,1014,942,796 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.39(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1$ H), 4.71 (t, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 4 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{bs}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=178.6,157.3,150.5,109.3,106.4,97.7,67.3,65.1,63.9,38.7,31.8,27.2,24.8 \mathrm{ppm} ;$ HRMS (ESI-TOF); calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 313.1646$, found 313.1648.

Benzyl ether 12b. To a stirred solution of secondary alcohol 12a ($59.0 \mathrm{~g}, 189 \mathrm{mmol}, 1.0$ equiv)
 in THF (1.0 L) at $0^{\circ} \mathrm{C}$ were added $\mathrm{BnBr}(56.2 \mathrm{~mL}, 472 \mathrm{mmol}, 2.5$ equiv) and $n-\mathrm{Bu}_{4} \mathrm{NI}(34.9 \mathrm{~g}, 94.5 \mathrm{mmol}, 0.5$ equiv) followed by portionwise addition of $\mathrm{NaH}(60 \%$ in mineral oil, $30.1 \mathrm{~g}, 756 \mathrm{mmol}, 4.0$ equiv $)$, and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction mixture was slowly quenched with $\mathrm{H}_{2} \mathrm{O}(700 \mathrm{~mL})$, the biphasic mixture was extracted with EtOAc $(3 \times 500 \mathrm{~mL})$, and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(750 \mathrm{~mL})$ and brine $(750 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to $3: 1$) yielded benzyl ether 12b ($75.9 \mathrm{~g}, 189 \mathrm{mmol}$, quant. yield) as a pale yellow oil. 12b: $R_{\mathrm{f}}=0.28$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+61.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.02\right)$; IR (film) $v_{\text {max }} 2959,2870,1724,1480,1455,1397,1365$, 1284, 1155, 1101, 1028, 940, 796, 771, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.07-$ 3.99 (m, 4 H), 2.02-1.96 (m, 1 H), 1.92-1.86 (m, 1 H), 1.81-1.74 (m, 1 H), 1.66-1.60 (m, 1 H), 1.18 (s, 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5,155.2,150.9,138.1,128.3,127.8$, $127.6,109.0,108.2,97.8,73.7,70.6,65.13,65.08,63.4,38.7,30.9,27.2,24.9 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 425.1934, found 425.1927.

Aldehyde 14. To a stirred solution of benzyl ether $\mathbf{1 2 b}$ ($73.9 \mathrm{~g}, 183.5 \mathrm{mmol}, 1.0$ equiv) in THF $(1.2 \mathrm{~L})$ at $25^{\circ} \mathrm{C}$ was added 2.0 M aq. $\mathrm{HCl}(600 \mathrm{~mL})$, and the reaction mixture was stirred at 25

${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was slowly quenched with sat. aq. NaHCO_{3} (1.0 L), the biphasic mixture was extracted with EtOAc $(3 \times 600 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, providing pure aldehyde 14 ($66.5 \mathrm{~g}, 183.5 \mathrm{mmol}$, quant.) as a yellow oil. 14: $R_{\mathrm{f}}=0.39$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_{\mathrm{D}}{ }^{32}=+73.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.18\right)$; IR (film) $v_{\max } 2961,2871,1724,1681$, $1517,1480,1455,1328,1283,1156,1023,768,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.62$ $(\mathrm{s}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1$ H), $1.75-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5,177.6$, $161.8,152.4,137.5,128.5,127.9,127.8,121.9,109.9,74.0,71.5,63.7,38.7,31.2,27.2,24.6$ ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 359.1853$, found 359.1858.

Oxazolidinone 16. To a stirred solution of oxazolidinone $\mathbf{1 5}^{2}(38.1 \mathrm{~g}, 173.8 \mathrm{mmol}, 1.0$ equiv $)$ in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(900 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{Bu}_{2} \mathrm{BOTf}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $209 \mathrm{~mL}, 209 \mathrm{mmol}, 1.2$ equiv) followed by $\mathrm{Et}_{3} \mathrm{~N}(31.4 \mathrm{~mL}, 226 \mathrm{mmol}$, 1.3 equiv). The reaction mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 45 min, and re-cooled to $-78^{\circ} \mathrm{C}$. A cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of aldehyde $14(62.3 \mathrm{~g}, 173.8 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mathrm{~mL})$ was added via cannula to the stirred reaction mixture and then the solution was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 4.5 h . The reaction mixture was quenched by slow sequential addition of 0.05 M phosphate buffer ($\mathrm{pH}=7,175$ mL), $\mathrm{MeOH}(350 \mathrm{~mL})$, and $\mathrm{MeOH}: 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1: 1,350 \mathrm{~mL})$, and the resulting biphasic mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After warming to $25^{\circ} \mathrm{C}$, the biphasic mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~L})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 600 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(600 \mathrm{~mL})$ and brine $(600 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1 to 3:2) gave oxazolidinone $16\left(98.4 \mathrm{~g}, 170 \mathrm{mmol}, 98 \%\right.$ yield) as a viscous pale yellow oil. 16: $R_{\mathrm{f}}=0.18$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_{\mathrm{D}}{ }^{32}=+78.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.25\right)$; IR (film) $v_{\max } 3490,2970$,
$2870,1780,1719,1706,1480,1455,1382,1318,1285,1197,1159,1106,1042,980,949,797$, $738,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1$ H), $1.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6,175.7$, $153.9,153.8,153.0,138.7,138.2,129.3,128.8,128.4,127.9,127.6,125.5,108.7,107.3,73.6$, $70.4,69.9,68.4,64.0,57.5,42.5,38.7,30.7,27.2,24.9,11.8 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{8}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 600.2568$, found 600.2569 .

A Ring enone 17. To a mechanically stirred solution of oxazolidinone $16(86.0 \mathrm{~g}, 149 \mathrm{mmol}$,
 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added dry m-CPBA (47.7 g, 193.7 mmol, 1.2 equiv), and the reaction mixture was allowed to warm up to 25 ${ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . After cooling to $-50{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(47.6 \mathrm{~mL}, 298$ mmol, 2.0 equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($37.4 \mathrm{~mL}, 298 \mathrm{mmol}, 2.0$ equiv) were added to the reaction mixture, which was subsequently warmed to $-10{ }^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(700 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:2) yielded A ring enone 17 (64.5 g , $112 \mathrm{mmol}, 75 \%$ yield) as a white solid. 17: $R_{\mathrm{f}}=0.42$ (silica gel, hexanes:EtOAc 3:2); $\mathrm{mp}=32-$ $33{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{32}=+30.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.98\right)$; IR (film) $v_{\max } 2971,2870,1780,1721,1693,1480$, $1456,1383,1285,1201,1160,1112,984,759,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-$ $7.28(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=9.0,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-$ $4.31(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.57$ (m, 1 H), 1.83-1.78(m, 1 H), 1.76-1.71 (m, 3 H$), 1.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=194.9,178.5,173.9,153.5,148.9,139.4,137.8,129.2,128.6$,
$128.5,127.9,127.2,125.6,81.0,79.2,77.0,72.5,70.0,64.1,57.8,38.7,38.2,27.2,27.1,23.9$, 13.6 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 578.2748$, found 500.2743.

A Ring diol 17a. To a stirred solution of A ring enone 17 ($49.2 \mathrm{~g}, 85.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(1: 1,1.0 \mathrm{~L})$ at $-30{ }^{\circ} \mathrm{C}$ were added dry $\mathrm{CeCl}_{3}(63.5 \mathrm{~g}, 170.4$

17a mmol, 2.0 equiv) and $\mathrm{NaBH}_{4}(12.9 \mathrm{~g}, 340.8 \mathrm{mmol}, 4.0$ equiv), and the reaction mixture was warmed to $-10^{\circ} \mathrm{C}$ and stirred for 15 min . The reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(600 \mathrm{~mL})$, and the aqueous layer was acidified with 1.0 M HCl to $\mathrm{pH}=5$. The biphasic mixture was extracted with EtOAc $(3 \times 400 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 11:9 to 3:7) gave A ring diol 17a ($28.7 \mathrm{~g}, 68.2 \mathrm{mmol}, 80 \%$ yield) as a white solid. 17a: $R_{\mathrm{f}}=0.21$ (silica gel, hexanes:EtOAc 2:3); $\mathrm{mp}=77-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{32}=-60.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.28\right)$; IR (film) $v_{\max } 3356,2962,2931,2873,1725,1480,1455,1398,1285,1158$, 1038, 993, 966, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{dt}, J$ $=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18-4.14$ (m, 2 H), 4.07-3.99 (m, 2 H), 3.76 (dd, $J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=$ $10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42-3.40(m, 1 H), 3.27 (dd, $J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (bs, 1 H), 2.71 (bs, 1 H), 2.04-2.01 (m, 1 H$), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6,138.3,130.4,128.4,128.3,127.8,127.6$, 81.5, 80.2, 76.3, 72.3, 66.3, 65.5, 64.3, 38.7, 37.7, 27.2, 26.7, 24.3, 11.8 ppm; HRMS (ESITOF); calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 421.2585 , found 421.2590 .

A Ring tri-benzyl ether 18. To a vigorously stirred solution of A ring diol 17a (4.80 g, 11.4
 mmol, 1.0 equiv) in 25% aq. $\mathrm{NaOH}: \operatorname{PhMe}(1: 1,300 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ were added BnBr (33.9 mL , 285 mmol , 25.0 equiv) and $n-\mathrm{Bu} \mathrm{u}_{4} \mathrm{NI}(3.16 \mathrm{~g}, 8.9$ mmol, 0.75 equiv), and the reaction mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was then diluted in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$, and the resulting biphasic mixture was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed
with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) yielded A ring tri-benzyl ether $18\left(6.2 \mathrm{~g}, 10.4 \mathrm{mmol}, 91 \%\right.$ yield) as a pale yellow oil. 18: $R_{\mathrm{f}}=0.34$ (silica gel, hexanes:EtOAc $17: 3) ;[\alpha]_{\mathrm{D}}{ }^{32}=-55.0\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.65\right)$; IR (film) $v_{\max } 2963,2926,2865,1726,1454,1284$, 1159, 1095, 735, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.28(\mathrm{~m}, 15 \mathrm{H}), 6.04(\mathrm{dt}, J=$ $10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dt}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.99(\mathrm{~m}, 3$ H), $3.63(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1$ H), 1.78-1.70 (m, 2 H$), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=179.4,139.6,139.4,139.1,129.6,129.3,129.20,129.16,128.9$, $128.8,128.7,128.6,128.5,128.4,128.3,81.2,77.8,77.0,73.71,73.69,73.2,71.5,71.4,65.2$, 39.6, 34.5, 28.1, 27.9, 25.4, 11.1 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 623.3343, found 623.3337.

A Ring epoxide 18a. To a stirred solution of A ring tri-benzyl ether ($6.0 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv)
 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added m -CPBA $(70 \%, 7.1 \mathrm{~g}, 30 \mathrm{mmol}, 3.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was then quenched sequentially with $\mathrm{Me}_{2} \mathrm{~S}(2.2 \mathrm{~mL}, 30 \mathrm{mmol}, 3.0$ equiv) and sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Silica gel chromatography (hexanes:EtOAc 17:3) gave A ring epoxide $18 \mathrm{a}(5.6 \mathrm{~g}, 9.1 \mathrm{mmol}, 91 \%$) as a pale yellow oil (ca. 4.5:1 mix of diastereomers). Repeated preparative-plate chromatography (silica gel, hexanes:EtOAc 17:3) provided a sample of pure 18a for characterization. 18a: $R_{\mathrm{f}}=0.39$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-58.4$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.58\right)$; IR (film) $v_{\max } 2965,2921,2865,1725,1455,1284,1156,1112,1094,735$, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.28(\mathrm{~m}, 15 \mathrm{H}), 4.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (s, 2 H), $4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-$ 3.97 (m, 2 H$), 3.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.37$
$(\mathrm{m}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5,138.5,138.2,137.3,128.5,128.4,128.33,128.28,128.1,127.9$, $127.8,127.54,127.50,78.0,76.0,75.3,72.9,72.7,72.4,71.8,69.4,64.5,64.5,54.5,50.6,38.7$, 33.9, 27.3, 27.2, 23.5, 10.1 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$617.3473, found 617.4365.

A Ring secondary alcohol 19. To a stirred solution of A ring epoxide 18a (ca. 4.5:1
 diastereomeric mix, $5.6 \mathrm{~g}, 9.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $\mathrm{BnOH}\left(1.13 \mathrm{~mL}, 10.9 \mathrm{mmol}, 2.5\right.$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.14 \mathrm{~mL}$, $9.1 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) yielded A ring secondary alcohol $19(6.0 \mathrm{~g}, 8.3 \mathrm{mmol}, 91 \%$ yield) as a colorless oil [ca. inseparable $5: 1 \mathrm{mix}$ of isomers corresponding to the epoxide (18a) diastereomeric ratio]. A sample of pure 19 was obtained for characterization by subjection of a small amount of isomerically pure epoxide (18a) to the reaction conditions described above. 19: $R_{\mathrm{f}}=0.30$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}$ $=-15.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.23\right)$; IR (film) $v_{\max } 3453,2962,2925,2870,1726,1454,1284,1155$, $1100,1024,736,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.27(\mathrm{~m}, 20 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, ~ J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{bs}, 1 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(q u i n, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.56$ $(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1$ H), $1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5,138.81,138.76,138.2,137.8,128.4,128.34,128.32$, 128.27, 128.22, 127.93, 127.86, 127.7, 127.65, 127.58, 127.4, 80.3, 77.1, 75.6, 74.6, 74.3, 74.1,
73.2, 73.1, 72.8, 71.0, 68.5, 64.0, 38.7, 32.9, 28.2, 27.2, 25.0, 10.1 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 725.4048 , found 725.4037.

A Ring inverted secondary alcohol 20. To a stirred solution of DMSO ($628 \mu \mathrm{~L}, 8.84 \mathrm{mmol}$,
 4.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(286 \mu \mathrm{~L}, 4.42$ $\mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$, at which point a $-78{ }^{\circ} \mathrm{C}$ solution of A ring secondary alcohol 19 (ca. 5:1 isomeric mix, $1.60 \mathrm{~g}, 2.21 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added via cannula. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}(1.84 \mathrm{~mL}, 13.3 \mathrm{mmol}, 6.0$ equiv) was added. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 45 min , and then quenched with brine $(50 \mathrm{~mL})$. The biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The so obtained crude ketone was carried forward without further purification. To a solution of the crude ketone in $\mathrm{MeOH}(50 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(159 \mathrm{mg}, 4.42 \mathrm{mmol}, 2.0$ equiv), and the resulting mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, warmed to $25^{\circ} \mathrm{C}$, and concentrated. The residue was partitioned between EtOAc (50 mL) and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50$ $\mathrm{mL})$, the aqueous layer was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 4:1) gave the desired inverted A ring secondary alcohol 20 ($1.02 \mathrm{~g}, 1.41$ $\mathrm{mmol}, 64 \%$ yield over the two steps) as a pale yellow oil (The region- and stereoisomeric secondary alcohol derived from the minor isomer present in starting material 19 was removed at this stage). 20: $R_{\mathrm{f}}=0.22$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-14.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.09\right.$); IR (film) $v_{\max } 3483,3030,2962,2926,2871,1724,1496,1479,1454,1364,1284,1207,1156$, $1110,1065,1028,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.27(\mathrm{~m}, 20 \mathrm{H}), 5.00(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1$ H), 4.53-4.47 (m, 4 H$), 4.18(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.53-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=5.4$
$\mathrm{Hz}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6,138.9,138.8,138.2,137.7,128.44$, $128.39,128.37,128.28,127.93,127.91,127.86,127.82,127.7,127.6,127.5,127.4,80.2,76.3$, 75.9, 74.7, 73.3, 73.2, 72.9, 71.6, 71.2, 70.6, 64.4, 38.7, 32.9, 27.2, 26.2, 24.5, 9.9 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 725.4048$, found 725.4043.

A Ring diol 20a. To a stirred solution of A ring inverted secondary alcohol 20 ($2.16 \mathrm{~g}, 2.98$ ${ }^{\mathrm{BnO}}$ 祭 ${ }^{\mathrm{OBn}}$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added Dibal-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 7.45 \mathrm{~mL}, 7.45 \mathrm{mmol}, 2.5$ equiv), and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then diluted in EtOAc (30 mL) and quenched with sat. aq. Rochelle's salt (50 mL). The resulting biphasic mixture was stirred vigorously for 16 h . The mixture was then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:2) yielded A ring diol 20a ($1.58 \mathrm{~g}, 2.47 \mathrm{mmol}, 83 \%$ yield) as a pale yellow oil. 20: $R_{\mathrm{f}}=0.29$ (silica gel, hexanes:EtOAc 2:3); $[\alpha]_{\mathrm{D}}{ }^{32}=-17.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.99\right)$; IR (film) $v_{\max } 3434,3030,2922,2870$, 1496, 1454, 1363, 1207, 1105, 1062, 1027, 735, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=$ $7.38-7.27(\mathrm{~m}, 20 \mathrm{H}), 5.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.47(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 3$ H), 3.64-3.60 (m, 2 H), 3.53-3.51 (m, 2 H), $3.38(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=10.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2$ H), $1.19(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,138.8$, 138.1, 137.7, $128.5,128.41,128.38,128.3,127.98,127.95,127.87,127.81,127.7,127.59$, $127.56,127.4,80.6,76.3,75.8,75.6,74.7,73.24,73.19,72.9,71.6,71.1,70.6,62.9,32.7,28.5$, 26.2, 9.9 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 641.3473$, found 641.3468 .

AB Lactone 21. To a stirred solution of A ring diol 20a ($1.00 \mathrm{~g}, 1.56 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added TEMPO ($49 \mathrm{mg}, 0.31 \mathrm{mmol}, 0.2$ equiv) and $\mathrm{PhI}(\mathrm{OAc})_{2}$ $(2.59 \mathrm{~g}, 7.80 \mathrm{mmol}, 5$ equiv). After stirring at that temperature for 48 h , the reaction mixture was

quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(75 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 4:1) yielded AB lactone 21 ($914 \mathrm{mg}, 1.44 \mathrm{mmol}, 92 \%$ yield) as a pale yellow oil. 21: $R_{\mathrm{f}}=0.33$ (silica gel, hexanes:EtOAc $1: 3$); $[\alpha]_{\mathrm{D}}{ }^{32}=-61.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.95\right)$; IR (film) $v_{\max } 3030,2926,2865,1736,1496,1453,1347,1260,1208,1101$, 1059, 1027, 736, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.24(\mathrm{~m}, 20 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.50$ (dd, $J=12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.39 (dd, $J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (dd, $J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dt, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42(\mathrm{dd}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dq}, J=6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.5,138.9,138.69$, 138.66, 137.7, 128.4, 128.30, 128.28, 128.1, 127.94, 127.87, 127.85, 127.7, 127.6, 127.5, 127.4, $127.3,75.7,75.4,75.2,74.9,74.7,73.5,73.3,72.9,72.8,71.84,71.82,70.9,32.6,27.4,25.7,9.9$ ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 637.3160, found 637.3157.

Keto furan 22a. To a stirred solution of freshly distilled furfuryl alcohol ($52.2 \mathrm{~mL}, 600 \mathrm{mmol}$,
 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{CL}_{2}(1.2 \mathrm{~L})$ at $25^{\circ} \mathrm{C}$ were added imidazole $(61.3 \mathrm{~g}, 900$ mmol, 1.5 equiv) and $\operatorname{TBDPSCl}(156 \mathrm{~mL}, 600 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The resulting mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~L})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$. The combined organic layers were washed with brine $(1.0 \mathrm{~L})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford TBDPS-protected furfuryl alcohol 22 ($202 \mathrm{~g}, 600 \mathrm{mmol}$, quant. yield) of sufficient purity to carry on to the next step. To a stirred solution of furan derivative $22(193 \mathrm{~g}, 573 \mathrm{mmol}, 1.2$ equiv $)$ in THF (1.0 L) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $230 \mathrm{~mL}, 573 \mathrm{mmol}, 1.2$ equiv), and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$, stirred for 1 h , then re-cooled to $-78^{\circ} \mathrm{C}$. To this mixture was added amide 23^{3} ($116 \mathrm{~g}, 477 \mathrm{mmol}, 1.0$ equiv), and the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and
stirred for 1 h . The reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$, and the, extracted with EtOAc $(3 \times 500 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave keto furan 20a (203 g, $400 \mathrm{mmol}, 84 \%$ yield) as a colorless oil. 20a: $R_{\mathrm{f}}=0.67$ (silica gel, hexanes:EtOAc 4:1); IR (film) $v_{\max } 2926,1711,1362,1265,1221,910,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.37(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H})$, $4.66(\mathrm{~s}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=187.15,159.21,150.59,135.93,135.20,133.26,130.33,130.03,128.22$, $128.20,128.19,128.11,119.35,109.71,77.67,77.41,77.16,67.00,59.66,31.99,27.12,26.97$, $23.05,19.65,14.51,7.09,7.08,4.83,4.82 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+$ Na^{+}]: 531.2363, found 531.2361.

Pivaloate 24. To a stirred solution of keto furan 22a ($203 \mathrm{~g}, 400 \mathrm{mmol}, 1.0$ equiv) in

24 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(5: 1,1.2 \mathrm{~L})$ at $25{ }^{\circ} \mathrm{C}$ was added $\mathrm{CSA}(9.3 \mathrm{~g}, 40 \mathrm{mmol}, 0.1$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. To the resulting crude primary alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~L})$ at $25{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(184 \mathrm{~mL}, 1320 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{PivCl}(98 \mathrm{~mL}, 792 \mathrm{mmol}, 1.2$ equiv), and the reaction mixture was stirred at that temperature for 12 h . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave pivaloate 24 ($293 \mathrm{~g}, 613 \mathrm{mmol}, 93 \%$ yield) as a light yellow oil. 24: $R_{\mathrm{f}}=0.65$ (silica gel, hexanes:EtOAc 4:1); IR (film) $v_{\max } 2932,1735,1428,1112,821,741,701,607,519,526 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{dd}, J$ $=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.32(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.67(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=182.44,178.63$,
$159.81,150.58,136.20,133.42,130.64,128.52,119.13,110.38,65.79,59.81,39.48,27.90$, 27.38, 19.91 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 501.2068$, found 501.2070 .

Secondary alcohol 25. To a vigorously stirred solution of pivaloate $24(146 \mathrm{~g}, 305 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(1: 1,1.5 \mathrm{~L})$ at $25^{\circ} \mathrm{C}$ were added n - $\mathrm{Bu} 4_{4} \mathrm{NCl}(25 \mathrm{~g}, 92$ mmol, 0.3 equiv), $\mathrm{HCO}_{2} \mathrm{Na}(207 \mathrm{~g}, 3050 \mathrm{mmol}, 10.0$ equiv), and cat. ent-13 ($3.8 \mathrm{~g}, 6.1 \mathrm{mmol}, 0.02$ equiv), and the reaction mixture was vigorously stirred at that temperature for 24 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) provided secondary alcohol $25\left[137 \mathrm{~g}, 286 \mathrm{mmol}, 94 \%\right.$ yield, $\geq 95 \%$ ee (as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding Naproxen ${ }^{\circledR}$ ester)] as a colorless oil. 25: $R_{\mathrm{f}}=0.34$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+8.7\left(\mathrm{CHCl}_{3}, c=1.0\right)$; IR (film) $v_{\max } 3450,2959,2859,1731$, $1480,1428,1364,1283,1155,1112,1069,940,823,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.68(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{dt}, J=14.4,7.2 \mathrm{~Hz}, 6 \mathrm{H}), 6.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9$ H), 1.05 (s, 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.80,157.54,154.57,152.58,145.45$, $135.94,134.92,134.61,133.36,130.39,126.45,126.15,108.46,108.27,103.34,81.97,77.58$, $77.37,77.16,74.24,66.89,66.75,63.88,59.18,58.55,39.12,27.50,27.44,27.10,19.60,18.38$ ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 503.2224, found 503.2227.

D Ring enone 26. To a stirred solution of secondary alcohol 25 ($128 \mathrm{~g}, 266 \mathrm{mmol}, 1.0$ equiv) in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added dry m-CPBA ($92 \mathrm{~g}, 532 \mathrm{mmol}, 1.2$ equiv), and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for $2 \mathrm{~h} . \mathrm{Me}_{2} \mathrm{~S}(24$ $\mathrm{mL}, 320 \mathrm{mmol}, 1.2$ equiv) was then added to the reaction mixture, which was subsequently quenched with sat. aq. $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$. The biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 400 mL), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting
crude hemiacetal was carried on to the next step without further purification. To a stirred solution of the crude hemiacetal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{SiH}(130 \mathrm{~mL}, 792$ mmol, 3.0 equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(67 \mathrm{~mL}, 532 \mathrm{mmol}, 2.0$ equiv), and the reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave D ring enone 26 ($94 \mathrm{~g}, 196 \mathrm{mmol}, 74 \%$ yield over the two steps) as a colorless oil. 26: $R_{\mathrm{f}}=0.55$ (silica gel, hexanes:EtOAc 1:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+36.0\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=\right.$ 1.0); IR (film) $v_{\max } 2930,1732,1698,1462,1428,1279,1155,1113,823,747,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, C ${ }_{6} \mathrm{D}_{6}$): $\delta=7.71$ (ddd, $J=5.4,3.6,1.8 \mathrm{~Hz}, 4 \mathrm{H}$), $7.25-7.21$ (m, 6 H), 6.47 (dd, J $=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J$ $=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.4,5.4 \mathrm{~Hz}, 1$ H), $3.56(\mathrm{dd}, J=10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=192.59,177.56,148.51,135.92,133.40,133.35,130.17,130.16,128.26,128.16,128.11$, $128.09,127.97,127.78,127.50,78.71,74.79,65.59,63.08,38.77,27.21,26.96,26.94,26.93$, 19.39 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 503.2224$, found 503.2228.

D Ring tertiary alcohol 26a. To a stirred solution of D ring enone $26(77 \mathrm{~g}, 160 \mathrm{mmol}, 1.0$
 equiv) in THF (800 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 107$ $\mathrm{mL}, 320 \mathrm{mmol}, 2.0$ equiv), and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{~mL})$, the biphasic mixture was extracted with $\operatorname{EtOAc}(3 \times 400 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring tertiary alcohol 26a ($63 \mathrm{~g}, 128 \mathrm{mmol}, 80 \%$ yield) as a colorless oil. 26a: $R_{\mathrm{f}}=0.19$ (silica gel, hexanes:EtOAc $4: 1$); $[\alpha]_{\mathrm{D}}{ }^{32}=+43.0\left(\mathrm{CHCl}_{3}, c=1.0\right)$; IR (film) $v_{\max } 3681,3452,2966,2935,1729,1480,1461,1428,1392,1362,1286,1159,1107,1056$, 1033, 914, 823, 800, 739, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.76-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.50-$
7.37 (m, 6 H), 5.77 (dd, $J=10.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (ddd, $J=7.2,3.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9$ H), $1.08(\mathrm{~s}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.89,136.04,135.95,134.98$, $133.85,133.73,130.02,130.00,127.98,127.96,127.95,127.12,79.32,77.58,77.37,77.16$, 76.46, 68.61, 66.61, 63.75, 60.77, 39.11, 27.51, 27.13, 22.53, 19.60 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 519.2537, found 519.2537.

D Ring TMS ether 27. To a stirred solution of D ring tertiary alcohol 26a ($63 \mathrm{~g}, 128 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(45 \mathrm{~mL}, 320 \mathrm{mmol}$, 2.5 equiv) and TMSOTf ($35 \mathrm{~mL}, 192 \mathrm{mmol}, 1.5$ equiv), and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 300 mL), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave D ring TMS ether 27 ($71 \mathrm{~g}, 125 \mathrm{mmol}$, 98% yield) as a colorless oil. 27: $R_{\mathrm{f}}=0.69$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+32.6$ $\left(\mathrm{CHCl}_{3}, c=1.0\right)$; IR (film) $v_{\text {max }} 2959,1731,1480,1428,1366,1284,1252,1216,1162,1112$, 1033, 867, 841, 756, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68(\mathrm{ddd}, J=8.4,6.0,1.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.37(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 5.82(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J$ $=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9$ H), $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.05$, $136.05,135.96,135.56,133.90,130.00,129.98,127.98,127.95,126.36,79.89,77.58,77.37$, 77.16, 76.43, 71.15, 66.70, 63.74, 39.10, 27.54, 27.14, 24.14, 19.61, 2.86 ppm; HRMS (ESITOF); calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 591.2932, found 591.2929.

D Ring secondary alcohol 27a. To a stirred solution of D ring TMS ether $27(57 \mathrm{~g}, 100 \mathrm{mmol}$, 1.0 equiv) in THF (400 mL) at $-78^{\circ} \mathrm{C}$ was added diisoamylborane (1.0 M in THF, $400 \mathrm{~mL}, 400$ $\mathrm{mmol}, 4.0$ equiv), and the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 72 h . The

reaction mixture was quenched by the slow addition of 1.0 M aq . NaOH (400 $\mathrm{mL})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(120 \mathrm{~mL})$, and the biphasic mixture was warmed to $25^{\circ} \mathrm{C}$ and vigorously stirred for 5 h . The mixture was diluted with EtOAc (800 mL), the layers were separated, and the organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(800 \mathrm{~mL})$ and brine $(800 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring secondary alcohol 27 a ($44 \mathrm{~g}, 75 \mathrm{mmol}, 75 \%$ yield) as a colorless oil. 27a: $R_{\mathrm{f}}=0.45$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+23.6\left(\mathrm{CHCl}_{3}, c=\right.$ 1.0); IR (film) $v_{\max } 2959,2859,1729,1480,1428,1280,1214,1167,1052,1007,866,841,753$, $702,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68(\mathrm{ddd}, J=7.8,2.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.35$ (m, 6 H$), 4.29(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=10.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84-2.76(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.98$, 135.93, 135.89, $132.90,132.83,130.34,130.32,128.20,82.59,80.36,77.58,77.37,77.16,72.75,68.95,66.59$, 63.50, 48.55, 39.05, 27.48, 27.14, 22.63, 19.48, 2.92 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 609.3038$, found 609.3036.

D Ring PMB ether 28. To a stirred solution of D ring secondary alcohol 27a (28 g, 47 mmol ,

28 1.0 equiv) in $\mathrm{PhMe}(300 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $\mathrm{PMBOC}(\mathrm{NH}) \mathrm{CCl}_{3}(26 \mathrm{~g}$, $94 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{La}(\mathrm{OTf})_{3}(1.4 \mathrm{~g}, 2.4 \mathrm{mmol}, 0.05$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then concentrated and purified by flash column chromatography (silica gel, hexanes:EtOAc 9:1) to give D ring PMB ether $\mathbf{2 8}$ ($30 \mathrm{~g}, 43 \mathrm{mmol}, 96 \%$ yield) as a colorless oil. 28: $R_{\mathrm{f}}=0.37$ (silica gel, hexanes:EtOAc 9:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+6.0\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.44\right)$; IR (film) $v_{\max }$ 2957, 2931, 2858, 1728, $1612,1587,1513,1462,1428,1283,1250,1170,1138,1111,1085,1036,1008,864,840,823$, $742,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.19-$ 7.17 (m, 2 H), 6.84-6.83(m, 2 H), $4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}$,
$J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1$ H), $3.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{t}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.8,159.2,135.8,135.6,133.9,133.3,130.4,129.50,129.47,129.38$, $127.6,127.5,113.8,80.1,81.5,72.7,71.4,71.2,63.7,63.0,55.3,46.2,38.7,27.2,26.7,22.2$, 19.3, 2.6 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 729.3613$, found 729.3602.

D Ring primary alcohol 29. To a stirred solution of D ring PMB ether 29 ($53 \mathrm{~g}, 76 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(380 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added Dibal- $\mathrm{H}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $168 \mathrm{~mL}, 168 \mathrm{mmol}, 2.2$ equiv), and the reaction mixture was stirred at the same temperature for 1 h . The reaction mixture was diluted in EtOAc (400 $\mathrm{mL})$, then quenched with sat. aq. Rochelle's salt (600 mL) and stirred vigorously for 16 h . The biphasic mixture was extracted with EtOAc $(3 \times 400 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded D ring primary alcohol $29(40 \mathrm{~g}, 64 \mathrm{mmol}, 84 \%$ yield $)$ as a colorless oil. 29: $R_{\mathrm{f}}=0.44$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-7.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.13\right.$); IR (film) $v_{\max } 3503,2951$, 2939, 2857, 1612, 1513, 1463, 1428, 1250, 1173, 1137, 1112, 1077, 1035, 999, 873, 840, 822, 742, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.23-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (dd, $J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72-$ 3.68 (m, 1 H), 3.57-3.53 (m, 1 H), $3.29(\mathrm{dd}, J=7.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22 (dd, $J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ $(\mathrm{s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,135.8,135.6$, $133.8,133.4,130.4,129.64,129.62,129.4,127.6,127.5,113.8,83.2,81.3,73.4,71.4,71.1,62.8$, 61.7, 55.3, 46.0, 26.8, 22.1, 19.3, 2.5 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 645.3038, found 645.3035.

Alkyne 31. To a stirred solution of (R)-1-((4-methoxybenzyl)oxy)-5-(trimethylsilyl)pent-4-yn-$2-\mathrm{ol}^{4}$ ($42 \mathrm{~g}, 142 \mathrm{mmol}, 1.0$ equiv) in THF $(500 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{BnBr}(34$

31 $\mathrm{mL}, 284 \mathrm{mmol}, 2.0$ equiv), $n-\mathrm{Bu}_{4} \mathrm{NI}(5.3 \mathrm{~g}, 14 \mathrm{mmol}, 0.1$ equiv), and $\mathrm{NaH}(60 \%$ in mineral oil, $11.4 \mathrm{~g}, 284 \mathrm{mmol}, 2.0$ equiv), and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 24 h . The resulting mixture was then quenched slowly with $\mathrm{H}_{2} \mathrm{O}$ (300 mL), the biphasic mixture was extracted with EtOAc $(3 \times 500 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude benzyl ether was taken on to the next step without further purification. To a stirred solution of the crude benzyl ether in THF $(500 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, $284 \mathrm{~mL}, 284 \mathrm{mmol}, 2.0$ equiv), and the resulting mixture was stirred at the same temperature for 2 h before it was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 500 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave alkyne $31\left(40 \mathrm{~g}, 130 \mathrm{mmol}, 92 \%\right.$ yield over the two steps) as a yellow oil. 31: $R_{\mathrm{f}}=$ 0.35 (silica gel, hexanes:EtOAc 17:3); $[\alpha]_{\mathrm{D}}{ }^{32}=-4.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.04\right.$); IR (film) $v_{\max } 3291$, 3027, 2906, 2863, 1612, 1586, 1513, 1454, 1350, 1302, 1247, 1173, 1092, 1034, 820, 738, 698 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2$ H), $4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75$ (quin, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{ddd}, J=16.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (ddd, $J=16.8$, $5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1$, 138.3, $130.3,129.2,128.3,127.7,127.6,113.7,80.8,76.2,73.1,71.9,70.9,69.9,55.2,21.6 \mathrm{ppm} ;$ HRMS (ESI-TOF); calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 333.1461, found 333.1451.

D Ring propargylic alcohol 30a. To a stirred solution of D ring primary alcohol 29 ($35 \mathrm{~g}, 57$
 mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ were added NaHCO_{3} ($24 \mathrm{~g}, 285 \mathrm{mmol}, 5.0$ equiv) and DMP ($36 \mathrm{~g}, 85 \mathrm{mmol}, 1.5$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3} /$ sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,200$
mL), the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$, the combined organic extracts were washed with $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude aldehyde so obtained (30) was carried on to the next step without further purification. To a stirred solution of alkyne 31 ($44 \mathrm{~g}, 142 \mathrm{mmol}, 2.5$ equiv) in THF (500 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, 22.8 mL , 57 mmol , 2.5 equiv), and the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred at 10 min . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$, and a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the crude aldehyde 30 in THF (90 mL) was added via cannula with stirring. The reaction mixture was warmed to $-50^{\circ} \mathrm{C}$ and stirred for 1.5 h before it was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$. The resulting biphasic mixture was extracted with EtOAc $(3 \times 300 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring propargylic alcohol 30a ($45 \mathrm{~g}, 49 \mathrm{mmol}, 86 \%$ yield over the two steps, ca. $7: 1 \mathrm{dr}$) as a colorless oil. 30a (major diastereomer): $R_{\mathrm{f}}=0.39$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-11.7$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.99\right)$; IR (film) $v_{\max } 3564,2946,2933,2858,1612,1587,1513,1463,1428,1389$, $1302,1249,1173,1112,1037,995,840,742,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74$ 7.69 (m, 4 H), 7.42-7.28 (m, 10 H$), 7.25-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.62(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=11.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,159.1,138.4,135.6,135.5,133.7,133.3,130.4,130.3,129.71,129.66$, $129.4,129.2,128.3,127.7,127.5,113.8,113.7,84.6,82.2,81.9,80.7,76.7,73.4,73.0,71.9$, $71.4,70.9,62.6,60.4,55.3,55.2,46.4,26.8,23.1,22.1,19.3,2.6$ ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 953.4450, found 953.4439.

D Ring diol 30b. To a stirred solution of D ring propargylic alcohol 30a (ca. 7:1 mix of
 diastereomers, $45 \mathrm{~g}, 49 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(500 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(34 \mathrm{~g}, 245 \mathrm{mmol}, 5.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then concentrated, and the resulting residue was purified by flash column chromatography (silica gel, hexanes:EtOAc $2: 1$) to provide D ring diol $\mathbf{3 0 b}(41 \mathrm{~g}, 48.5 \mathrm{mmol}$, 99% yield, ca. 7:1 dr) as a pale yellow oil. 30b (major diastereomer): $R_{\mathrm{f}}=0.32$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{32}=-8.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.14\right)$; IR (film) $v_{\max } 3531,2931,2857,1612$, $1586,1513,1463,1427,1359,1302,1247,1173,1111,1074,1035,822,742,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H})$, 6.89-6.85 (m, 4 H$), 4.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1$ H), $4.47(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dq}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.59-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=10.2,6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (ddd, $J=10.2,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (s, 1 H), $1.61(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.21,159.18,138.0,135.7,135.5,133.6,133.4,130.2,130.1,129.8,129.7,129.4$, $129.3,128.3,127.9,127.69,127.67,127.58,113.8,113.7,85.6,85.3,81.4,78.9,75.2,73.0,71.6$, 71.0, 70.7, 70.5, 69.9, 62.5, 61.9, 55.2, 44.2, 31.6, 26.8, 22.6, 19.3, 14.1 ppm; HRMS (ESITOF); calcd for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 881.4055, found 881.4047.

D Ring ynone 32. To a stirred solution of D ring diol 30 b ($41 \mathrm{~g}, 48.5 \mathrm{mmol}, 1.0$ equiv) in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added DMP ($30 \mathrm{~g}, 72 \mathrm{mmol}, 1.5$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then quenched with sat. aq. NaHCO_{3} :sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(1: 1,200 \mathrm{~mL})$ and stirred vigorously for 30 min . The biphasic mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica
gel, hexanes:EtOAc 4:1) yielded D ring ynone $32(38 \mathrm{~g}, 44 \mathrm{mmol}, 91 \%)$ as a pale yellow oil. 32: $R_{\mathrm{f}}=0.26$ (silica gel, hexanes:EtOAc 15:7); $[\alpha]_{\mathrm{D}}{ }^{32}=-32.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.89\right.$); IR (film) $v_{\text {max }}$ 3508, 2932, 2857, 2212, 1737, 1664, 1612, 1513, 1462, 1427, 1361, 1302, 1247, 1173, 1111, 1087, 1034, 822, 742, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.99-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.21$ (m, 8 H), 7.18-7.14 (m, 6 H), 7.09-7.06 (m, 1 H), 6.81-6.78 (m, 4 H$), 4.39(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1$ H), $3.64(\mathrm{~s}, 1 \mathrm{H}), 3.57$ (quin, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 2$ H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dt}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (s, 3 H), $1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=188.1$, 159.8, 159.7, 138.8, 136.3, $136.0,134.2,133.8,131.0,130.6,130.1,130.0,129.6,129.5,128.6,128.4,128.1,128.02$, $127.98,127.86,114.1,114.0,96.2,87.3,82.4,82.2,76.1,73.2,72.1,71.5,70.9,70.8,70.7,63.2$, 54.80, 54.77, 44.4, 27.0, 23.1, 22.8, 19.7 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}+$ Na^{+}]: 879.3899, found 879.3897.

DE Pyranone 33. To a stirred solution of D ring ynone 32 ($38 \mathrm{~g}, 44 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(880 \mathrm{~mL})$ at $-45^{\circ} \mathrm{C}$ was added $\operatorname{AgOTf}(10 \mathrm{~g}, 40 \mathrm{mmol}, 0.9$ equiv), and the reaction mixture was stirred at $-45^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$, the biphasic mixture was warmed to $25^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) gave DE pyranone 32 ($28 \mathrm{~g}, 33 \mathrm{mmol}, 76 \%$ yield) as a yellow oil. 32: $R_{\mathrm{f}}=0.46$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{32}=-7.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.14\right.$); IR (film) $v_{\max } 2932,2856,1692,1611,1513,1463,1427,1360,1302,1248,1112,1082,1033,904,822$, $742,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=8.14-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.52-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 12 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 4 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.50$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J$ $=11.4,9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (quin, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1$ H), 3.33-3.30 (m, 7 H), 3.16-3.14 (m, 1 H), 2.32-2.30 (m, 3H), $1.76(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27$ (s, 3 H), $1.20(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=187.7,169.1,159.94,159.90$, 139.1, $136.7,136.2,134.3,133.3,130.9,130.6,130.1,130.0,129.7,129.6,128.6,128.4,128.0,127.81$, $127.76,114.21,114.20,104.7,82.3,80.7,80.5,76.0,73.3,72.1,71.7,71.5,70.6,62.8,54.85$, 54.80, 42.8, 38.0, 27.1, 19.6, 16.0 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 857.4079, found 857.4085.

DE Allylic alcohol 33a. To a stirred solution of DE pyranone 33 ($27 \mathrm{~g}, 32 \mathrm{mmol}, 1.0$ equiv) in
 PhMe $(320 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$ was added (R)-CBS $(1.0 \mathrm{M}$ in $\mathrm{PhMe}, 48 \mathrm{~mL}$, $48 \mathrm{mmol}, 1.5$ equiv) followed by $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}$ in THF, $48 \mathrm{~mL}, 48$ $\mathrm{mmol}, 1.5$ equiv), and the reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was then quenched with MeOH $(160 \mathrm{~mL})$ followed by 1.0 M aq. $\mathrm{NaOH}(160 \mathrm{~mL})$, and the biphasic mixture was warmed to 25 ${ }^{\circ} \mathrm{C}$ and stirred vigorously for 30 min . The biphasic mixture was extracted with EtOAc (3×300 $\mathrm{mL})$, and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded DE allylic alcohol 33a ($25 \mathrm{~g}, 29 \mathrm{mmol}, 93 \%$ yield) as a colorless oil. 33a: $R_{\mathrm{f}}=0.35$ (silica gel, hexanes:EtOAc 15:7); $[\alpha]_{\mathrm{D}}{ }^{32}=+3.0\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.89\right)$; IR (film) $v_{\max } 3463,2932$, 2857, 1669, 1612, 1586, 1512, 1463, 1427, 1301, 1247, 1174, 1111, 1078, 1035, 980, 822, 740, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.17$ (m, 12 H$), 6.81-6.79(\mathrm{~m}, 4 \mathrm{H}), 4.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.96$ (m, 2 H), 3.81 (ddd, $J=10.8,9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.29(\mathrm{~m}, 7 \mathrm{H}), 3.25-$ $3.22(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1$
H), 1.18 ($\mathrm{s}, 9 \mathrm{H}$), 1.17 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=159.82,159.76,150.1$, $139.8,136.4,136.1,134.3,134.0,131.1,131.0,130.05,130.03,129.6,129.5,128.5,128.1$, $128.0,127.7,127.5,114.15,114.14,100.7,82.8,82.2,76.7,75.4,73.2,72.6,72.1,71.0,70.9$, 66.2, 63.3, 54.81, 54.80, 43.1, 37.2, 27.2, 19.6, 17.3 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 881.4055$, found 881.4045.

DE TBS-Protected allylic alcohol 33b. To a stirred solution of DE allylic alcohol 33a (25 g, 29
 $174 \mathrm{mmol}, 6.0$ equiv) and imidazole ($20 \mathrm{~g}, 290 \mathrm{mmol} 11$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave DE TBSprotected allylic alcohol 33b ($27 \mathrm{~g}, 28 \mathrm{mmol}, 98 \%$ yield) as a pale yellow oil. 33b: $R_{\mathrm{f}}=0.28$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_{\mathrm{D}}{ }^{32}=+24.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.81\right.$); IR (film) $v_{\max }$ 2931, 2856, $1671,1613,1513,1463,1428,1302,1248,1173,1082,1036,988,836,779,739,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.87-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.14$ (m, 12 H), 7.11$7.08(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (dd, $J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{ddd}, J=11.4,9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.51$ (m, 2 H), $3.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9$ H), $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=159.8$, 159.7, $149.5,139.9,136.3,136.1,134.2,133.9,131.12,131.10,130.03,129.99,129.5,129.3,128.5$, $128.13,128.11,127.7,127.5,114.13,114.07,102.2,82.7,82.3,76.8,75.8,73.2,72.6,72.3,71.2$, $70.7,67.5,63.4,54.82,54.80,43.2,37.3,27.2,26.3,19.7,18.6,17.3,-3.7,-4.3 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{9} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 995.4920, found 995.4907 .

DE Secondary alcohol 34. To a stirred solution of DE TBS-protected allylic alcohol 33b (24 g,

$25 \mathrm{mmol}, 1.0$ equiv) in THF (250 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0$ M in THF, $250 \mathrm{~mL}, 250 \mathrm{mmol}, 10.0$ equiv), and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then quenched by the slow addition of $1.0 \mathrm{M} \mathrm{NaOH}(500 \mathrm{~mL})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(120 \mathrm{~mL})$, and the biphasic mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred vigorously for 5 h . The biphasic mixture was then diluted with EtOAc (1000 mL), the layers were separated, and the organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(600 \mathrm{~mL})$ and brine $(600 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 7:3) gave DE secondary alcohol 34 ($13.3 \mathrm{~g}, 13.5 \mathrm{mmol}, 54 \%$ yield) as a colorless oil. 34 : $R_{\mathrm{f}}=0.41$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_{\mathrm{D}}{ }^{32}=+23.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.81\right)$; IR (film) $v_{\max } 3468,2930,2856,1612$, 1514, 1463, 1360, 1302, 1248, 1172, 1094, 837, 780, 740, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 12 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 4 \mathrm{H})$, $4.75(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1$ H), 4.04-3.98 (m, 2 H), 3.92-3.90(m, 2 H), 3.86-3.85 (m, 1 H$), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63$ (dd, $J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=9.6$, 8.4 Hz, 1 H), $2.93(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H})$, 1.59-1.55 (m, 1 H$), 1.49(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3$ H), $0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.1,139.0,135.8,135.7,133.5$, $133.3,130.5,130.3,129.61,129.59,129.2,129.1,128.2,127.8,127.6,127.5,127.4,113.73$, $113.71,82.9,81.8,74.7,74.0,73.2,72.98,72.97,72.3,70.8,70.7,68.8,62.3,55.27,55.25,43.6$, 36.0, 26.9, 25.9, 19.3, 18.3, 16.6, $-3.9,-4.8 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{58} \mathrm{H}_{78} \mathrm{O}_{10} \mathrm{Si}_{2}[\mathrm{M}$ $+\mathrm{Na}^{+}$]: 1013.5025, found 1013.5023.

DE Triol 34a. To a stirred solution of DE secondary alcohol ($557 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) at $25^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, $2.9 \mathrm{~mL}, 2.9 \mathrm{mmol}, 5.0$ equiv), and the reaction mixture was stirred at the same temperature for 16 h . The reaction mixture was then

quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the biphasic mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, EtOAc:MeOH 100:0 to 19:1) gave DE triol 34a ($370 \mathrm{mg}, 0.58 \mathrm{mmol}$, quant. yield) as a white foam. 34a: $R_{\mathrm{f}}=0.30$ (silica gel, EtOAc:MeOH 19:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+14.2$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.1\right)$; IR (film) $v_{\max } 3681,3396,2937,2866,2844,1612,1513,1455,1355,1302$, 1247, 1173, 1057, 1033, 819, 739, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.29(\mathrm{~m}, 4$ H), 7.26-7.24 (m, 3 H), 7.21-7.20 (m, 2 H), 6.87-6.86 (m, 4 H), 4.71 (d, J=11.4 Hz, 1 H), 4.53 $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-$ 3.83 (m, 3 H), $3.79-3.78$ (m, 7 H), 3.68 (dt, $J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{bs}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.44$ (m, 1 H), $1.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.3,159.1,138.6,130.3,129.8$, $129.4,129.3,128.3,127.9,127.5,113.8,113.7,82.3,82.1,76.8,76.3,74.7,73.0,72.9,72.4$, $72.2,71.9,70.6,69.5,62.7,55.2,43.3,36.1,16.8 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{10}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 661.2983$, found 661.2979.

DE Diol 35. To a stirred solution of DE diol 34a ($340 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ equiv) in PhMe (7
 $\mathrm{mL})$ at $25^{\circ} \mathrm{C}$ was added $n-\mathrm{Bu}_{2} \mathrm{SnO}(132 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was equipped with a condenser and Dean-Stark apparatus, heated to $110^{\circ} \mathrm{C}$, and stirred for 12 h . The reaction mixture was then cooled to $25^{\circ} \mathrm{C}$, at which point $\mathrm{BnBr}(95 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 1.5$ equiv) and $n-\mathrm{Bu}_{4} \mathrm{NI}(196 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ equiv) were added, and the reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 4.5 h . After cooling to $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc (25 mL) and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(\mathrm{mL})$, and brine $(10 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc $4: 1$ to 1:1) yielded DE diol 35 ($330 \mathrm{mg}, 0.45 \mathrm{mmol}, 85 \%$ yield) as a pale yellow oil. $35: R_{\mathrm{f}}=0.28$
(silica gel, hexanes:EtOAc 1:1); $[\alpha]_{\mathrm{D}}^{32}=-3.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.81\right.$); IR (film) $v_{\max } 3456,2926$, $2869,1612,1513,1455,1357,1302,1247,1173,1075,1033,820,738,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 4$ H), $4.90(\mathrm{~d}, ~ J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=$ $9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.45$ (m, 2 H), 3.32-3.29 (m, 2 H), 3.29 (s, 3 H), 3.27 ($\mathrm{s}, 3 \mathrm{H}$), 3.20 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40-2.35 (m, 2 H), $2.23(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{t}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=159.9,159.8,140.0$, 139.7, 131.1, 130.7, 129.6, 129.5, 128.7, 128.6, 128.1, 128.0, 127.8, 127.5, 114.2, 114.1, 84.1, 82.4, 80.6, 76.1, 75.2, 74.6, 73.9, 73.2, 73.1, 72.6, 71.8, 70.6, 69.7, 62.9, 54.80, 54.78, 44.1, 36.8, 17.0 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 751.3452$, found 751.3442 .

DE Iodide 35a. To a stirred solution of DE diol 35 ($178 \mathrm{mg}, 0.244 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(7 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $\mathrm{TsCl}\left(140 \mathrm{mg}, 0.73 \mathrm{mmol}, 3.0\right.$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($203 \mu \mathrm{~L}, 1.46 \mathrm{mmol}, 6.0$ equiv), and DMAP ($3 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.1$ equiv), and the reaction mixture was heated to $45^{\circ} \mathrm{C}$ and stirred for 20 h . After cooling to $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3},(10 \mathrm{~mL})$, the resulting biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The mixture was passed through a plug of silica gel, eluting with $3: 2$ hexanes:EtOAc to yield the partially pure primary tosylate, which was carried forward without further purification. To a stirred solution of the so obtained primary tosylate in DME (10 mL) at $25^{\circ} \mathrm{C}$ was added $\mathrm{NaI}(366 \mathrm{mg}, 2.44 \mathrm{mmol}, 10.0$ equiv), and the reaction mixture was heated to $85^{\circ} \mathrm{C}$ and stirred in the dark for 7 h . After cooling to $25^{\circ} \mathrm{C}$, the reaction mixture was diluted in EtOAc (30 mL), washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) gave DE iodide 35a ($182 \mathrm{mg}, 0.217 \mathrm{mmol}, 89 \%$ yield over the two steps) as
a colorless oil. 35a: $R_{\mathrm{f}}=0.26$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_{\mathrm{D}}{ }^{32}=-11.6\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=0.93\right.$); IR (film) $v_{\max } 3443,2931,2906,2868,1612,1513,1454,1357,1302,1247,1210,1173,1075$, 1029, 820, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 6$ H), 7.12-7.09 (m, 4 H), 6.79-6.77 (m, 4 H), $5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1$ H), 4.71 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ $(\mathrm{dt}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.32-3.27(\mathrm{~m}, 9 \mathrm{H}), 3.19(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=10.8,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=8.4,5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=14.4,10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J$ $=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.8,9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=160.0$, 159.7, 140.0, 139.9, 131.1, 130.4, 129.7, 129.5, 128.7, 128.5, 128.4, 128.2, 127.84, 127.77, 127.5, 114.2, 114.1, 84.5, 80.3, 79.8, 75.9, 75.3, 75.1, 74.6, 73.9, 73.2, 73.1, 72.6, 70.6, 69.6, 54.82, 54.80, 43.7, 36.8, 17.2, 8.2 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{IO}_{9}\left[\mathrm{M}+\mathrm{Cl}^{-}\right]: 873.2272$, found 873.2236.

DE Enol ether 8. To a solution of DE iodide 35 ($163 \mathrm{mg}, 0.194 \mathrm{mmol}, 1.0$ equiv) in THF (15
 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{KOt}-\mathrm{Bu}(261 \mathrm{mg}, 2.33 \mathrm{mmol}, 12$ equiv), and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 16 h . $\mathrm{NaH}(60 \%$ suspension in mineral oil, $77 \mathrm{mg}, 1.94 \mathrm{mmol}, 10.0$ equiv), $\mathrm{PMBCl}(99 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$, 5.0 equiv), and $n-\mathrm{Bu}_{4} \mathrm{NI}$ ($36 \mathrm{mg}, 0.097 \mathrm{mmol}, 0.5$ equiv) were sequentially added to the reaction mixture, and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 36 h . The reaction mixture was quenched by slow sequential addition of $\mathrm{MeOH}(400 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(20$ mL), the biphasic mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, and the combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) gave DE enol ether 8 ($140 \mathrm{mg}, 0.168$ $\mathrm{mmol}, 88 \%$ yield) as a colorless oil. 8: $R_{\mathrm{f}}=0.33$ (silica gel, hexanes: EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+15.2$ $\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=0.91\right) ;$ IR (film) $v_{\max } 2933,2906,2865,1612,1513,1455,1302,1247,1173,1082$,

1035, 821, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 2$ H), 7.23-7.17 (m, 10 H$), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 6 \mathrm{H}), 5.18(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.6,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}, 1$ H), $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28 (ddd, $J=13.8,10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=13.2,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.55$ (ddd, $J=13.2,10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=159.8,159.73,159.68,140.1,139.9,131.4,131.2,130.8,129.8,129.7,129.4,128.55$, $128.52,128.2,127.8,127.6,127.5,114.2,114.1,114.0,92.6,82.8,81.8,81.2,75.20,75.15,75.0$, 73.9, 73.8, 73.2, 73.0, 72.6, 69.8, 69.5, 54.79, 54.75, 44.9, 36.3, 18.7 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{51} \mathrm{H}_{58} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 853.3922, found 853.3929.

ABDE Enol ether 36. To a stirred solution of AB lactone 21 ($410 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.0$ equiv) in
 THF:HMPA (10:1, 66 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}(1.35 \mathrm{~mL}, 6.48 \mathrm{mmol}, 10.0$ equiv) followed by KHMDS (0.5 M in $\mathrm{PhMe}, 3.86 \mathrm{~mL}, 1.93 \mathrm{mmol}, 3.0$ equiv), and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then quenched with 10% aq. $\mathrm{NH}_{4} \mathrm{OH}(50 \mathrm{~mL})$, warmed to $25^{\circ} \mathrm{C}$, and stirred vigorously for 30 min . The biphasic mixture was diluted in EtOAc (125 mL), the layers were separated, and the organic layer was washed with brine $(75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes: $\mathrm{EtOAc}_{\mathrm{E}} \mathrm{Et}_{3} \mathrm{~N}$ 85:15:2) gave ketene acetal phosphate 7 (546 $\mathrm{mg}, 0.63 \mathrm{mmol}, 97 \%$ yield), which was immediately carried on to the next step. To a stirred solution of enol ether $8\left(647 \mathrm{mg}, 0.78 \mathrm{mmol}, 1.5\right.$ equiv) in THF $(8 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added 9BBN (0.5 M in THF, $4.67 \mathrm{~mL}, 2.34 \mathrm{mmol}, 4.5$ equiv) and the reaction mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for $4 \mathrm{~h} . \quad 0.5 \mathrm{M}$ aq. $\mathrm{KHCO}_{3}(14.0 \mathrm{~mL}, 7.02 \mathrm{mmol}, 13.5$ equiv) was added to the reaction
mixture, and the biphasic mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 20 min . After a solution of ketene acetal phosphate $7(451 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) was added to this mixture via cannula, SPhos ($64 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.3$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 0.08 \mathrm{mmol}$, 0.15 equiv) were added, and the biphasic mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 72 h . The resulting mixture was then diluted with brine $(20 \mathrm{~mL})$, extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting residue was taken up in THF (65 mL) and cooled to $0^{\circ} \mathrm{C}$ before 3.0 M aq . $\mathrm{NaOH}(9 \mathrm{~mL})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(4.5$ mL) were added. The biphasic mixture was stirred vigorously at $0^{\circ} \mathrm{C}$ for 30 min and then diluted in EtOAc (125 mL). The layers were separated, and the organic phase was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc: $\mathrm{Et}_{3} \mathrm{~N} 45: 5: 1$ to 40:10:1) yielded ABDE enol ether 36 ($675 \mathrm{mg}, 0.47 \mathrm{mmol}, 90 \%$ yield) as a colorless oil. 36: $R_{\mathrm{f}}=0.21$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-56.1\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=0.57\right)$; IR (film) $v_{\max } 3032,2936,2911,2868,1612,1513,1454$, 1350, 1302, 1247, 1172, 1077, 1029, 819, 735, 697, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ 7.79-7.59 (m, 4 H), 7.45-7.44 (m, 2 H), 7.36-7.34 m, 2 H), 7.29-7.27 (m, 6 H), 7.24-7.16 (m, $13 \mathrm{H}), 7.13-7.05$ (m, 9 H$), 6.78-6.75$ (m, 6 H$), 5.34$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1$ H), $5.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1$ H), $4.56(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.33(\mathrm{~m}, 7 \mathrm{H}), 4.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=$ $10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (s, 3 H), 3.16 (dd, $J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64-2.59 (m, 1 H), 2.38$2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=14.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{quin}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=14.4$ Hz, 1 H), 1.76 (t, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (ddd, $J=13.2,10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.15 (s, 3 H), 0.99 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=159.9,159.71,159.69,155.8,140.18$, $140.15,140.11,139.9,139.7,139.0,131.5,131.2,130.7,129.9,129.8,129.4,129.0,128.8$,
$128.7,128.6,128.54,128.52,128.4,128.1,128.0,127.9,127.80,127.75,127.68,127.6,127.5$, $127.43,127.42,114.2,114.1,114.0,106.4,85.9,82.9,80.9,79.5,78.5,76.7,76.3,76.2,75.6$, $75.5,75.4,75.13,75.11,75.9,74.1,73.6,73.5,73.2,73.0,72.9,72.7,72.0,70.7,70.5,69.2$, 54.78, 54.76, 44.6, 39.7, 36.6, 33.5, 27.1, 17.3, 10.4 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{91} \mathrm{H}_{102} \mathrm{O}_{16}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 1473.7060$, found 1473.7052 .

ABDE Secondary alcohol 36a. To a stirred solution of ABDE enol ether 36 ($675 \mathrm{mg}, 0.47$
 mmol, 1.0 equiv) in THF (30 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}$ in THF, $4.7 \mathrm{~mL}, 4.7 \mathrm{mmol}, 10.0$ equiv), and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then quenched by slow addition of 1.0 M aq. $\mathrm{NaOH}(15 \mathrm{~mL})$ and 35% $\mathrm{H}_{2} \mathrm{O}_{2}(2.5 \mathrm{~mL})$, and the resulting biphasic mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred vigorously for 6 h . The resulting mixture was then diluted with EtOAc (60 mL), the layers were separated, and the organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexane:EtOAc 4:1 to 3:2) gave ABDE secondary alcohol $\mathbf{3 6 a}$ ($476 \mathrm{mg}, 0.32 \mathrm{mmol}, 70 \%$ yield) as a white foam and its diastereomer 36b ($105 \mathrm{mg}, 0.07 \mathrm{mmol}, 15 \%$ yield). 36a: $R_{\mathrm{f}}=0.29$ (silica gel, hexanes:EtOAc $17: 3) ;[\alpha]_{\mathrm{D}}^{32}=-10.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.82\right)$; IR (film) $v_{\text {max }} 3529,2930,2906,2875,1612,1513$, 1454, 1302, 1248, 1075, 1030, 821, 736, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.59-7.44$ (m, 6 H), 7.31-7.18 (m, 20 H$), 7.13-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 6 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1$ H), $5.10(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.85(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-$ $4.14(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J$ $=9.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.47$ (m, 2 H), 3.44-3.38(m, 2H), $3.33(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, $3.19(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=13.8$,
$4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26$ (quin, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=15.0,7.8,1.2 \mathrm{~Hz}, 1$ H), $1.71(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=159.8,159.72,159.71,140.2,140.1,139.9,139.6,139.4,139.0$, $131.3,131.2,130.8,129.95,129.87,129.4,128.8,128.65,128.60,128.55,128.53,128.18$, 128.17, 128.14, 128.01, 127.98, 127.87, 127.85, 127.80, 127.6, 127.53, 127.51, 127.49, 114.15, $114.12,114.0,85.1,84.8,81.3,80.6,79.3,79.0,78.9,77.3,76.5,75.5,75.4,75.3,75.1,74.8$, $74.4,74.3,74.1,74.0,73.5,73.2,73.0,72.9,72.7,70.7,70.4,69.3,54.78,54.75,44.7,40.9,36.7$, 34.6, 33.4, 17.2, 10.5 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{91} \mathrm{H}_{104} \mathrm{O}_{17}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 1491.7165, found 1491.7161 .

ABDE Ketone 37 from oxidation of alcohol 36a. To a stirred solution of ABDE secondary
 alcohol 36a ($476 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DMP ($551 \mathrm{mg}, 1.30 \mathrm{mmol}$, 4.0 equiv), and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:sat. aq. NaHCO_{3} (1:1, 20 mL), the resulting biphasic mixture was stirred vigorously for 30 min and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) gave ABDE ketone 37 (461 mg , $0.31 \mathrm{mmol}, 97 \%$ yield) as a colorless oil. 37: $R_{\mathrm{f}}=0.34$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_{\mathrm{D}}{ }^{32}=$ $-2.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.47\right)$; IR (film) $v_{\max } 2932,2865,1715,1612,1513,1454,1302,1248,1078$, 1033, 820, 736, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.61-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4$ H), 7.37-7.30 (m, 6 H), 7.25-7.16 (m, 13 H), 7.15-7.02 (m, 11 H), 6.79-6.70 (m, 6 H), 5.06 (d, J $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.84(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ $(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1$ H), 4.19-4.14 (m, 2 H), 4.11-4.08 (m, 2 H), $4.01(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=9.0,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=$
9.6, 1.8 Hz, 1 H), $3.51(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 2 \mathrm{H})$, $3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=211.6,159.9$, 159.75, $159.74,140.2,140.1,140.0,139.6,139.3,139.0,131.2,131.1,130.5,130.2,129.9,129.4,128.7$, $128.61,128.58,128.57,128.56,128.55,128.19,128.18,128.14,128.0,127.9,127.84,127.77$, 127.7, 127.6, 127.5, 127.4, 114.2, 114.1, 114.0, 84.5, 84.2, 83.6, 81.0, 78.6, 78.4, 78.0, 77.3, $76.5,75.4,75.3,75.1,74.8,74.3,74.1,73.9,73.8,73.6,73.2,73.04,72.95,72.7,72.3,70.8,70.5$, 69.3, 54.8, 54.7, 44.6, 43.4, 37.9, 36.7, 33.4, 17.2, $10.4 \mathrm{ppm} ;$ HRMS (ESI-TOF); calcd for $\mathrm{C}_{91} \mathrm{H}_{102} \mathrm{O}_{17}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 1489.7009$, found 1489.6981 .

ABDE Ketone 37 from oxidation/isomerization of alcohol 36b. To a stirred solution of ABDE secondary alcohol diastereomer $\mathbf{3 6 b}$ ($105 \mathrm{mg}, 0.071 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DMP ($121 \mathrm{mg}, 0.29 \mathrm{mmol}, 4.0$ equiv), and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:sat. aq. $\mathrm{NaHCO}_{3}(1: 1,5 \mathrm{~mL})$, the resulting biphasic mixture was stirred vigorously for 30 min and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) gave ABDE ketone diastereomer C_{23}-ent- 37 ($88 \mathrm{mg}, 0.06 \mathrm{mmol}, 84 \%$ yield). To a stirred solution of ABDE ketone diastereomer C_{23}-ent- 37 ($88 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added imidazole ($817 \mathrm{mg}, 12 \mathrm{mmol}, 200$ equiv), and the reaction mixture was heated to $105^{\circ} \mathrm{C}$ and stirred for 120 h . The reaction mixture was then cooled to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Preparative-plate chromatography (silica gel, hexanes:EtOAc 3:1) yielded ABDE ketone 37 ($59 \mathrm{mg}, 0.04 \mathrm{mmol}$, 67% yield) along with recovered ketone diastereomer C_{23}-ent- 37 ($21 \mathrm{mg}, 0.014 \mathrm{mmol}, 24 \%$ yield).

ABCDE S,O-Acetal 38. To a stirred solution of ABDE ketone $37(427 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\operatorname{EtSH}(5: 1,30 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added
 $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($529 \mathrm{mg}, 1.45 \mathrm{mmol}$, 5.0 equiv), and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 20 h . The resulting mixture was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(2$ mL), and concentrated to afford the corresponding S, O-acetal diol, which was carried on crude. To a stirred solution of the crude diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}) 25^{\circ} \mathrm{C}$ were added imidazole (396 mg , 5.82 mmol , 20 equiv) and $\mathrm{TESCl}(488 \mu \mathrm{~L}, 2.91 \mathrm{mmol}, 10.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, the resulting biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 97:3 to 9:1) gave ABCDE S,O-acetal 38 ($367 \mathrm{mg}, 0.27 \mathrm{mmol}, 91 \%$ yield over the two steps) as a pale yellow oil. 38: $R_{\mathrm{f}}=0.35$ (silica gel, hexanes:EtOAc 9:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+40.4$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.74\right)$; IR (film) $v_{\max } 2946,2911,2875,1454,1249,1085,1028,840,734,697 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.66-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.27 (m, 4 H), 7.24-7.17 (m, 10 H), 7.13-7.02 (m, 8 H$), 5.30(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1$ H), $4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.34$ (m, 4 H), $4.32(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10 (dt, $J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.74(\mathrm{~m}$, $3 \mathrm{H}), 3.64(\mathrm{dd}, J=9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}$, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=12.0,9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59$ (m, 1 H), 2.47-2.40 (m, 2 H), 2.37 (dd, $J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{dt}, J=$ $9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.80-$ $0.73(\mathrm{~m}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=140.3,140.2$, $140.04,140.01,140.00,139.6,139.5,138.8,128.69,128.65,128.54,128.50,128.48,128.45$,
$128.2,128.1,128.01,127.98,127.9,127.8,127.54,127.52,127.50,127.4,93.5,85.6,80.6,78.6$, $78.3,77.4,76.83,76.76,76.6,76.2,76.0,75.0,74.8,74.7,74.6,73.8,73.6,73.5,73.3,73.0,72.7$, $70.8,70.55,70.47,69.0,66.2,44.9,43.91,43.88,35.1,33.4,19.8,17.4,14.5,10.4,7.4,7.17$, $7.15,5.8,4.88,4.87,1.0 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{81} \mathrm{H}_{110} \mathrm{O}_{13} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$ 1401.7097, found 1407.7089.

ABCDE Pentacycle 39. To a stirred solution of ABCDE S, O-acetal 38 ($361 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dry m-CPBA ($180 \mathrm{mg}, 0.73 \mathrm{mmol}, 2.5$ equiv) as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{AlMe}_{3}(2.0 \mathrm{M}$ in hexanes, $729 \mu \mathrm{~L}, 1.46 \mathrm{mmol}$, 5.0 equiv) was subsequently added, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 30 min . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, the resulting biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 25 \mathrm{~mL})$, and the combined organic layers were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded ABCDE pentacycle 39 (327 $\mathrm{mg}, 0.25 \mathrm{mmol}, 94 \%$ yield) as a white foam. 39: $R_{\mathrm{f}}=0.24$ (silica gel, hexanes:EtOAc 9:1); $[\alpha]_{\mathrm{D}}^{32}=+24.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.79\right)$; IR (film) $v_{\max } 3030,2952,2906,2875,1496,1454,1083$, 1028, 733, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.52-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.39(m, 2 H), 7.29-7.27 (m, 4 H), 7.24-7.18 (m, 9 H$), 7.13-7.02(\mathrm{~m}, 9 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.73 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1$ H), 4.27 (dd, $J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dt}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-$ 3.94 (m, 1 H), 3.77-3.71 (m, 4 H), 3.65-3.61 (m, 2 H), 3.60 (dd, $J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (dd, $J=9.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=11.4,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dd, $J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=12.0,9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-$
$2.58(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=13.8,10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=15.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.12$ (m, 2 H$), 1.80-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{dd}, J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.07$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.71(\mathrm{~m}, 6 \mathrm{H}), 0.63$ (q, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=140.17$, 140.16, 140.1, 139.7, 139.5, $138.8,128.7,128.6,128.54,128.51,128.48,128.46,128.14,128.10,128.02,128.01,127.98$, $127.84,127.78,127.7,127.59,127.56,127.52,127.4,86.0,80.9,79.7,79.1,78.6,77.5,77.1$, $76.9,76.6,79.2,75.72,75.67,74.9,74.6,73.6,73.49,73.48,73.47,73.0,72.8,72.6,70.7,69.0$, 66.1, 44.7, 44.6, 36.8, 34.2, 33.4, 21.0, 17.5, 10.3, 7.4, 7.2, 5.8, 4.9 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{80} \mathrm{H}_{108} \mathrm{O}_{13} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 1355.7220$, found 1355.7216 .

ABCDE Primary alcohol 39a. To a stirred solution of ABCDE pentacycle $39(159 \mathrm{mg}, 0.119$
 mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(10: 1,6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added PPTS ($15 \mathrm{mg}, 0.060 \mathrm{mmol}, 0.5$ equiv), and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}(500 \mu \mathrm{~L})$, concentrated, and purified by flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 3:1) to yield ABCDE primary alcohol 39a ($128 \mathrm{mg}, 0.105 \mathrm{mmol}, 88 \%$ yield) as a white foam. 39a: $R_{\mathrm{f}}=0.31$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+15.1\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=0.88\right)$; IR (film) $v_{\max } 3463,2946,2916,2875,1496,1454,1375$, 1346, 1084, 1067, 1032, 828, 734, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta=7.53-7.49(\mathrm{~m}, 4$ H), 7.41-7.39 (m, 2 H), 7.33-7.32 (m, 2 H), 7.33-7.27 (m, 4 H), 7.24-7.17 (m, 9 H), 7.13-7.02 (m, 9 H$), 5.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.43$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .4 .40(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=11.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2$ H), 3.27 (sext, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 3 \mathrm{H})$, 3.35 (ddd, $J=13.8,10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94 (ddd, $J=12.6,7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$
(dd, $J=16.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt} J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=14.4$, $10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.78-0.68(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=140.2$, 140.1, 139.7, 139.6, 139.5, $138.8,128.69,128.66,128.61,128.59,128.52,128.49,128.48,128.1,128.03,127.98,127.84$, $127.77,127.74,127.43,127.60,127.56,127.53,127.50,85.7,80.7,79.6,79.0,78.6,77.2,77.1$, $76.9,76.2,75.7,74.9,74.6,73.7,73.6,73.5,73.0,72.9,71.9,71.2,70.7,69.0,64.9,44.7,44.6$, 36.2, 34.2, 33.4, 21.1, 17.4, 10.3, 7.4, 5.8 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{74} \mathrm{H}_{94} \mathrm{O}_{13} \mathrm{Si}[\mathrm{M}+$ H^{+}]: 1219.6536, found 1219.6538 .

ABCDE Ketophosphonate 6. To a stirred solution of ABCDE primary alcohol 40a (127 mg,
 $0.104 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeCN}(9: 1,5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added flame-dried $4 \AA$ molecular sieves (300 mg), NMO ($37 \mathrm{mg}, 0.312 \mathrm{mmol}, 3$ equiv), and TPAP ($3.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then diluted in hexanes (4 mL), and Celite ${ }^{\mathrm{TM}}(500 \mathrm{mg})$ was added. This homogenous mixture was loaded directly onto a short plug of silica gel eluted with hexanes: $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ to afford the partially purified aldehyde $41(99 \mathrm{mg}, 0.0813 \mathrm{mmol}, 78 \%$ yield), which was carried on to the next step without further purification. To a stirred mixture of $(\mathrm{PhO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{3}\left(43 \mu \mathrm{~L}, 0.407 \mathrm{mmol}, 5.0\right.$ equiv) in THF $(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added n - BuLi (2.5 M in hexanes, $163 \mu \mathrm{~L}, 0.407 \mathrm{mmol}, 5.0$ equiv), and the resulting mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h . To this reaction mixture was added a solution of aldehyde 41 in THF (2 mL) at -78 ${ }^{\circ} \mathrm{C}$ via cannula, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 2.5 h . The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, the resulting biphasic mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude secondary alcohol was carried on to the next step without further purification. To a stirred solution of the crude secondary alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was
added DMP ($103 \mathrm{mg}, 0.244 \mathrm{mmol}, 3.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . The resulting mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:sat. aq. $\mathrm{NaHCO}_{3}(1: 1,5 \mathrm{~mL})$, and the biphasic mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 30 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3 to 1:1) gave ABCDE ketophosphonate $6(72 \mathrm{mg}, 0.054 \mathrm{mmol}, 66 \%$ yield) as a white foam along with recovered aldehyde $41\left(17 \mathrm{mg}, 0.014 \mathrm{mmol}, 17 \%\right.$ yield). 6: $R_{\mathrm{f}}=0.35$ (silica gel, hexanes:EtOAc $1: 1) ;[\alpha]_{\mathrm{D}}{ }^{32}=+23.2\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{c}=0.73\right)$; IR (film) $v_{\max } 2946,2901,2875,1723,1496,1454,1378$, 1340, 1261, 1082, 1069, 1028, 828, 736, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta=7.52-7.49$ (m, 4 H), 7.41-7.38 (m, 4 H), 7.29-7.27 (m, 4 H), 7.23-7.18 (m, 8 H), 7.15-7.05 (m, 10 H), 5.25 $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.41$ (m, 2 H), 4.40-4.36(m, 3H), 4.35 (dd, $J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17-4.14 (m, 2 H), $9.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.41$ (d, $J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ H), $3.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=12.6,8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.64-2.58 (m, 1 H), $2.46(\mathrm{dd}, J=12.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=15.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J$ $=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=13.8,10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{q}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9$ H), $1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.66(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=203.9$, 203.8, 140.2, 140.0, 139.7, 139.5, 138.8, 138.4, 128.69, 128.66, 128.62, 128.52, 128.48, 128.47, $128.45,128.14,128.10,128.02,127.99,127.93,127.84,127.75,127.60,127.54,127.53,127.50$, 85.6, 82.2, 82.1, 80.7, 79.7, 79.1, 78.6, 77.1, 76.9, 76.2, 75.7, 74.9, 74.5, 73.7, 73.6, 73.5, 73.0, $72.91,72.86,70.7,70.3,69.0,52.50,52.46,42.43,42.39,44.7,44.3,36.8,35.93,35.89,35.0$, 34.1, 33.4, 32.0, 21.1, 17.2, 10.3, 7.4, 5.7 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{77} \mathrm{H}_{99} \mathrm{O}_{16} \mathrm{PSi}[\mathrm{M}+$ H^{+}]: 1339.6512, found 1339.6481 .

Scheme S1. Furan-based Synthesis of G Ring Aldehyde 5.

Furyl ketone S-2. To a stirred solution of TBDPS-protected furfuryl alcohol 22 ($942 \mathrm{mg}, 2.78$ Bnotbdas mmol, 2.5 equiv) in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.74 \mathrm{~mL}, 2.78 \mathrm{mmol}, 2.5$ equiv), and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of Weinreb's amide $\mathbf{S - 1}{ }^{5}$ (250 $\mathrm{mg}, 1.12 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was subsequently added, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 75 min . The resulting mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, the biphasic mixture was extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3) gave furyl ketone S-2 ($547 \mathrm{mg}, 1.10 \mathrm{mmol}, 98 \%$ yield) as a yellow oil. S-2: $R_{\mathrm{f}}=0.20$ (silica gel, hexanes:EtOAc 9:1); IR (film) $v_{\max } 3070,2930,2858,1674,1588,1520,1472,1428$, $1364,1200,1111,1026,1015,823,737,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.68$ (m, 4 H$), 7.45-7.31(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=187.0,159.0,152.0,138.1,135.5,132.8,129.9,128.3,127.8,127.63$,
127.57, 118.4, 109.4, 73.2, 65.3, 59.2, 38.7, 26.7, 19.2 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 499.2299$, found 499.2296 .

Secondary alcohol S-3. To a solution of ketone S-2 (10.4 g, $20.9 \mathrm{mmol}, 1.0$ equiv) in sno $\mathrm{mmol}, 10.0$ equiv), $n-\mathrm{Bu}_{4} \mathrm{NCl}(1.74 \mathrm{~g}, 6.27 \mathrm{mmol}, 0.3$ equiv) and cat. ent-13 ($262 \mathrm{mg}, 0.42 \mathrm{mmol}$. 0.02 equiv), and the biphasic mixture was stirred vigorously at 25 ${ }^{\circ} \mathrm{C}$ for 24 h . The mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ mL), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) provided secondary alcohol S-3 [10.5 g, 20.9 mmol, quant. yield, $\geq 95 \%$ ee (based on ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding Naproxen ${ }^{\circledR}$ ester)] as a pale yellow oil. S-2: $R_{\mathrm{f}}=0.31$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-$ $10.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.88\right)$; IR (film) $v_{\max } 3428,3070,2930,2858,1472,1454,1427,1362,1110$, 1073, 1016, 941, 823, 791, 738, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.68(\mathrm{~m}, 4 \mathrm{H})$, 7.44-7.28 (m, 11 H$), 6.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1$ H), $4.63(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.66-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.9,153.3,137.9,135.6,133.4,129.7,128.4,127.73,127.67,127.63$, 107.9, 106.3, 73.3, 68.0, 66.9, 58.9, 35.1, 26.8, 19.2 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 523.2275$, found 523.2280.

G Ring enone S-4. To a stirred solution of secondary alcohol S-3 ($1.50 \mathrm{~g}, 3.00 \mathrm{mmol} 1.0$ equiv)
 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added dry m-CPBA ($671 \mathrm{mg}, 3.89 \mathrm{mmol}$, 1.3 equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then quenched with $\mathrm{Me}_{2} \mathrm{~S}(290 \mu \mathrm{~L}, 3.89 \mathrm{mmol}, 1.3$ equiv) followed by sat. aq. $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL), and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting hemiketal was taken on to the next step
without further purification. To a stirred solution of the crude hemiketal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{SiH}\left(958 \mu \mathrm{~L}, 6.0 \mathrm{mmol}, 2\right.$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(942 \mu \mathrm{~L}, 7.5 \mathrm{mmol}, 2.5$ equiv), and the resulting mixture was warmed to $-45{ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . The reaction mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3) gave G ring enone S-4 ($1.19 \mathrm{~g}, 2.38 \mathrm{mmol}, 79 \%$ yield) as a pale yellow oil. $\mathrm{S}-4: R_{\mathrm{f}}=0.35$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_{\mathrm{D}}{ }^{32}=-50.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.20\right)$; IR (film) $v_{\max } 3070,2930,2857,1693$, $1472,1428,1390,1361,1315,1202,1112,823,739,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.69-7.67 (m, 4 H), 7.45-7.38 (m, 6 H), 7.31-7.24 (m, 5 H), 7.18 (d, J = $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.17 (dd, $J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{dt}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 1$ H), 3.66-3.59 (m, 2 H$), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=196.5,148.9,138.5,135.6,135.5,133.1,133.0,129.84,129.83,128.3$, $127.75,127.72,127.6,127.5,127.4,77.1,74.7,72.7,65.7,65.2,30.0,26.8,19.3 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 501.2455, found 501.2456.

G Ring allylic alcohol S-5. To a stirred solution of G ring enone S-4 (1.48 g, $2.96 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,6 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ were sequentially added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($551 \mathrm{mg}, 1.48 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{NaBH}_{4}(112 \mathrm{mg}, 2.96$ $\mathrm{mmol}, 1.0$ equiv), and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 10 min . The mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the biphasic mixture was acidified to $\mathrm{pH}=5$ with 1.0 M aq. HCl and then extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) gave G ring allylic alcohol S-5 ($1.47 \mathrm{~g}, 2.92 \mathrm{mmol}, 99 \%$ yield) as a colorless oil. S-5: $R_{\mathrm{f}}=0.36$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-50.0\left(\mathrm{CHCl}_{3}, c=1.00\right)$; IR (film) $v_{\max } 3410,2930,2858,1472$,
$1428,1362,1216,1112,823,754,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74-7.62(\mathrm{~m}, 4$ H), 7.47-7.28 (m, 11 H$), 5.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{dd}, J=$ $7.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 (ddd, $J=14.4,8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94-1.85 (m, 1 H), 1.06 (s, 9 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.9,136.0,133.96,133.94,130.2,130.0,128.87,128.85$, $128.24,128.20,127.96,127.96,127.95,78.2,77.6,77.4,77.2,75.8,73.6,68.6,67.9,66.7,34.8$, 27.2, 19.7 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 525.2431, found 525.2436.

G Ring diol S-6. To a stirred solution of G ring allylic alcohol S-5 (12.0 g, $23.8 \mathrm{mmol}, 1.0$
 equiv) in THF (170 mL) at $-78{ }^{\circ} \mathrm{C}$ was added LiDBB (1.0 M in THF, 47.6 $\mathrm{mL}, 47.6 \mathrm{mmol}, 2.0$ equiv), and the reaction mixture was warmed to -50 ${ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . The reaction mixture was then quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$, the biphasic mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1 to 1:4) gave G ring diol S-6 ($9.4 \mathrm{~g}, 22.7 \mathrm{mmol}, 96 \%$) as a colorless oil. S-6: $R_{\mathrm{f}}=0.36$ (silica gel, hexanes:EtOAc 1:3); $[\alpha]_{\mathrm{D}}^{32}=-19.8\left(\mathrm{CHCl}_{3}, c=1.00\right)$; IR (film) $v_{\max } 3341$, 3071, 2929, 2857, 1589, 1472, 1427, 1390, 1361, 1262, 1183, 1111, 1063, 939, 823, 739, 701 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67(\mathrm{ddd}, J=5.4,2.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 6 \mathrm{H})$, $5.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.79(\mathrm{~m}, 2 \mathrm{H})$, 3.68 (ddd, $J=10.4,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=10.4,5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=136.0,130.2,130.06,130.05,129.0,128.0,80.1,77.6,77.4,77.2,75.8,68.3,66.61,61.62$, 35.6, 27.1, 19.6 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 435.1962, found 435.1960 .

G Ring pivaloate S-7. To a stirred solution of G ring diol S-6 ($2.0 \mathrm{~g}, 4.85 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added 2,4,6-collidine ($2.15 \mathrm{~mL}, 19.0 \mathrm{mmol}, 4.0$ equiv) and PivCl ($1.41 \mathrm{~mL}, 12.0 \mathrm{mmol}, 2.5$ equiv), and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 40 h . The
mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the resulting

S-7 biphasic mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with sat. aq. $\mathrm{CuSO}_{4}(2 \times 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting crude primary pivaloate was carried on to the next step without further purification. To a solution of crude pivaloate in THF $(75 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, $19.0 \mathrm{~mL}, 19.0 \mathrm{mmol}, 4.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$, the resulting biphasic mixture was extracted with EtOAc $(3 \times 40$ mL), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:3) gave pivaloate G ring S-7 ($990 \mathrm{mg}, 3.83 \mathrm{mmol}$, 79% over the two steps) as a colorless oil. S-7: $R_{\mathrm{f}}=0.21$ (silica gel, hexanes:EtOAc 2:3); $[\alpha]_{\mathrm{D}}{ }^{32}$ $=-64.0\left(\mathrm{CHCl}_{3}, c=1.00\right)$; IR (film) $v_{\max } 3311,2960,1728,1480,1428,1286,1162,1112,757$, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.89(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1$ H), 4.33-4.18 (m, 3 H), $3.98(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.33$ (m, 1 H), 2.30-2.19 (m, 1 H$), 1.99(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ H), $1.65(\mathrm{~s}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.0,131.6,128.5,77.6$, 77.4, 77.2, 76.5, 75.9, 68.1, 65.5, 61.3, 39.1, 32.2, 27.6 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 281.1359$, found 281.1359.

G Ring bis-benzyl ether S-8. To a stirred solution of pivaloate S-7 (600 mg, $2.55 \mathrm{mmol}, 1.0$
 equiv) in cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1,75 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{BnOC}(\mathrm{NH}) \mathrm{CCl}_{3}(5.15 \mathrm{~g}, 20.4 \mathrm{mmol}, 8.0$ equiv) and $\mathrm{TfOH}(45 \mu \mathrm{~L}, 0.51$ mmol, 0.2 equiv), and the resulting mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 1.5 h . The mixture was then filtered through a cotton plug and subsequently quenched with $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine $(75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) provided G ring bis-benzyl ether S-8
$\left(1.12 \mathrm{~g}, 2.55 \mathrm{mmol}\right.$, quant. yield) as a colorless oil. S-8: $R_{\mathrm{f}}=0.27$ (silica gel, hexanes:EtOAc 9:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-64.0\left(\mathrm{CHCl}_{3}, c=1.00\right)$; IR (film) $v_{\text {max }} 2959,1726,1480,1428,1364,1283,1160$, 1112, 1069, $723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.49(\mathrm{~m}, 3 \mathrm{H}), 4.32-4.16$ $(\mathrm{m}, 3 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.40(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.8,138.5,138.4,129.7,128.8,128.7,128.3,128.2,128.1,128.0,127.6$, $77.6,77.4,77.2,75.0,74.8,74.4,73.8,72.6,71.3,61.4,39.1,32.2,30.7,27.6 \mathrm{ppm}$; HRMS (ESITOF); calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 461.2304, found 461.2307.

G Ring secondary alcohol S-9. To a stirred solution of G ring bis-benzyl ether S-8 (804 mg,

$1.77 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added m-CPBA $(70 \%, 2.51 \mathrm{~g}, 10.2 \mathrm{mmol}, 4.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was then quenched with $\mathrm{Me}_{2} \mathrm{~S}(775 \mu \mathrm{~L}$, 10.2 mmol , 4.0 equiv) followed by sat. aq. $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were washed with sat. aq. NaHCO_{3} $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was filtered through a short plug of silica gel, eluding with hexanes:EtOAc (4:1) to provide 834 mg of the corresponding epoxide as an inseparable ca. 4:1 mix of diastereomers, which was taken on to the next step without further purification. To a stirred solution of the partially purified epoxide obtained above ($834 \mathrm{mg}, 1.84 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added BnOH ($956 \mu \mathrm{~L}, 9.2 \mathrm{mmol}, 5.0$ equiv) followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(231 \mu \mathrm{~L}, 1.84 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h . The resulting mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 3:2) gave G ring secondary alcohol S-9 ($610 \mathrm{mg}, 1.09 \mathrm{mmol}$, 42% yield over the two steps) as a colorless oil. S-9: $R_{\mathrm{f}}=0.10$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}^{32}=-44.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.07\right)$; IR (film) $v_{\max } 3482,3030,2969,2906,2871,1724,1496$,

1479, 1454, 1365, 1285, 1207, 1156, 1100, 1073, 1028, 736, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.31-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=7.8,5.4$ Hz, 2 H), 3.95 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88(\mathrm{t}, ~ J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddt}, J=$ $13.8,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (ddt, $J=13.8,11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.13 (s, 9 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.6,138.5,138.0,137.4,128.5,128.4,128.3,127.9,127.83,127.77$, $127.71,127.63,127.60,76.5,73.9,73.7,72.9,72.7,72.5,71.4,71.3,70.5,61.2,38.7,31.1,27.2$ ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 563.3003, found 563.3002.

G Ring inverted secondary alcohol S-10. To a stirred solution of G ring secondary alcohol S-9

($509 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}$) was added DMP (575 $\mathrm{mg}, 1.34 \mathrm{mmol}, 1.5$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 45 min . The resulting mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}:$ sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,30 \mathrm{~mL})$, and the biphasic mixture was stirred vigorously for 15 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude ketone was taken on to the next step without further purification. To a solution of the crude ketone obtained above in $\mathrm{MeOH}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(171 \mathrm{mg}, 4.54$ $\mathrm{mmol}, 5.0$ equiv), and the reaction mixture was warmed to $-10{ }^{\circ} \mathrm{C}$ and stirred for 15 min . The resulting mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, the biphasic mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), and the combined organic layers were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) provided G ring inverted secondary alcohol S-10 ($473 \mathrm{mg}, 0.85 \mathrm{mmol}, 93 \%$ yield over the two steps) as a colorless oil. S-10: $R_{\mathrm{f}}=0.22$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{32}=-36.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.49\right)$; IR (film) $v_{\max } 3480,3030,2959,2906,2871,1724,1479$, $1454,1365,1284,1160,1101,1057,1028,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
7.37-7.27 (m, 15 H$), 5.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{dt}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 2$ H), 3.56 (t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (ddt, $J=16.2,7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=178.5,138.5,138.2,137.5,128.5,128.4,128.3,128.0,127.9,127.7,127.6,127.5,80.1,75.8$, 75.6, 74.7, 73.5, 71.8, 71.2, 70.0, 68.5, 61.2, 38.7, 30.8, 27.2 ppm; HRMS (ESI-TOF); calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 563.3003$, found 563.3005.

G Ring tetra-benzyl ether S-11. To a vigorously stirred solution of G ring inverted secondary
 alcohol S-10 ($405 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $\mathrm{BnBr}\left(855 \mu \mathrm{~L}, 7.2 \mathrm{mmol}, 10.0\right.$ equiv), $n-\mathrm{Bu}_{4} \mathrm{NI}(133 \mathrm{mg}, 0.36 \mathrm{mmol}$, 0.5 equiv) and 25% aq. $\mathrm{NaOH}(10 \mathrm{~mL})$, and the resulting biphasic mixture was vigorously stirred at $25^{\circ} \mathrm{C}$ for 20 h . The mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(15$ mL) and brine $(15 \mathrm{~mL})$, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, $19: 1$ to $17: 3$) gave G ring tetra-benzyl ether S-11 ($434 \mathrm{mg}, 0.67$ $\mathrm{mmol}, 92 \%$ yield) as a colorless oil. S-11: $R_{\mathrm{f}}=0.27$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_{\mathrm{D}}{ }^{32}=-$ $6.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.75\right)$; IR (film) $v_{\max } 3030,2959,2900,2871,1725,1496,1479,1454,1364$, 1284, 1207, 1160, 1099, 1073, 1028, 735, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.30$ (m, 14 H$), 7.27-7.23(\mathrm{~m}, 6 \mathrm{H}), 4.81(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.46 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.15$ (m, 3 H), 3.95-3.89 (m, 2 H), $3.71(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (ddt, $J=16.5,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=178.5,139.1,138.4,138.1,137.8,128.4,128.35,128.27,128.1,127.81,127.80$, $127.74,127.67,127.60,127.5,127.2,79.6,76.1,74.3,73.9,73.5,72.1,71.6,71.4,71.2,69.2$,
61.4, 38.7, 30.9, 27.2 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 653.3473, found 653.3471 .

G Ring primary alcohol S-12. To a stirred solution of G ring tetra-benzyl ether S-11 (423 mg,
 0.65 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added Dibal-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.59 \mathrm{~mL}, 2.59 \mathrm{mmol}, 4.0$ equiv), and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . The resulting mixture was then diluted with EtOAc $(10 \mathrm{~mL})$ and quenched with sat. aq. Rochelle's salt $(20 \mathrm{~mL})$, and the biphasic mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 16 h . The mixture was then extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) gave G ring primary alcohol S-12 (369 mg, 0.65 mmol , quant. yield) as a colorless oil. S-11: $R_{\mathrm{f}}=0.26$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{32}=-2.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c\right.$ $=0.94$); IR (film) $v_{\max } 3493,3030,2872,1496,1454,1364,1332,1307,1207,1089,1072,1027$, $736,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.31(\mathrm{~m}, 12 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 8 \mathrm{H}), 4.84$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dt}, J=9.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (ddd, $J=9.6,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{bs}, 1 \mathrm{H}), 2.08$ (dquin, $J=14.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddt}, J=14.4,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,138.1,137.9,137.6,128.5,128.41,128.36,128.2$, $127.93,127.90,127.80,127.77,127.72,127.6,127.4,79.0,76.2,75.5,74.0,73.8,73.5,71.7$, 71.6, 71.2, 69.4, 61.8, 36.6 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 569.2898$, found 569.2896.

G Ring aldehyde 4. To a stirred solution of G ring primary alcohol S-12 ($64 \mathrm{mg}, 0.113 \mathrm{mmol}$,

4 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeCN}(9: 1,5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added flame-dried $4 \AA$ MS (85 mg), NMO ($26 \mathrm{mg}, 0.225 \mathrm{mmol}, 2.0$ equiv), and TPAP ($4 \mathrm{mg}, 0.011$ $\mathrm{mmol}, 0.1$ equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min .

The resulting mixture was then diluted in hexanes (7 mL), and Celite ${ }^{\mathrm{TM}}(150 \mathrm{mg})$ was added. This homogenous mixture was directly subjected to flash column chromatography (silica gel, hexanes:EtAOc 7:3) to provided G ring aldehyde 5 ($53 \mathrm{mg}, 0.094 \mathrm{mmol}, 83 \%$ yield) as a colorless oil. 5: $R_{\mathrm{f}}=0.34$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+1.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=1.00\right)$; IR (film) $v_{\max } 3030,2869,1725,1496,1454,1364,1314,1206,1091,1027,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.74(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 8 \mathrm{H})$, $4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.40 (sext, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=9.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}$, 1 H), 2.75 (ddd, $J=16.2,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, J=16.2,8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.2,138.9,138.2,137.9,137.2,128.5,128.4,128.3,128.2,128.0$, 127.79, 127.77, 127.76, 127.72, 127.5, 127.4, 78.9, 75.9, 74.4, 74.0, 73.5, 71.74, 71.68, 71.0, 70.1, 69.0, 46.2 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 567.2741, found 567.2731 .

ABCDEG Enone 41. To a stirred solution of ABCDE ketophosphonate $6(75 \mathrm{mg}, 0.056 \mathrm{mmol}$,
 1.0 equiv) in $\mathrm{MeCN}(1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added flame-dried $\mathrm{LiCl}(7 \mathrm{mg}, 0.168 \mathrm{mmol}, 3.0$ equiv) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(29 \mu \mathrm{~L}, 0.168 \mathrm{mmol}, 3.0$ equiv) followed by dropwise addition of a solution of aldehyde $4(44 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.4$ equiv) in 2 mL MeCN via cannula, and the reaction mixture was stirred at the same temperature for 72 h . The resulting mixture was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc $17: 3$ to $2: 3$) yielded ABCDEG enone 41 ($91 \mathrm{mg}, 0.051 \mathrm{mmol}, 91 \%$ yield) as a white foam along with recovered ABCDE ketophosphonate 6 (3 mg, $0.002 \mathrm{mmol}, 4 \%$ yield). 41: $R_{\mathrm{f}}=0.33$ (silica gel,
hexanes:EtOAc 4:1); $[\alpha]_{\mathrm{D}}{ }^{32}=+11.8\left(\mathrm{C}_{6} \mathrm{H}_{6}, c=0.80\right)$; IR (film) $v_{\max } 3027,2951,2875,1691$, 1623, 1496, 1454, 1345, 1203, 1083, 1028, 734, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.56-$ 7.48 (m, 5 H), 7.45-7.37 (m, 6 H), 7.30-7.25 (m, 10 H$), 7.24-7.16$ (m, 13 H$), 7.13-7.02(\mathrm{~m}, 17$ H), 6.75 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (d, $J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.61-4.54 (m, 3 H), 4.53-4.47 (m, 3 H), 4.43-4.32 (m, 8 H), 4.29 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 4 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.64(\mathrm{~m}$, $2 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{ddd}, J=11.4,7.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=9.0,1.8$ Hz, 1 H), 2.94 (ddd, $J=12.0,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.54$ (t, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{dt}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}$, 1 H), 1.94 (ddd, $J=13.210 .2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1$ H), $1.60(\mathrm{dd}, J=16.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.72-0.60(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=200.1,145.3,140.2$, $140.1,139.8,139.7,139.5,139.4,139.0,138.8,138.7,138.6,128.8,128.69,128.68,128.63$, $128.62,128.60,128.52,128.50,128.48,128.45,128.27,128.26,128.18,128.17,128.14,128.10$, 128.03, 128.02, 127.98, 127.94, 127.84, 127.83, 127.75, 127.7, 127.68, 127.64, 127.58, 127.54, $127.53,127.49,127.45,85.8,80.9,80.8,79.9,79.7,76.1,78.59,78.57,77.1,77.0,76.9,76.6$, $76.2,75.71,75.67,75.1,74.9,74.7,74.5,73.7,73.64,73.60,73.5,73.1,73.0,72.9,72.3,71.8$, $71.2,70.7,70.0,69.8,69.0,44.7,44.6,36.7,35.4,34.1,33.4,21.1,17.4,10.3,7.4,5.8 \mathrm{ppm} ;$ HRMS (ESI-TOF); calcd for $\mathrm{C}_{111} \mathrm{H}_{130} \mathrm{O}_{18} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 1779.9099$, found 1779.9063 .

ABCDEFG Alkene 43. To a stirred solution of ABCDEG enone $41(34 \mathrm{mg}, 0.019 \mathrm{mmol}, 1.0$
 equiv) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1,3 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added $\mathrm{TsOH}(11 \mathrm{mg}, 0.057 \mathrm{mmol}, 3.0$ equiv), and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 2.5 h . The resulting mixture was then quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, the
biphasic mixture was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude methyl acetal 42 was carried on to the next step without further purification. To a solution of crude acetal 42 in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{SiH}(30 \mu \mathrm{~L}, 0.19 \mathrm{mmol}, 10.0$ equiv) and TMSOTf ($12 \mu \mathrm{~L}, 0.012 \mathrm{mmol}, 5$ equiv), and the reaction mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 30 min . The resulting mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, the biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ mL), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) gave ABCDEFG alkene 43 ($22 \mathrm{mg}, 0.013$ mmol, 69% yield over the two steps) as a white foam. 43: $R_{\mathrm{f}}=0.19$ (silica gel, hexanes:EtOAc $4: 1) ;[\alpha]_{\mathrm{D}}{ }^{32}=-7.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.79\right)$; IR (film) $v_{\max } 3022,2923,2865,1496,1454,1347,1206$, 1084, 1068, 1027, 735, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.61-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.52$ (m, 2 H$), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 14 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 13 \mathrm{H})$, 7.14-7.05 (m, 15 H$), 6.18(\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.36(\mathrm{~m}, 8 \mathrm{H}), 4.31(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}, 7 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.74$ (d, J $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dt}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.35-3.31 (m, 2 H), 3.25 (dd, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{ddd}, J=12.0,8.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=13.2,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{quin}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, $J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32-2.26 (m, 2 H), 2.21 (dd, $J=10.8,4.2 \mathrm{~Hz}, 1$ H), $1.81(\mathrm{q}, ~ J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{dd}, J=16.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.00$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=140.4,140.2,140.0,139.7$, 139.5, $139.4,139.1,139.0,138.9,138.8,131.0,129.2,128.72,128.67,128.58,128.57,128.51,128.47$, $128.3,128.2,128.14,128.12,128.10,127.98,127.97,127.86,127.85,127.79,127.68,127.64$, $127.58,127.57,127.51,127.46,85.5,85.0,81.6,80.0,79.9,78.6,77.3,77.2,76.92,76.89,76.8$, $76.2,75.8,75.5,75.1,74.9,74.8,74.68,74.66,74.63,73.67,73.65,73.5,73.2,73.0,72.8,72.0$,
$71.7,71.5,70.6,70.1,69.1,65.5,44.7,44.6,35.2,34.5,34.2,33.4,21.2,17.7,10.3 \mathrm{ppm}$; HRMS (ESI-TOF); calcd for $\mathrm{C}_{105} \mathrm{H}_{116} \mathrm{O}_{17}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 1671.8104, found 1671.8130.

ABCDEFG Diol 44. To a stirred solution of ABCDEFG alkene 43 ($23.0 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0$
 equiv) in acetone $/ \mathrm{H}_{2} \mathrm{O}(4: 1,5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ were added $\mathrm{OsO}_{4}(2.5 \mathrm{wt} \%$ in $t-\mathrm{BuOH}, 7 \mu \mathrm{~L}, 0.0007$ mmol, 0.05 equiv) and NMO ($5 \mathrm{mg}, 0.042$ mmol, 3.0 equiv), and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 72 h . The resulting mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$, and the biphasic mixture was stirred vigorously at 25 ${ }^{\circ} \mathrm{C}$ for 30 min . The biphasic mixture was then extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Preparative-plate chromatography (silica gel, hexanes:EtOAc 3:2) gave ABCDEFG diol 44 ($14.3 \mathrm{mg}, 0.008 \mathrm{mmol}$, 61% yield) as a colorless oil, along with its opposite diastereomer ($6 \mathrm{mg}, 0.004 \mathrm{mmol}, 26 \%$ yield). 44: $R_{\mathrm{f}}=0.25$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{32}=+7.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.62\right.$); IR (film) $v_{\max } 3463,3029,2923,2855,1496,1453,1362,1346,1207,1085,1067,1027,734,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 6 \mathrm{H})$, 7.31-7.24 (m, 12 H$), 7.19-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 12 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.69$ (dd, $J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.35(\mathrm{~m}, 8 \mathrm{H}), 4.28(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{ddd}, J=9.6,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (bs, 1 H), $3.90(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=9.0 \mathrm{~Hz}$, 1 H), 3.65-3.59 (m, 4 H), 3.57-3.54 (m, 2 H), 3.44 (dd, $J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dt, $J=10.8$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=12.6,9.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{bs}, 1 \mathrm{H}), 2.61(\mathrm{dq}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=14.4,10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-$ 2.33 (m, 2 H), 2.24-2.19 (m, 2 H), 1.99 (ddd, $J=15.0,6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.59(\mathrm{dd}, J=15.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J$
$=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=140.3,140.2,139.8,139.7$, 139.5, 139.4, $139.0,139.9,138.8,138.7,128.8,128.70,128.67,128.66,128.58,128.51,128.47,128.17$, $128.14,128.02,127.98,127.83,127.82,127.70,127.69,127.64,127.60,127.58,127.52,85.4$, $84.8,80.5,80.0,79.4,79.0,78.6,77.4,77.2,76.9,76.4,76.2,75.7,75.5,74.81,74.78,74.6$, $74.54,74.50,73.9,73.6,73.54,73.50,73.47,73.0,72.9,72.8,72.5,72.3,71.6,71.5,70.6,69.6$, 69.1, 67.9, 66.0, 44.6, 44.5, 35.3, 34.6, 34.2, 33.4, 21.1, 17.6, 10.3 ppm ; HRMS (ESI-TOF); calcd for $\mathrm{C}_{105} \mathrm{H}_{118} \mathrm{O}_{19}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 1683.8340, found 1683.8328.

ABCDEFG Model system 3. To a stirred solution of ABCDEFG diol 45 (21.3 mg, 0.0126

mmol, 1.0 equiv) in $\mathrm{EtOH}(2.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(6 \mathrm{mg}, 30 \% \mathrm{w} / \mathrm{w})$, and the solution was purged with Ar , then H_{2}, and then stirred at $25^{\circ} \mathrm{C}$ for 6 d under an atmosphere of H_{2} (balloon). The reaction mixture was then filtered through a short pad of Celite ${ }^{\mathrm{TM}}$, washed with MeOH , and concentrated. Trituration of the resulting residue with EtOAc $(3 \times 1.5 \mathrm{~mL})$ and removal of the solvent provided pure heptacyclic ABCDEFG model system 3 ($9.6 \mathrm{mg}, 0.012 \mathrm{mmol}, 97 \%$ yield) as a white foam. 3: R_{f} $=0.00$ (silica gel, EtOAc:MeOH 17:3); $[\alpha]_{\mathrm{D}}{ }^{32}=+18.3$ (MeOH, $c=0.48$); IR (film) $v_{\max } 3362$, 2919, 1593, 1413, 1384, 1350, 1264, 1079, 1064, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}: \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} 1: 1\right): \delta=4.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{bs}, 1 \mathrm{H}), 4.27(\mathrm{bs}, 1$ H), 4.17-4.11 (m, 3 H), 4.04-3.99 (m, 3H), 3.88 (d, J=9.6 Hz, 1 H$), 3.83-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.79-$ 3.71 (m, 3 H), 3.68-3.59 (m, 4 H), 3.40-3.38 (m, 2 H), 3.10 (t, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (d, J = 9.6 $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=12.0,8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{q}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}: \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} 1: 1$): $\delta=86.0,85.3,81.0,80.7,79.6$, $77.2,76.7,76.53,76.49,75.3,75.1,73.5,73.4,73.1,72.8,72.4,71.5,69.72,69.66,69.44,69.42$,
$67.5,66.3,66.2,65.9,63.4,48.3,44.9,38.8,37.8,36.9,34.4,21.6,17.9,10.5 \mathrm{ppm}$; HRMS (ESITOF); calcd for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{19}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 783.3645, found 783.3649.

References

(1) Lu, T.-J.; Yang, J.-F.; Sheu, L.-J. J. Org. Chem. 1995, 60, 2931.
(2) Ager, D. J.; Allen, D. R.; Shaad, D. R. Synthesis 1996, 1283.
(3) Li, M.; Scott, J.; O’Doherty, G. A. Tetrahedron Lett. 2004, 45, 1005.
(4) Trost, B. M.; Machacek, M. R.; Faulk, B. D. J. Am Chem. Soc. 2006, 128, 6745.
(5) Nicolaou, K. C.; Cole, K. P.; Frederick, M. O.; Aversa, R. J.; Denton, R. M. Angew. Chem., Int. Ed. 2007, 46, 8875.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
TBDPSO

Enlarged ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Enlarged ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 4}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Enlarged expansion of ${ }^{1} \mathrm{H}$ NMR spectrum of 3 ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}: \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 1: 1$)

Enlarged expansion of ${ }^{13} \mathrm{C}$ NMR spectrum of 3 ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}: \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 1: 1$)

