Synthesis of the ABCDEFG Ring System of

Maitotoxin

K. C. Nicolaou, * Robert J. Aversa, Jian Jin, and Fatima Rivas

Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,

The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman

Drive, La Jolla, California 92093

Corresponding author e-mail: kcn@scripps.edu

Supporting Information

Experimental Data for Compounds

General Procedures. All reactions were carried out under an argon atmosphere with dry

solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF),

toluene, benzene, diethyl ether (Et₂O), acetonitrile (MeCN), ethylene glycol dimethyl ether

(DME), and methylene chloride (CH₂Cl₂) were obtained by passing commercially available pre-

dried, oxygen-free formulations through activated alumina columns. Yields refer to

chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise

stated. Reagents were purchased at the highest commercial quality and used without further

S1

purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid and cerium sulfate, and heat as developing agents. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker DRX-600, DRX-500, AMX-500 or AMX-400 instruments and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, quin = quintuplet, sext = sextet, sep = septet, br = broad. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Electrospray ionization (ESI) mass spectrometry (MS) experiments were performed on an API 100 Perkin Elmer SCIEX single quadrupole mass spectrometer at 4000V emitter voltage. High-resolution mass spectra (HR-MS) were recorded on a VG ZAB-ZSE mass spectrometer using MALDI (matrix-assisted laser-desorption ionization) or ESI (electrospray ionization).

Alcohol 10a. To a stirred solution of furan 10^1 (55.1 g, 393 mmol, 1.0 equiv) in THF (400 mL) $_{10a}^{\circ}$ at $_{78}^{\circ}$ °C was added $_{78}^{\circ}$ multiple of the equiv). The reaction mixture was stirred at $_{78}^{\circ}$ °C for 15 min, at which point a solution of butyrolactone (11, 29.6 mL, 393 mmol, 1.0 equiv) in THF (400 mL) at $_{78}^{\circ}$ °C was added by cannula. The reaction mixture was stirred at $_{78}^{\circ}$ °C for 2.5 h, and then quenched with sat. aq. NH₄Cl (800 mL). The biphasic mixture was extracted with EtOAc (3 × 300 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1 to 1:4) yielded alcohol 10a (55.1 g, 243 mmol, 62% yield) as a yellow foam and recovered furanal 10 (10.87 g, 78 mmol, 20% yield). 10a: $_{76}^{\circ}$ multiple of $_{76}^{\circ}$ (silica gel, hexanes:EtOAc 2:3); IR (film) $_{76}^{\circ}$ multiple of $_{7$

6.55 (d, J = 3.6 Hz, 1 H), 5.97 (s, 1 H), 4.14–4.10 (m, 2 H), 4.07–4.03 (m, 2 H), 3.71 (t, J = 6.0 Hz, 2 H), 1.98 (quin, J = 6.6 Hz, 2 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 189.7$, 155.4, 152.6, 117.2, 110.3, 65.3, 62.2, 35.1, 26.7 ppm; HRMS (ESI-TOF); calcd for $C_{11}H_{14}O_{5}$ [M + H⁺]: 227.0914, found 227.0916.

Pivaloate 12. To a stirred solution of alcohol **10a** (64.7 g, 286 mmol, 1.0 equiv) in CH₂Cl₂ (1.0 $^{\circ}$ Cl₂OPiv L) at 25 °C were added PivCl (42.3 mL, 343 mmol, 1.2 equiv), Et₃N (119.1 mL, 857 mmol, 3.0 equiv), and DMAP (3.49 g, 28.6 mmol, 0.1 equiv), and the reaction mixture was stirred at 25 °C for 20 min. The reaction mixture was then quenched with sat. aq. NaHCO₃ (750 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 200 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) yielded pivaloate **12** (83.4 g, 269 mmol, 94% yield) as a yellow oil. **12:** R_f = 0.37 (silica gel, hexanes:EtOAc 3:2); IR (film) v_{max} 2971, 2900, 1724, 1678, 1588, 1522, 1480, 1399, 1366, 1284, 1199, 1155, 1107, 1033, 940, 891, 805, 771 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.13 (d, J = 3.6 Hz, 1 H), 6.55 (d, J = 3.0 Hz, 1 H), 5.97 (s, 1 H), 4.15–4.09 (m, 4 H), 4.07–4.03 (m, 2 H), 2.91 (t, J = 7.2 Hz, 2 H), 2.06 (quin, J = 7.2 Hz, 2 H), 1.19 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 188.5, 178.4, 155.4, 152.6, 117.0, 110.3, 97.3, 65.3, 63.5, 38.7, 34.7, 27.2, 23.0 ppm; HRMS (ESI-TOF); calcd for C₁₆H₂₂O₆ [M + H⁺]: 311.1489, found 311.1491.

Secondary alcohol 12a. To a vigorously stirred solution of pivaloate 12 (61.0 g, 197 mmol, 1.0 pivaloate 12 (61.0 g, 197 mmol, 1.0 cquiv) in CH₂Cl₂:H₂O (1:1, 400 mL) at 25 °C were added *n*-Bu₄NCl (16.4 g, 59 mmol, 0.3 equiv), HCO₂Na (133.7 g, 1.97 mol, 10 equiv) and cat. 13 (1.23 g, 1.97 mmol, 0.01 equiv), and the reaction mixture was stirred vigorously for 48 h at 25 °C. The reaction mixture was diluted in H₂O (600 mL), and the biphasic mixture was extracted with EtOAc (3 × 400 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) gave secondary alcohol 12a [59.5 g, 190 mmol, 97% yield, 94% *ee* (as measured by ¹H NMR analysis of the corresponding Naproxen® spectroscopic ester)] as a pale

yellow oil. **12a:** $R_f = 0.23$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_D^{32} = +7.5$ (CH₂Cl₂, c = 1.15); IR (film) v_{max} 3473, 2961, 2891, 1724, 1480, 1399, 1366, 1286, 1159, 1102, 1014, 942, 796 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.39$ (d, J = 3.0 Hz, 1 H), 6.21 (d, J = 3.6 Hz, 1 H), 5.89 (s, 1 H), 4.71 (t, J = 6 Hz, 1 H), 4.17–4.08 (m, 4 H), 4.03–3.99 (m, 2 H), 2.06 (bs, 1 H), 1.95–1.89 (m, 2 H), 1.87–1.79 (m, 1 H), 1.73–1.67 (m, 1 H), 1.19 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.6$, 157.3, 150.5, 109.3, 106.4, 97.7, 67.3, 65.1, 63.9, 38.7, 31.8, 27.2, 24.8 ppm; HRMS (ESI-TOF); calcd for $C_{16}H_{24}O_6$ [M + H⁺]: 313.1646, found 313.1648.

Benzyl ether 12b. To a stirred solution of secondary alcohol **12a** (59.0 g, 189 mmol, 1.0 equiv) OBn in THF (1.0 L) at 0 °C were added BnBr (56.2 mL, 472 mmol, 2.5 equiv) and n-Bu₄NI (34.9 g, 94.5 mmol, 0.5 equiv) followed by portionwise addition of NaH (60% in mineral oil, 30.1 g, 756 mmol, 4.0 equiv), and the reaction mixture was warmed to 25 °C and stirred for 16 h. The reaction mixture was slowly quenched with H₂O (700 mL), the biphasic mixture was extracted with EtOAc (3 × 500 mL), and the combined organic layers were washed with H₂O (750 mL) and brine (750 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 3:1) yielded benzyl ether 12b (75.9 g, 189 mmol, quant. yield) as a pale yellow oil. **12b:** $R_{\rm f} = 0.28$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = +61.7$ (CH₂Cl₂, c = 1.02); IR (film) v_{max} 2959, 2870, 1724, 1480, 1455, 1397, 1365, 1284, 1155, 1101, 1028, 940, 796, 771, 737, 698 cm $^{-1}$; 1 H NMR (600 MHz, CDCl $_{3}$): $\delta = 7.34$ – 7.27 (m, 5 H), 6.42 (d, J = 3.6 Hz, 1 H), 6.26 (d, J = 3.6 Hz, 1 H), 5.92 (s, 1 H), 4.54 (d, J = 12.0Hz, 1 H), 4.38 (dd, J = 7.2, 5.4 Hz, 1 H), 4.35 (d, J = 11.4 Hz, 1 H), 4.16-4.10 (m, 2 H), 4.07-4.003.99 (m, 4 H), 2.02–1.96 (m, 1 H), 1.92–1.86 (m, 1 H), 1.81–1.74 (m, 1 H), 1.66–1.60 (m, 1 H), 1.18 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 178.5$, 155.2, 150.9, 138.1, 128.3, 127.8, 127.6, 109.0, 108.2, 97.8, 73.7, 70.6, 65.13, 65.08, 63.4, 38.7, 30.9, 27.2, 24.9 ppm; HRMS (ESI-TOF); calcd for $C_{23}H_{30}O_6$ [M + Na⁺]: 425.1934, found 425.1927.

Aldehyde 14. To a stirred solution of benzyl ether **12b** (73.9 g, 183.5 mmol, 1.0 equiv) in THF (1.2 L) at 25 °C was added 2.0 M aq. HCl (600 mL), and the reaction mixture was stirred at 25

°C for 1 h. The reaction mixture was slowly quenched with sat. aq. NaHCO₃ (1.0 L), the biphasic mixture was extracted with EtOAc (3 × 600 mL), and the combined organic layers were dried (MgSO₄) and concentrated, providing pure aldehyde **14** (66.5 g, 183.5 mmol, quant.) as a yellow oil. **14:** $R_f = 0.39$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_D^{32} = +73.5$ (CH₂Cl₂, c = 1.18); IR (film) v_{max} 2961, 2871, 1724, 1681, 1517, 1480, 1455, 1328, 1283, 1156, 1023, 768, 754 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.62$ (s, 1 H), 7.36–7.28 (m, 5 H), 7.23 (s, 1 H), 6.52 (s, 1 H), 4.58 (d, J = 12.0 Hz, 1 H), 4.50 (t, J = 6.0 Hz, 1 H), 4.42 (d, J = 11.4 Hz, 1 H), 4.07–4.01 (m, 2 H), 2.02–1.90 (m, 2 H), 1.82–1.76 (m, 1 H), 1.75–1.61 (m, 1 H), 1.18 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.5$, 177.6, 161.8, 152.4, 137.5, 128.5, 127.9, 127.8, 121.9, 109.9, 74.0, 71.5, 63.7, 38.7, 31.2, 27.2, 24.6 ppm; HRMS (ESI-TOF); calcd for C₂₁H₂₆O₅ [M + H⁺]: 359.1853, found 359.1858.

Oxazolidinone 16. To a stirred solution of oxazolidinone 15² (38.1 g, 173.8 mmol, 1.0 equiv) in CH₂Cl₂ (900 mL) at -78 °C was added *n*-Bu₂BOTf (1.0 M in CH₂Cl₂, 209 mL, 209 mmol, 1.2 equiv) followed by Et₃N (31.4 mL, 226 mmol, 1.3 equiv). The reaction mixture was warmed to 0 °C, stirred for 45 min, and re-cooled to -78 °C. A cold (-78 °C) solution of aldehyde 14 (62.3 g, 173.8 mmol, 1.0 equiv) in CH₂Cl₂ (800 mL) was added *via* cannula to the stirred reaction mixture and then the solution was allowed to warm up to 0 °C and stirred at that temperature for 4.5 h. The reaction mixture was quenched by slow sequential addition of 0.05 M phosphate buffer (pH = 7, 175 mL), MeOH (350 mL), and MeOH:30% H₂O₂ (1:1, 350 mL), and the resulting biphasic mixture was vigorously stirred at 0 °C for 1 h. After warming to 25 °C, the biphasic mixture was diluted with H₂O (1.0 L) and then extracted with CH₂Cl₂ (3 × 600 mL). The combined organic layers were washed with sat. aq. Na₂S₂O₃ (600 mL) and brine (600 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1 to 3:2) gave oxazolidinone 16 (98.4 g, 170 mmol, 98% yield) as a viscous pale yellow oil. 16: R_f = 0.18 (silica gel, hexanes:EtOAc 7:3); [α]_D³² = +78.6 (CH₂Cl₂, c = 1.25); IR (film) v_{max} 3490, 2970,

2870, 1780, 1719, 1706, 1480, 1455, 1382, 1318, 1285, 1197, 1159, 1106, 1042, 980, 949, 797, 738, 700 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.41–7.27 (m, 10 H), 6.28 (d, J = 3.6 Hz, 1 H), 6.25 (d, J = 3.6 Hz, 1 H), 5.40 (dd, J = 8.4, 3.6 Hz, 1 H), 5.07 (s, 1 H), 4.64 (t, J = 9.0 Hz, 1 H), 4.52 (d, J = 12.0 Hz, 1 H), 4.37–4.33 (m, 2 H), 4.26–4.22 (m, 2 H), 4.07–4.01 (m, 2 H), 2.92 (d, J = 4.2 Hz, 1 H), 2.02–1.96 (m, 1 H), 1.90–1.84 (m, 1 H), 1.79–1.73 (m, 1 H), 1.64–1.60 (m, 1 H), 1.25 (d, J = 7.2 Hz, 3 H), 1.18 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 178.6, 175.7, 153.9, 153.8, 153.0, 138.7, 138.2, 129.3, 128.8, 128.4, 127.9, 127.6, 125.5, 108.7, 107.3, 73.6, 70.4, 69.9, 68.4, 64.0, 57.5, 42.5, 38.7, 30.7, 27.2, 24.9, 11.8 ppm; HRMS (ESI-TOF); calcd for C₃₃H₃₉NO₈ [M + Na⁺]: 600.2568, found 600.2569.

A Ring enone 17. To a mechanically stirred solution of oxazolidinone 16 (86.0 g, 149 mmol, 1.0 equiv) in CH₂Cl₂ (1.1 L) at 0 °C was added dry m-CPBA (47.7 g, 193.7 oPiv mmol, 1.2 equiv), and the reaction mixture was allowed to warm up to 25 °C and stirred for 2.5 h. After cooling to -50 °C, Et₃SiH (47.6 mL, 298 mmol, 2.0 equiv) and BF₃•OEt₂ (37.4 mL, 298 mmol, 2.0 equiv) were added to the reaction mixture, which was subsequently warmed to -10 °C and stirred for 20 min. The reaction mixture was quenched with sat. aq. NaHCO₃ (700 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 500 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:2) yielded A ring enone 17 (64.5 g, 112 mmol, 75% yield) as a white solid. 17: $R_f = 0.42$ (silica gel, hexanes: EtOAc 3:2); mp = 32– 33 °C; $[\alpha]_D^{32} = +30.7$ (CH₂Cl₂, c = 0.98); IR (film) v_{max} 2971, 2870, 1780, 1721, 1693, 1480, 1456, 1383, 1285, 1201, 1160, 1112, 984, 759, 705 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.40$ – 7.28 (m, 10 H), 7.13 (d, J = 10.8 Hz, 1 H), 6.13 (dd, J = 10.2, 2.4 Hz, 1 H), 5.49 (dd, J = 9.0, 3.6 Hz, 1 H), 4.78 (t, J = 9.0 Hz, 1 H), 4.61 (d, J = 11.4 Hz, 1 H), 4.58 (d, J = 11.4 Hz, 1 H), 4.34– 4.31 (m, 2 H), 4.27 (dd, J = 9.0, 3.6 Hz, 1 H), 4.22-4.17 (m, 1 H), 4.12-4.02 (m, 2 H), 3.60-3.57(m, 1 H), 1.83-1.78 (m, 1 H), 1.76-1.71 (m, 3 H), 1.24 (d, J = 6.6 Hz, 3 H), 1.19 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): δ = 194.9, 178.5, 173.9, 153.5, 148.9, 139.4, 137.8, 129.2, 128.6, 128.5, 127.9, 127.2, 125.6, 81.0, 79.2, 77.0, 72.5, 70.0, 64.1, 57.8, 38.7, 38.2, 27.2, 27.1, 23.9, 13.6 ppm; HRMS (ESI-TOF); calcd for C₃₃H₃₉NO₈ [M + H⁺]: 578.2748, found 500.2743.

A Ring diol 17a. To a stirred solution of A ring enone 17 (49.2 g, 85.2 mmol, 1.0 equiv) in CH₂Cl₂:MeOH (1:1, 1.0 L) at -30 °C were added dry CeCl₃ (63.5 g, 170.4 mmol, 2.0 equiv) and NaBH₄ (12.9 g, 340.8 mmol, 4.0 equiv), and the reaction mixture was warmed to -10 °C and stirred for 15 min. The reaction mixture was quenched with sat. aq. NH₄Cl (600 mL), and the aqueous layer was acidified with 1.0 M HCl to pH = 5. The biphasic mixture was extracted with EtOAc (3 \times 400 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 11:9 to 3:7) gave A ring diol 17a (28.7 g, 68.2 mmol, 80% yield) as a white solid. **17a:** $R_f = 0.21$ (silica gel, hexanes:EtOAc 2:3); mp = 77–80 °C; $[\alpha]_D^{32} = -60.2$ $(CH_2Cl_2, c = 1.28); IR (film) v_{max} 3356, 2962, 2931, 2873, 1725, 1480, 1455, 1398, 1285, 1158, 12855, 1285, 12855, 1285, 1285, 12855, 1285, 1285, 1285, 1285, 1285, 1285, 1285, 1285, 1285, 128$ 1038, 993, 966, 737, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.35 - 7.27$ (m, 5 H), 5.90 (dt, J = 10.2, 1.2 Hz, 1 H), 5.86 (dt, J = 10.2, 1.8 Hz, 1 H), 4.62 (d, J = 11.4 Hz, 1 H), 4.54 (d, J = 11.4 Hz, 1 H), 4.18-4.14 (m, 2 H), 4.07-3.99 (m, 2 H), 3.76 (dd, J = 11.4, 4.2 Hz, 1 H), 3.65 (dd, J = 11.4), 10.8, 7.2 Hz, 1 H), 3.42-3.40 (m, 1 H), 3.27 (dd, J = 8.4, 4.8 Hz, 1 H), 2.84 (bs, 1 H), 2.71 (bs, 1 H), 2.04-2.01 (m, 1 H), 1.83-1.78 (m, 1 H), 1.72-1.60 (m, 3 H), 1.19 (s, 9 H), 1.02 (d, J = 7.2Hz, 3 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 178.6$, 138.3, 130.4, 128.4, 128.3, 127.8, 127.6, 81.5, 80.2, 76.3, 72.3, 66.3, 65.5, 64.3, 38.7, 37.7, 27.2, 26.7, 24.3, 11.8 ppm; HRMS (ESI-TOF); calcd for $C_{24}H_{36}O_6$ [M + H⁺]: 421.2585, found 421.2590.

A Ring tri-benzyl ether 18. To a vigorously stirred solution of A ring diol 17a (4.80 g, 11.4 mmol, 1.0 equiv) in 25% aq. NaOH:PhMe (1:1, 300 mmol) at 25 °C were added BnBr (33.9 mL, 285 mmol, 25.0 equiv) and *n*-Bu₄NI (3.16 g, 8.9 mmol, 0.75 equiv), and the reaction mixture was stirred vigorously at 25 °C for 48 h. The reaction mixture was then diluted in H₂O (300 mL), and the resulting biphasic mixture was extracted with EtOAc (3 × 200 mL). The combined organic layers were washed

with H₂O (300 mL) and brine (300 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) yielded A ring tri-benzyl ether **18** (6.2 g, 10.4 mmol, 91% yield) as a pale yellow oil. **18:** $R_f = 0.34$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_D^{32} = -55.0$ (CH₂Cl₂, c = 0.65); IR (film) v_{max} 2963, 2926, 2865, 1726, 1454, 1284, 1159, 1095, 735, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.35-7.28$ (m, 15 H), 6.04 (dt, J = 10.8, 1.8 Hz, 1 H), 5.92 (dt, J = 10.2, 1.2 Hz, 1 H), 4.67 (d, J = 11.4 Hz, 1 H), 4.60 (d, J = 11.4 Hz, 1 H), 4.56–4.50 (m, 3 H), 4.57 (d, J = 12.0 Hz, 1 H), 4.08–4.07 (m, 1 H), 4.02–3.99 (m, 3 H), 3.63 (dd, J = 9.0, 1.8 Hz, 1 H), 3.54 (t, J = 8.4 Hz, 1 H), 3.39–3.36 (m, 2 H), 2.36–2.29 (m, 1 H), 1.78–1.70 (m, 2 H), 1.69–1.59 (m, 2 H), 1.19 (s, 9 H), 0.83 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 179.4$, 139.6, 139.4, 139.1, 129.6, 129.3, 129.20, 129.16, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 81.2, 77.8, 77.0, 73.71, 73.69, 73.2, 71.5, 71.4, 65.2, 39.6, 34.5, 28.1, 27.9, 25.4, 11.1 ppm; HRMS (ESI-TOF); calcd for C₃₈H₄₈O₆ [M + Na⁺]: 623.3343, found 623.3337.

A Ring epoxide 18a. To a stirred solution of A ring tri-benzyl ether (6.0 g, 10 mmol, 1.0 equiv) $_{BnO}^{BnO}$ in CH₂Cl₂ (75 mL) at 25 °C was added m-CPBA (70%, 7.1 g, 30 mmol, 3.0 equiv), and the reaction mixture was stirred at 25 °C for 48 h. The reaction mixture was then quenched sequentially with Me₂S (2.2 mL, 30 mmol, 3.0 equiv) and sat. aq. NaHCO₃ (100 mL). The biphasic mixture was extracted with CH₂Cl₂ (3 × 50 mL), dried (MgSO₄), and concentrated. Silica gel chromatography (hexanes:EtOAc 17:3) gave A ring epoxide 18a (5.6 g, 9.1 mmol, 91%) as a pale yellow oil (ca. 4.5:1 mix of diastereomers). Repeated preparative-plate chromatography (silica gel, hexanes:EtOAc 17:3) provided a sample of pure 18a for characterization. 18a: $R_f = 0.39$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -58.4$ (CH₂Cl₂, c = 0.58); IR (film) v_{max} 2965, 2921, 2865, 1725, 1455, 1284, 1156, 1112, 1094, 735, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.36-7.28$ (m, 15 H), 4.78 (d, J = 11.4 Hz, 1 H), 4.60 (s, 2 H), 4.57 (d, J = 12.0 Hz, 1 H), 4.50 (d, J = 12.0 Hz, 1 H), 4.41 (d, J = 12.0 Hz, 1 H), 4.04–3.97 (m, 2 H), 3.61 (d, J = 8.4 Hz, 1 H), 3.57–3.54 (m, 1 H), 3.51 (d, J = 9.6 Hz, 1 H), 3.42–3.37

(m, 3 H), 3.32 (dd, J = 9.6, 2.4 Hz, 1 H), 3.27 (dd, J = 9.0, 6.0 Hz, 1 H), 2.17–2.13 (m, 1 H), 1.75–1.67 (m, 3 H), 1.59–1.55 (m, 1 H), 1.17 (s, 9 H), 0.66 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.5$, 138.5, 138.2, 137.3, 128.5, 128.4, 128.33, 128.28, 128.1, 127.9, 127.8, 127.54, 127.50, 78.0, 76.0, 75.3, 72.9, 72.7, 72.4, 71.8, 69.4, 64.5, 64.5, 54.5, 50.6, 38.7, 33.9, 27.3, 27.2, 23.5, 10.1 ppm; HRMS (ESI-TOF); calcd for $C_{38}H_{48}O_7$ [M + H⁺]: 617.3473, found 617.4365.

A Ring secondary alcohol 19. To a stirred solution of A ring epoxide 18a (ca. 4.5:1 BnO Holland Property alcohol 19. To a stirred solution of A ring epoxide 18a (ca. 4.5:1 diastereomeric mix, 5.6 g, 9.1 mmol, 1.0 equiv) in CH₂Cl₂ (100 mL) at 25 °C were added BnOH (1.13 mL, 10.9 mmol, 2.5 equiv) and BF₃•OEt₂ (1.14 mL,

9.1 mmol, 1.0 equiv), and the reaction mixture was stirred at 25 °C for 18 h.

The reaction mixture was then quenched with sat. aq. NaHCO₃ (100 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 50 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) yielded A ring secondary alcohol 19 (6.0 g, 8.3 mmol, 91% yield) as a colorless oil [ca. inseparable 5:1 mix of isomers corresponding to the epoxide (18a) diastereomeric ratio]. A sample of pure 19 was obtained for characterization by subjection of a small amount of isomerically pure epoxide (18a) to the reaction conditions described above. **19:** $R_f = 0.30$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32}$ = -15.6 (CH₂Cl₂, c = 0.23); IR (film) v_{max} 3453, 2962, 2925, 2870, 1726, 1454, 1284, 1155, 1100, 1024, 736, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.35 - 7.27$ (m, 20 H), 4.78 (t, J =11.4 Hz, 2 H), 4.61-4.59 (m, 2 H), 4.56 (d, J = 12.6 Hz, 1 H), 4.50 (d, J = 11.4 Hz, 1 H), 4.48 (d, J = 12.0 Hz, 1 H), 4.45 (d, J = 11.4 Hz, 1 H), 4.05 (bs, 1 H), 4.00–3.97 (m, 4 H), 3.93 (d, J = 1.8Hz, 1 H), 3.85 (dd, J = 10.2, 2.4 Hz, 1 H), 3.66 (quin, J = 3.6 Hz, 1 H), 3.63-3.62 (m, 1 H), 3.56(dd, J = 9.0, 7.2 Hz, 1 H), 3.39 (dd, J = 9.0, 7.8 Hz, 1 H), 2.43-2.37 (m, 1 H), 1.76-1.70 (m, 1 H)H), 1.57–1.51 (m, 2 H), 1.52–1.43 (m, 1 H), 1.19 (s, 9 H), 0.88 (d, J = 7.2 Hz, 3 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 178.5$, 138.81, 138.76, 138.2, 137.8, 128.4, 128.34, 128.32, 128.27, 128.22, 127.93, 127.86, 127.7, 127.65, 127.58, 127.4, 80.3, 77.1, 75.6, 74.6, 74.3, 74.1,

73.2, 73.1, 72.8, 71.0, 68.5, 64.0, 38.7, 32.9, 28.2, 27.2, 25.0, 10.1 ppm; HRMS (ESI-TOF); calcd for $C_{45}H_{56}O_8$ [M + H⁺]: 725.4048, found 725.4037.

A Ring inverted secondary alcohol 20. To a stirred solution of DMSO (628 µL, 8.84 mmol, 4.0 equiv) in CH₂Cl₂ (20 mL) at -78 °C was added (COCl)₂ (286 μL, 4.42 mmol, 2.0 equiv). The reaction mixture was stirred for 15 min at -78 °C, at which point a -78 °C solution of A ring secondary alcohol 19 (ca. 5:1 isomeric mix, 1.60 g, 2.21 mmol, 1.0 equiv) in CH₂Cl₂ (20 mL) was added via cannula. The reaction mixture was stirred for 2 h at -78 °C, and Et₃N (1.84 mL, 13.3 mmol, 6.0 equiv) was added. The reaction mixture was warmed to 0 °C and stirred for 45 min, and then quenched with brine (50 mL). The biphasic mixture was extracted with CH₂Cl₂ (3 × 20 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The so obtained crude ketone was carried forward without further purification. To a solution of the crude ketone in MeOH (50 mL) at -78 °C was added NaBH₄ (159 mg, 4.42 mmol, 2.0 equiv), and the resulting mixture was stirred at – 78 °C for 45 min. The reaction mixture was then guenched with H₂O (2 mL), warmed to 25 °C, and concentrated. The residue was partitioned between EtOAc (50 mL) and sat. aq. NH₄Cl (50 mL), the aqueous layer was extracted with EtOAc (2×30 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 4:1) gave the desired inverted A ring secondary alcohol 20 (1.02 g, 1.41 mmol, 64% yield over the two steps) as a pale yellow oil (The region- and stereoisomeric secondary alcohol derived from the minor isomer present in starting material 19 was removed at this stage). **20:** $R_f = 0.22$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -14.7$ (CH₂Cl₂, c = 1.09); IR (film) v_{max} 3483, 3030, 2962, 2926, 2871, 1724, 1496, 1479, 1454, 1364, 1284, 1207, 1156, 1110, 1065, 1028, 735, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.38-7.27$ (m, 20 H), 5.00 (d, J = 11.4 Hz, 1 H), 4.71 (d, J = 11.4 Hz, 1 H), 4.67 (d, J = 11.4 Hz, 1 H), 4.56 (d, J = 11.4 Hz, 1 Hz) H), 4.53-4.47 (m, 4 H), 4.18 (t, J = 2.4 Hz, 1 H), 4.05-3.96 (m, 3 H), 3.64-3.60 (m, 2 H), 3.53-4.47 (m, 4 H), 4.18 (t, J = 2.4 Hz, 1 H), 4.05-3.96 (m, 3 H), 3.64-3.60 (m, 2 H), 3.53-4.473.51 (m, 2 H), 3.38 (dd, J = 9.0, 7.2 Hz, 1 H), 3.34 (dd, J = 10.2, 2.4 Hz, 1 H), 2.95 (d, J = 5.4

Hz, 1 H), 2.35–2.30 (m, 1 H), 1.80–1.73 (m, 2 H), 1.66–1.57 (m, 2 H), 1.19 (s, 9 H), 0.75 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.6$, 138.9, 138.8, 138.2, 137.7, 128.44, 128.39, 128.37, 128.28, 127.93, 127.91, 127.86, 127.82, 127.7, 127.6, 127.5, 127.4, 80.2, 76.3, 75.9, 74.7, 73.3, 73.2, 72.9, 71.6, 71.2, 70.6, 64.4, 38.7, 32.9, 27.2, 26.2, 24.5, 9.9 ppm; HRMS (ESI-TOF); calcd for $C_{45}H_{56}O_{8}$ [M + H⁺]: 725.4048, found 725.4043.

A Ring diol 20a. To a stirred solution of A ring inverted secondary alcohol 20 (2.16 g, 2.98 mmol, 1.0 equiv) in CH₂Cl₂ (25 mL) at -78 °C was added Dibal-H (1.0 M in CH₂Cl₂, 7.45 mL, 7.45 mmol, 2.5 equiv), and the reaction mixture was stirred at -78 °C for 1 h. The reaction mixture was then diluted in EtOAc (30 mL) and quenched with sat. aq. Rochelle's salt (50 mL). The resulting biphasic mixture was stirred vigorously for 16 h. The mixture was then extracted with EtOAc (3 × 30 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:2) yielded A ring diol **20a** (1.58 g, 2.47 mmol, 83% yield) as a pale yellow oil. **20:** $R_{\rm f} = 0.29$ (silica gel, hexanes: EtOAc 2:3); $[\alpha]_D^{32} = -17.3$ (CH₂Cl₂, c = 0.99); IR (film) v_{max} 3434, 3030, 2922, 2870, 1496, 1454, 1363, 1207, 1105, 1062, 1027, 735, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta =$ 7.38-7.27 (m, 20 H), 5.00 (d, J = 11.4 Hz, 1 H), 4.71 (d, J = 11.4 Hz, 1 H), 4.67 (d, J = 11.4 Hz, 1 H), 4.56 (d, J = 11.4 Hz, 1 H), 4.53-4.47 (m, 4 H), 4.18 (t, J = 2.4 Hz, 1 H), 4.05-3.96 (m, 3 H), 3.64-3.60 (m, 2 H), 3.53-3.51 (m, 2 H), 3.38 (dd, J = 9.0, 7.2 Hz, 1 H), 3.34 (dd, J = 10.2, 2.4 Hz, 1 H), 2.95 (d, J = 5.4 Hz, 1 H), 2.35-2.30 (m, 1 H), 1.80-1.73 (m, 2 H), 1.66-1.57 (m, 2 H)H), 1.19 (s, 9 H), 0.75 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 138.9$, 138.8, 138.1, 137.7, 128.5, 128.41, 128.38, 128.3, 127.98, 127.95, 127.87, 127.81, 127.7, 127.59, 127.56, 127.4, 80.6, 76.3, 75.8, 75.6, 74.7, 73.24, 73.19, 72.9, 71.6, 71.1, 70.6, 62.9, 32.7, 28.5, 26.2, 9.9 ppm; HRMS (ESI-TOF); calcd for $C_{40}H_{48}O_7$ [M + H⁺]: 641.3473, found 641.3468.

AB Lactone 21. To a stirred solution of A ring diol **20a** (1.00 g, 1.56 mmol, 1.0 equiv) in CH₂Cl₂ (150 mL) at 25 °C were added TEMPO (49 mg, 0.31 mmol, 0.2 equiv) and PhI(OAc)₂ (2.59 g, 7.80 mmol, 5 equiv). After stirring at that temperature for 48 h, the reaction mixture was

quenched with sat. aq. Na₂S₂O₃ (75 mL), extracted with CH₂Cl₂ (3 × 50 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 4:1) yielded AB lactone 21 (914 mg, 1.44 mmol, 92% yield) as a pale yellow oil. **21:** $R_f = 0.33$ (silica gel, hexanes:EtOAc 1:3); $[\alpha]_D^{32} = -61.1$ $(CH_2Cl_2, c = 0.95)$; IR (film) v_{max} 3030, 2926, 2865, 1736, 1496, 1453, 1347, 1260, 1208, 1101, 1059, 1027, 736, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.46-7.24$ (m, 20 H), 4.99 (d, J =11.4 Hz, 1 H), 4.81 (d, J = 11.4 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.57–4.51 (m, 3 H), 4.50 (dd, J = 12.0, 1.2 Hz, 1 H), 4.46 (d, J = 12.0 Hz, 1 H), 4.40 (d, J = 12.0 Hz, 1 H), 4.30 (t, J = 2.4)Hz, 1 H), 4.13 (dd, J = 9.6, 1.8 Hz, 1 H), 3.78–3.76 (m, 2 H), 3.53 (dd, J = 9.0, 7.2 Hz, 1 H), 3.39 (dd, J = 9.0, 7.2 Hz, 1 H), 3.32 (dd, J = 9.6, 1.8 Hz, 1 H), 3.11 (dt, J = 7.2, 1.2 Hz, 1 H), 2.42 (dd, J = 15.0, 6.6 Hz, 1 H), 2.37 (dq, J = 6.6, 1.6 Hz, 1 H), 1.98 (m, 1 H), 1.69 (t, J = 7.8 H)Hz, 1 H), 0.81 (d, J = 6.6 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 174.5$, 138.9, 138.69, 138.66, 137.7, 128.4, 128.30, 128.28, 128.1, 127.94, 127.87, 127.85, 127.7, 127.6, 127.5, 127.4, 127.3, 75.7, 75.4, 75.2, 74.9, 74.7, 73.5, 73.3, 72.9, 72.8, 71.84, 71.82, 70.9, 32.6, 27.4, 25.7, 9.9

Keto furan 22a. To a stirred solution of freshly distilled furfuryl alcohol (52.2 mL, 600 mmol, 1.0 equiv) in CH₂CL₂ (1.2 L) at 25 °C were added imidazole (61.3 g, 900 TBDPSO mmol, 1.5 equiv) and TBDPSCl (156 mL, 600 mmol, 1.0 equiv), and the reaction mixture was stirred at 25 °C for 30 min. The resulting mixture was then quenched with sat. aq. NH₄Cl (1.0 L) and extracted with CH₂Cl₂ (3 × 500 mL). The combined organic layers were washed with brine (1.0 L), dried (MgSO₄), and concentrated to afford TBDPS-protected furfuryl alcohol 22 (202 g, 600 mmol, quant. yield) of sufficient purity to carry on to the next step. To a stirred solution of furan derivative 22 (193 g, 573 mmol, 1.2 equiv) in THF (1.0 L) at -78 °C was added n-BuLi (2.5 M in hexanes, 230 mL, 573 mmol, 1.2 equiv), and the reaction mixture was allowed to warm to 0 °C, stirred for 1 h, then re-cooled to -78 °C. To this mixture was added amide 23³ (116 g, 477 mmol, 1.0 equiv), and the mixture was warmed to 0 °C and

ppm; HRMS (ESI-TOF); calcd for $C_{40}H_{44}O_7$ [M + H⁺]: 637.3160, found 637.3157.

stirred for 1 h. The reaction mixture was quenched with sat. aq. NH₄Cl (500 mL), and the, extracted with EtOAc (3 × 500 mL). The combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave keto furan **20a** (203 g, 400 mmol, 84% yield) as a colorless oil. **20a**: $R_f = 0.67$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 2926, 1711, 1362, 1265, 1221, 910, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.69-7.65$ (m, 4 H), 7.43 (s, 1 H), 7.42–7.35 (m, 6 H), 6.37 (d, J = 3.5 Hz, 1 H), 4.72 (s, 2 H), 4.66 (s, 2 H), 1.08 (s, 9 H), 0.99 (t, J = 7.9 Hz, 9 H), 0.68 (d, J = 8.0 Hz, 6 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 187.15$, 159.21, 150.59, 135.93, 135.20, 133.26, 130.33, 130.03, 128.22, 128.20, 128.19, 128.11, 119.35, 109.71, 77.67, 77.41, 77.16, 67.00, 59.66, 31.99, 27.12, 26.97, 23.05, 19.65, 14.51, 7.09, 7.08, 4.83, 4.82 ppm; HRMS (ESI-TOF); calcd for $C_{29}H_{40}O_4Si_2$ [M + Na⁺]: 531.2363, found 531.2361.

Pivaloate 24. To a stirred solution of keto furan 22a (203 g, 400 mmol, 1.0 equiv) in CH₂Cl₂:MeOH (5:1, 1.2 L) at 25 °C was added CSA (9.3 g, 40 mmol, 0.1 TBDPSO equiv), and the reaction mixture was stirred at 25 °C for 1 h. The resulting mixture was quenched with sat. aq. NaHCO₃ (400 mL) and extracted with CH₂Cl₂ (3 × 500 mL). The combined organic layers were dried (MgSO₄) and concentrated. To the resulting crude primary alcohol in CH₂Cl₂ (1.0 L) at 25 °C were added Et₃N (184 mL, 1320 mmol, 2.0 equiv) and PivCl (98 mL, 792 mmol, 1.2 equiv), and the reaction mixture was stirred at that temperature for 12 h. The reaction mixture was quenched with sat. aq. NaHCO₃ (500 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 500 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave pivaloate 24 (293 g, 613 mmol, 93% yield) as a light yellow oil. 24: $R_{\rm f} = 0.65$ (silica gel, hexanes: EtOAc 4:1); IR (film) v_{max} 2932, 1735, 1428, 1112, 821, 741, 701, 607, 519, 526 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.68$ (dt, J = 8.4, 1.2 Hz, 4 H), 7.51–7.35 (m, 6 H), 7.18 (dd, J= 3.6, 1.8 Hz, 1H), 6.41-6.32 (m, 1 H), 5.06 (d, J = 1.8 Hz, 2 H), 4.74-4.67 (m, 2 H), 1.30 (d, J = 1.8 Hz)= 1.8 Hz, 9 H), 1.08 (d, J = 1.8 Hz, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 182.44$, 178.63, 159.81, 150.58, 136.20, 133.42, 130.64, 128.52, 119.13, 110.38, 65.79, 59.81, 39.48, 27.90, 27.38, 19.91 ppm; HRMS (ESI-TOF); calcd for $C_{28}H_{34}O_5Si$ [M + Na⁺]: 501.2068, found 501.2070.

Secondary alcohol 25. To a vigorously stirred solution of pivaloate **24** (146 g, 305 mmol, 1.0 equiv) in CH₂Cl₂:H₂O (1:1, 1.5 L) at 25 °C were added n-Bu₄NCl (25 g, 92 TBDPSO mmol, 0.3 equiv), HCO₂Na (207 g, 3050 mmol, 10.0 equiv), and cat. ent-13 (3.8 g, 6.1 mmol, 0.02 equiv), and the reaction mixture was vigorously stirred at that temperature for 24 h. The reaction mixture was then diluted with H₂O (500 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 500 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) provided secondary alcohol 25 [137 g, 286 mmol, 94% yield, ≥95% ee (as measured by ¹H NMR spectroscopic analysis of the corresponding Naproxen[®] ester)] as a colorless oil. **25:** $R_f = 0.34$ (silica gel, hexanes: EtOAc 4:1); $[\alpha]_D^{32} = +8.7$ (CHCl₃, c = 1.0); IR (film) v_{max} 3450, 2959, 2859, 1731, 1480, 1428, 1364, 1283, 1155, 1112, 1069, 940, 823, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta =$ 7.68 (dt, J = 8.4, 1.2 Hz, 4 H), 7.40 (dt, J = 14.4, 7.2 Hz, 6 H), 6.22 (d, J = 3.0 Hz, 1 H), 6.10 (d, J = 3.0 Hz, 1 H), 4.87 (dd, J = 6.6, 4.8 Hz, 1 H), 4.63 (s, 2 H), 4.33 (t, J = 5.4 Hz, 2 H), 1.19 (s, 9 H), 1.05 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 178.80$, 157.54, 154.57, 152.58, 145.45, 135.94, 134.92, 134.61, 133.36, 130.39, 126.45, 126.15, 108.46, 108.27, 103.34, 81.97, 77.58, 77.37, 77.16, 74.24, 66.89, 66.75, 63.88, 59.18, 58.55, 39.12, 27.50, 27.44, 27.10, 19.60, 18.38 ppm; HRMS (ESI-TOF); calcd for $C_{28}H_{36}O_5Si$ [M + Na⁺]: 503.2224, found 503.2227.

D Ring enone 26. To a stirred solution of secondary alcohol **25** (128 g, 266 mmol, 1.0 equiv) in CH₂Cl₂ (1.2 L) at 0 °C was added dry *m*-CPBA (92 g, 532 mmol, 1.2 equiv), and the reaction mixture was warmed to 25 °C and stirred for 2 h. Me₂S (24 mL, 320 mmol, 1.2 equiv) was then added to the reaction mixture, which was subsequently quenched with sat. aq. NaHCO₃ (400 mL). The biphasic mixture was extracted with CH₂Cl₂ (3 × 400 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The resulting

crude hemiacetal was carried on to the next step without further purification. To a stirred solution of the crude hemiacetal in CH₂Cl₂ (1.2 L) at -78 °C were added Et₃SiH (130 mL, 792 mmol, 3.0 equiv) and BF₃•OEt₂ (67 mL, 532 mmol, 2.0 equiv), and the reaction mixture was warmed to -20 °C and stirred for 3 h. The reaction mixture was then quenched with sat. aq. NaHCO₃ (500 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 400 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave D ring enone 26 (94 g, 196 mmol, 74% yield over the two steps) as a colorless oil. **26:** $R_f = 0.55$ (silica gel, hexanes:EtOAc 1:1); $[\alpha]_D^{32} = +36.0$ (C₆H₆, c =1.0); IR (film) ν_{max} 2930, 1732, 1698, 1462, 1428, 1279, 1155, 1113, 823, 747, 702 cm⁻¹; ^{1}H NMR (500 MHz, C_6D_6): $\delta = 7.71$ (ddd, J = 5.4, 3.6, 1.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 3.8 Hz, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 4 H), 7.25–7.21 (m, 6 H), 6.47 (dd, J = 5.4, 8 Hz, = 10.4, 1.2 Hz, 1 H), 5.90 (dd, J = 10.4, 2.4 Hz, 1 H), 4.65 (dd, J = 12.0, 2.4 Hz, 1 H), 4.52 (dd, J = 10.4, 1.2 Hz), = 12.0, 5.6 Hz, 1 H), 3.93 (d, J = 1.8 Hz, 1 H), 3.82–3.74 (m, 1 H), 3.67 (dd, J = 10.4, 5.4 Hz, 1 H), 3.56 (dd, J = 10.4, 5.4 Hz, 1 H), 1.13 (d, J = 4.8 Hz, 18 H) ppm; ¹³C NMR (125 MHz, C₆D₆): $\delta = 192.59, 177.56, 148.51, 135.92, 133.40, 133.35, 130.17, 130.16, 128.26, 128.16, 128.11,$ 128.09, 127.97, 127.78, 127.50, 78.71, 74.79, 65.59, 63.08, 38.77, 27.21, 26.96, 26.94, 26.93, 19.39 ppm; HRMS (ESI-TOF); calcd for $C_{28}H_{36}O_5Si$ [M + Na⁺]: 503.2224, found 503.2228.

D Ring tertiary alcohol 26a. To a stirred solution of D ring enone **26** (77 g, 160 mmol, 1.0 equiv) in THF (800 mL) at -78 °C was added MeMgBr (3.0 M in Et₂O, 107 mL, 320 mmol, 2.0 equiv), and the reaction mixture was stirred at -78 °C for 2 h. The reaction mixture was then quenched with sat. aq. NH₄Cl (400 mL), the biphasic mixture was extracted with EtOAc (3 × 400 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring tertiary alcohol **26a** (63 g, 128 mmol, 80% yield) as a colorless oil. **26a**: $R_f = 0.19$ (silica gel, hexanes:EtOAc 4:1); [α]_D³² = +43.0 (CHCl₃, c = 1.0); IR (film) v_{max} 3681, 3452, 2966, 2935, 1729, 1480, 1461, 1428, 1392, 1362, 1286, 1159, 1107, 1056, 1033, 914, 823, 800, 739, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ = 7.76–7.66 (m, 4 H), 7.50–

7.37 (m, 6 H), 5.77 (dd, J = 10.4, 1.8 Hz, 2 H), 4.39 (d, J = 3.6 Hz, 1 H), 4.28 (ddd, J = 7.2, 3.6, 1.8 Hz, 1 H), 4.19 (s, 1 H), 3.71 (d, J = 5.4 Hz, 1 H), 3.70–3.63 (m, 2 H), 1.26 (s, 3 H), 1.23 (s, 9 H), 1.08 (s, 10 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.89$, 136.04, 135.95, 134.98, 133.85, 133.73, 130.02, 130.00, 127.98, 127.96, 127.95, 127.12, 79.32, 77.58, 77.37, 77.16, 76.46, 68.61, 66.61, 63.75, 60.77, 39.11, 27.51, 27.13, 22.53, 19.60 ppm; HRMS (ESI-TOF); calcd for $C_{29}H_{40}O_5Si$ [M + Na⁺]: 519.2537, found 519.2537.

D Ring TMS ether 27. To a stirred solution of D ring tertiary alcohol **26a** (63 g, 128 mmol, 1.0

equiv) in CH₂Cl₂ (600 mL) at -78 °C were added Et₃N (45 mL, 320 mmol, 2.5 equiv) and TMSOTf (35 mL, 192 mmol, 1.5 equiv), and the reaction mixture was stirred at -78 °C for 1 h. The reaction mixture was then quenched with sat. aq. NaHCO₃ (300 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 300 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1) gave D ring TMS ether 27 (71 g, 125 mmol, 98% yield) as a colorless oil. **27:** $R_f = 0.69$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = +32.6$ (CHCl₃, c = 1.0); IR (film) v_{max} 2959, 1731, 1480, 1428, 1366, 1284, 1252, 1216, 1162, 1112, 1033, 867, 841, 756, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.68$ (ddd, J = 8.4, 6.0, 1.2 Hz, 4 H), 7.37 (dd, J = 6.6, 1.2 Hz, 6 H), 5.82 (dd, J = 10.4, 2.4 Hz, 1 H), 5.69 (dd, J = 10.4, 1.2 Hz, 1 H), 4.35 (dd, J = 11.4, 1.8 Hz, 1 H), 4.25 (s, 1 H), 4.10 (dd, J = 11.4, 9.0 Hz, 1 H), 3.69 (dd, J = 11.4, 1.8 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 H), 3.69 (dd, J = 11.4, 9.1 Hz, 1 = 11.4, 6.0 Hz, 1 H), 3.66 (dd, J = 8.4, 1.8 Hz, 1 H), 3.61 (dd, J = 10.2, 5.4 Hz, 1 H), 1.20 (s, 9) H), 1.16 (s, 3 H), 1.05 (s, 9 H), 0.15 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 179.05$, 136.05, 135.96, 135.56, 133.90, 130.00, 129.98, 127.98, 127.95, 126.36, 79.89, 77.58, 77.37, 77.16, 76.43, 71.15, 66.70, 63.74, 39.10, 27.54, 27.14, 24.14, 19.61, 2.86 ppm; HRMS (ESI-TOF); calcd for $C_{32}H_{48}O_5Si_2$ [M + Na⁺]: 591.2932, found 591.2929.

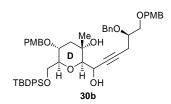
D Ring secondary alcohol 27a. To a stirred solution of D ring TMS ether **27** (57 g, 100 mmol, 1.0 equiv) in THF (400 mL) at -78 °C was added diisoamylborane (1.0 M in THF, 400 mL, 400 mmol, 4.0 equiv), and the reaction mixture was warmed to 0 °C and stirred for 72 h. The

reaction mixture was quenched by the slow addition of 1.0 M ag. NaOH (400 mL) and 35% H₂O₂ (120 mL), and the biphasic mixture was warmed to 25 °C and vigorously stirred for 5 h. The mixture was diluted with EtOAc (800 mL), the layers were separated, and the organic layer was washed with sat. aq. Na₂SO₃ (800 mL) and brine (800 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring secondary alcohol 27a (44 g, 75 mmol, 75% yield) as a colorless oil. **27a:** $R_f = 0.45$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = +23.6$ (CHCl₃, c =1.0); IR (film) v_{max} 2959, 2859, 1729, 1480, 1428, 1280, 1214, 1167, 1052, 1007, 866, 841, 753, 702, 668 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.68$ (ddd, J = 7.8, 2.4, 1.2 Hz, 4 H), 7.48–7.35 (m, 6 H), 4.29 (dd, J = 11.4, 1.8 Hz, 1 H), 3.98 (dd, J = 11.4, 8.4 Hz, 1 H), 3.90 (dd, J = 10.4, 4.2)Hz, 1 H), 3.84-2.76 (m, 2 H), 3.38 (dd, J = 8.4, 1.8 Hz, 1 H), 3.33-3.22 (m, 1 H), 3.11 (d, J = 2.4Hz, 1 H), 2.25 (dd, J = 11.4, 4.8 Hz, 1 H), 1.71 (t, J = 11.4 Hz, 1 H), 1.22 (s, 3 H), 1.14 (s, 9 H), 1.06 (s, 9 H), 0.85 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 178.98$, 135.93, 135.89, 132.90, 132.83, 130.34, 130.32, 128.20, 82.59, 80.36, 77.58, 77.37, 77.16, 72.75, 68.95, 66.59, 63.50, 48.55, 39.05, 27.48, 27.14, 22.63, 19.48, 2.92 ppm; HRMS (ESI-TOF); calcd for $C_{32}H_{50}O_6Si_2$ [M + Na⁺] 609.3038, found 609.3036.

D Ring PMB ether 28. To a stirred solution of D ring secondary alcohol **27a** (28 g, 47 mmol, PMBO, PMBO, 1.0 equiv) in PhMe (300 mL) at 25 °C were added PMBOC(NH)CCl₃ (26 g, 94 mmol, 2.0 equiv) and La(OTf)₃ (1.4 g, 2.4 mmol, 0.05 equiv), and the reaction mixture was stirred at 25 °C for 3 h. The reaction mixture was then concentrated and purified by flash column chromatography (silica gel, hexanes:EtOAc 9:1) to give D ring PMB ether **28** (30 g, 43 mmol, 96% yield) as a colorless oil. **28**: R_f = 0.37 (silica gel, hexanes:EtOAc 9:1); [α]_D³² = +6.0 (CH₂Cl₂, c = 1.44); IR (film) v_{max} 2957, 2931, 2858, 1728, 1612, 1587, 1513, 1462, 1428, 1283, 1250, 1170, 1138, 1111, 1085, 1036, 1008, 864, 840, 823, 742, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.75–7.71 (m, 4 H), 7.43–7.35 (m, 6 H), 7.19–7.17 (m, 2 H), 6.84–6.83 (m, 2 H), 4.54 (d, J = 10.8 Hz, 1 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.44 (d, J = 10.8 Hz, 1 H), 4.45 (d, J = 10.8 Hz, 1 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.44 (d, J = 10.8 Hz, 1 H), 4.44 (d, J = 10.8 Hz, 1 H), 4.45 (d, J = 10.8 Hz, 1 H), 4.46 (d, J = 1

 $J = 10.8 \text{ Hz}, 1 \text{ H}), 4.08 \text{ (dd, } J = 11.4, 8.4 \text{ Hz}, 1 \text{ H}), 3.90 \text{ (m, 2 H)}, 3.80 \text{ (s, 3 H)}, 3.71–3.66 \text{ (m, 1 H)}, 3.43 \text{ (d, } J = 7.8 \text{ Hz}, 1 \text{ H)}, 3.28 \text{ (d, } J = 9.0 \text{ Hz}, 1 \text{ H)}, 2.24 \text{ (dd, } J = 11.4, 4.8 \text{ Hz}, 1 \text{ H)}, 1.65 \text{ (t, } J = 11.4 \text{ Hz}, 1 \text{ H)}, 1.25 \text{ (s, 3 H)}, 1.18 \text{ (s, 9 H)}, 1.05 \text{ (s, 9 H)}, 0.13 \text{ (s, 9 H)} \text{ ppm;} ^{13}\text{C NMR (150 MHz, CDCl₃): } \delta = 178.8, 159.2, 135.8, 135.6, 133.9, 133.3, 130.4, 129.50, 129.47, 129.38, 127.6, 127.5, 113.8, 80.1, 81.5, 72.7, 71.4, 71.2, 63.7, 63.0, 55.3, 46.2, 38.7, 27.2, 26.7, 22.2, 19.3, 2.6 \text{ ppm; HRMS (ESI-TOF); calcd for C₄₀H₅₈O₇Si₂ [M + Na⁺]: 729.3613, found 729.3602.$

D Ring primary alcohol 29. To a stirred solution of D ring PMB ether **29** (53 g, 76 mmol, 1.0 equiv) in CH₂Cl₂ (380 mL) at -78 °C was added Dibal-H (1.0 M in CH₂Cl₂, 168 mL, 168 mmol, 2.2 equiv), and the reaction mixture was stirred at the TBDPSO same temperature for 1 h. The reaction mixture was diluted in EtOAc (400 mL), then quenched with sat. aq. Rochelle's salt (600 mL) and stirred vigorously for 16 h. The biphasic mixture was extracted with EtOAc (3 × 400 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded D ring primary alcohol 29 (40 g, 64 mmol, 84% yield) as a colorless oil. 29: $R_{\rm f} = 0.44$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -7.7$ (CH₂Cl₂, c = 1.13); IR (film) v_{max} 3503, 2951, $2939,\ 2857,\ 1612,\ 1513,\ 1463,\ 1428,\ 1250,\ 1173,\ 1137,\ 1112,\ 1077,\ 1035,\ 999,\ 873,\ 840,\ 822,$ 742, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.74-7.70$ (m, 4 H), 7.45–7.36 (m, 6 H), 7.23– 7.22 (m, 2 H), 6.87–6.86 (m, 2 H), 4.56 (d, J = 10.8 Hz, 1 H), 4.49 (d, J = 10.8 Hz, 1 H), 3.97 (dd, J = 11.4, 3.6 Hz, 1 H), 3.89 (d, J = 11.4 Hz, 1 H), 3.80 (s, 3 H), 3.80-3.76 (m, 1 H), 3.72-3.68 (m, 1 H), 3.57–3.53 (m, 1 H), 3.29 (dd, J = 7.8, 4.2 Hz, 1 H), 3.26 (dt, J = 9.0, 1.8 Hz, 1 H), 2.22 (dd, J = 11.4, 4.8 Hz, 1 H), 2.07 (dd, J = 8.4, 4.2 Hz, 1 H), 1.65 (t, J = 11.4 Hz, 1 H), 1.22 (s, 3 H), 1.07 (s, 9 H), 0.13 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 159.3$, 135.8, 135.6, 133.8, 133.4, 130.4, 129.64, 129.62, 129.4, 127.6, 127.5, 113.8, 83.2, 81.3, 73.4, 71.4, 71.1, 62.8, 61.7, 55.3, 46.0, 26.8, 22.1, 19.3, 2.5 ppm; HRMS (ESI-TOF); calcd for $C_{35}H_{50}O_6Si_2$ [M + Na⁺]: 645.3038, found 645.3035.


Alkyne 31. To a stirred solution of (R)-1-((4-methoxybenzyl)oxy)-5-(trimethylsilyl)pent-4-yn- 2-ol^4 (42 g, 142 mmol, 1.0 equiv) in THF (500 mL) at 0 °C were added BnBr (34 mL, 284 mmol, 2.0 equiv), n-Bu₄NI (5.3 g, 14 mmol, 0.1 equiv), and NaH (60% in mineral oil, 11.4 g, 284 mmol, 2.0 equiv), and the reaction mixture was warmed to 25 °C and stirred for 24 h. The resulting mixture was then quenched slowly with H₂O (300 mL), the biphasic mixture was extracted with EtOAc (3 × 500 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The crude benzyl ether was taken on to the next step without further purification. To a stirred solution of the crude benzyl ether in THF (500 mL) at 25 °C was added TBAF (1.0 M in THF, 284 mL, 284 mmol, 2.0 equiv), and the resulting mixture was stirred at the same temperature for 2 h before it was quenched with sat. aq. NH₄Cl (300 mL) and extracted with EtOAc (3 × 500 mL). The combined organic layers were dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave alkyne 31 (40 g, 130 mmol, 92% yield over the two steps) as a yellow oil. 31: $R_{\rm f}$ = 0.35 (silica gel, hexanes:EtOAc 17:3); $[\alpha]_D^{32} = -4.3$ (CH₂Cl₂, c = 1.04); IR (film) v_{max} 3291, 3027, 2906, 2863, 1612, 1586, 1513, 1454, 1350, 1302, 1247, 1173, 1092, 1034, 820, 738, 698 cm^{-1} ; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.37 - 7.32$ (m, 4 H), 7.29 - 7.26 (m, 3 H), 6.89 - 6.87 (m, 2 H), 4.69 (d, J = 12.0 Hz, 1 H), 4.66 (d, J = 12.0 Hz, 1 H), 4.50 (s, 2 H), 3.81 (s, 3 H), 3.75 (quin, J = 5.4 Hz, 1 H), 3.64–3.59 (m, 2 H), 2.55 (ddd, J = 16.8, 6.0, 2.4 Hz, 1 H), 2.49 (ddd, J = 16.8, 5.4, 3.0 Hz, 1 H), 1.99 (t, J = 3.6 Hz, 1 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 159.1$, 138.3, 130.3, 129.2, 128.3, 127.7, 127.6, 113.7, 80.8, 76.2, 73.1, 71.9, 70.9, 69.9, 55.2, 21.6 ppm; HRMS (ESI-TOF); calcd for $C_{20}H_{22}O_3$ [M + Na⁺]: 333.1461, found 333.1451.

D Ring propargylic alcohol 30a. To a stirred solution of D ring primary alcohol **29** (35 g, 57

mmol, 1.0 equiv) in CH₂Cl₂ (600 mL) at 25 °C were added NaHCO₃ (24 g, 285 mmol, 5.0 equiv) and DMP (36 g, 85 mmol, 1.5 equiv), and the reaction mixture was stirred at 25 °C for 1 h. The resulting mixture was then quenched with sat. aq. NaHCO₃/sat. aq. Na₂S₂O₃ (1:1, 200

mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 200 mL), the combined organic extracts were washed with NaHCO₃ (200 mL) and brine (200 mL), and then dried (MgSO₄) and concentrated. The crude aldehyde so obtained (30) was carried on to the next step without further purification. To a stirred solution of alkyne 31 (44 g, 142 mmol, 2.5 equiv) in THF (500 mL) at -78 °C was added n-BuLi (2.5 M in hexanes, 22.8 mL, 57 mmol, 2.5 equiv), and the reaction mixture was warmed to -40 °C and stirred at 10 min. The reaction mixture was then cooled to -78 °C, and a cold (-78 °C) solution of the crude aldehyde 30 in THF (90 mL) was added via cannula with stirring. The reaction mixture was warmed to -50 °C and stirred for 1.5 h before it was quenched with sat. aq. NH₄Cl (300 mL). The resulting biphasic mixture was extracted with EtOAc (3×300 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave D ring propargylic alcohol 30a (45 g, 49 mmol, 86% yield over the two steps, ca. 7:1 dr) as a colorless **30a** (major diastereomer): $R_{\rm f} = 0.39$ (silica gel, hexanes:EtOAc 4:1); $\lceil \alpha \rceil_{\rm D}^{32} = -11.7$ $(CH_2Cl_2, c = 0.99)$; IR (film) v_{max} 3564, 2946, 2933, 2858, 1612, 1587, 1513, 1463, 1428, 1389, 1302, 1249, 1173, 1112, 1037, 995, 840, 742, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.74$ – 7.69 (m, 4 H), 7.42–7.28 (m, 10 H), 7.25–7.20 (m, 5 H), 6.86–6.84 (m, 4 H), 4.65 (d, J = 11.4Hz, 1 H), 4.61 (d, J = 12.0 Hz, 1 H), 4.58-4.55 (m, 1 H), 4.54 (d, J = 11.4 Hz, 1 H), 4.47 (d, J = 11.4 Hz, 1 Hz, 10.8 Hz, 1 H), 4.44 (s, 2 H), 3.95–3.90 (m, 2 H), 3.80 (s, 3 H), 3.79 (s, 3 H), 3.74–3.68 (m, 2 H), 3.62 (dd, J = 10.2, 4.2 Hz, 1 H), 3.55 (dd, J = 10.2, 6.0 Hz, 1 H), 3.33 (d, J = 9.6 Hz, 1 H), 3.25(d, J = 3.6 Hz, 1 H), 2.58 (d, J = 9.0 Hz, 1 H), 2.50 (d, J = 6.0 Hz, 1 H), 2.21 (dd, J = 11.4, 4.2)Hz, 1 H), 1.63–1.59 (m, 2 H), 1.33 (s, 3 H), 1.06 (s, 9 H), 0.13 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 159.3$, 159.1, 138.4, 135.6, 135.5, 133.7, 133.3, 130.4, 130.3, 129.71, 129.66, 129.4, 129.2, 128.3, 127.7, 127.5, 113.8, 113.7, 84.6, 82.2, 81.9, 80.7, 76.7, 73.4, 73.0, 71.9, 71.4, 70.9, 62.6, 60.4, 55.3, 55.2, 46.4, 26.8, 23.1, 22.1, 19.3, 2.6 ppm; HRMS (ESI-TOF); calcd for $C_{55}H_{70}O_9Si_2$ [M + Na⁺]: 953.4450, found 953.4439.

D Ring diol 30b. To a stirred solution of D ring propargylic alcohol 30a (ca. 7:1 mix of

diastereomers, 45 g, 49 mmol, 1.0 equiv) in MeOH (500 mL) at 25 °C was added K_2CO_3 (34 g, 245 mmol, 5.0 equiv), and the reaction mixture was stirred at 25 °C for 30 min. The reaction mixture was then concentrated, and the resulting residue was purified by flash column

chromatography (silica gel, hexanes:EtOAc 2:1) to provide D ring diol **30b** (41 g, 48.5 mmol, 99% yield, ca. 7:1 dr) as a pale yellow oil. **30b** (major diastereomer): $R_f = 0.32$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_D^{32} = -8.4$ (CH₂Cl₂, c = 1.14); IR (film) v_{max} 3531, 2931, 2857, 1612, 1586, 1513, 1463, 1427, 1359, 1302, 1247, 1173, 1111, 1074, 1035, 822, 742, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.71$ –7.68 (m, 4 H), 7.45–7.28 (m, 12 H), 7.25–7.22 (m, 3 H), 6.89–6.85 (m, 4 H), 4.64 (d, J = 12.0 Hz, 1 H), 4.60 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 10.8 Hz, 1 H), 4.47 (s, 2 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.28 (dq, J = 7.8, 1.8 Hz, 1 H), 3.98 (dd, J = 11.4, 3.6 Hz, 1 H), 3.87 (dd, J = 11.4, 1.8 Hz, 1 H), 3.80 (s, 3 H), 3.79 (s, 3 H), 3.72–3.68 (m, 2 H), 3.59–3.54 (m, 2 H), 3.27–3.26 (m, 2 H), 3.10 (s, 1 H), 2.61 (ddd, J = 10.2, 6.0, 1.8 Hz, 1 H), 2.55 (ddd, J = 10.2, 4.8, 1.8 Hz, 1 H), 2.50 (d, J = 1.8 Hz, 1 H), 2.22 (dd, J = 12.0, 4.2 Hz, 1 H), 1.68 (s, 1 H), 1.61 (t, J = 11.4 Hz, 1 H), 1.23 (s, 3 H), 1.07 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 159.21$, 159.18, 138.0, 135.7, 135.5, 133.6, 133.4, 130.2, 130.1, 129.8, 129.7, 129.4, 129.3, 128.3, 127.9, 127.69, 127.67, 127.58, 113.8, 113.7, 85.6, 85.3, 81.4, 78.9, 75.2, 73.0, 71.6, 71.0, 70.7, 70.5, 69.9, 62.5, 61.9, 55.2, 44.2, 31.6, 26.8, 22.6, 19.3, 14.1 ppm; HRMS (ESITOF); calcd for C₅₂H₆₂O₉Si [M + Na⁺]: 881.4055, found 881.4047.

D Ring ynone 32. To a stirred solution of D ring diol 30b (41 g, 48.5 mmol, 1.0 equiv) in CH₂Cl₂ (500 mL) at 25 °C was added DMP (30 g, 72 mmol, 1.5 equiv), and the reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was then quenched with sat. aq. NaHCO₃:sat. aq. Na₂S₂O₃ (1:1, 200 mL) and stirred vigorously for 30 min. The biphasic mixture was then extracted with

CH₂Cl₂ (3 × 200 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica

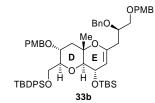
gel, hexanes:EtOAc 4:1) yielded D ring ynone **32** (38 g, 44 mmol, 91%) as a pale yellow oil. **32:** $R_f = 0.26$ (silica gel, hexanes:EtOAc 15:7); $[\alpha]_D^{32} = -32.8$ (CH₂Cl₂, c = 0.89); IR (film) v_{max} 3508, 2932, 2857, 2212, 1737, 1664, 1612, 1513, 1462, 1427, 1361, 1302, 1247, 1173, 1111, 1087, 1034, 822, 742, 703 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 7.99$ –7.87 (m, 4 H), 7.33–7.21 (m, 8 H), 7.18–7.14 (m, 6 H), 7.09–7.06 (m, 1 H), 6.81–6.78 (m, 4 H), 4.39 (d, J = 10.8 Hz, 1 H), 4.38 (s, 2 H), 4.26 (s, 2 H), 4.22 (d, J = 11.4 Hz, 1 H), 4.06 (d, J = 2.4 Hz, 1 H), 3.77–3.72 (m, 1 H), 3.64 (s, 1 H), 3.57 (quin, J = 5.4 Hz, 1 H), 3.43 (dd, J = 10.2, 5.4 Hz, 1 H), 3.41–3.38 (m, 2 H), 3.30 (s, 3 H), 3.29 (s, 3 H), 3.21 (dt, J = 9.0, 2.4 Hz, 1 H), 2.57 (dd, J = 11.4, 5.4 Hz, 1 H), 2.49 (dd, J = 11.4, 6.0 Hz, 1 H), 2.33 (dd, J = 12.0, 4.8 Hz, 1 H), 1.71 (t, J = 12.0 Hz, 1 H), 1.36 (s, 3 H), 1.19 (s, 9 H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 188.1$, 159.8, 159.7, 138.8, 136.3, 136.0, 134.2, 133.8, 131.0, 130.6, 130.1, 130.0, 129.6, 129.5, 128.6, 128.4, 128.1, 128.02, 127.98, 127.86, 114.1, 114.0, 96.2, 87.3, 82.4, 82.2, 76.1, 73.2, 72.1, 71.5, 70.9, 70.8, 70.7, 63.2, 54.80, 54.77, 44.4, 27.0, 23.1, 22.8, 19.7 ppm; HRMS (ESI-TOF); calcd for C₅₂H₆₀O₉Si [M + Na⁺]: 879.3899, found 879.3897.

DE Pyranone 33. To a stirred solution of D ring ynone **32** (38 g, 44 mmol, 1.0 equiv) in CH₂Cl₂

(880 mL) at -45 °C was added AgOTf (10 g, 40 mmol, 0.9 equiv), and the reaction mixture was stirred at -45 °C for 20 h. The reaction mixture was then quenched with sat. aq. NaHCO₃ (400 mL), the biphasic mixture was warmed to 25 °C and extracted with CH₂Cl₂ (3 × 400 mL). The

combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) gave DE pyranone **32** (28 g, 33 mmol, 76% yield) as a yellow oil. **32:** $R_f = 0.46$ (silica gel, hexanes:EtOAc 3:2); $[\alpha]_D^{32} = -7.9$ (CH₂Cl₂, c = 1.14); IR (film) v_{max} 2932, 2856, 1692, 1611, 1513, 1463, 1427, 1360, 1302, 1248, 1112, 1082, 1033, 904, 822, 742, 703 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 8.14-8.13$ (m, 2 H), 7.99–7.95 (m, 2 H), 7.52–7.50 (m, 2 H), 7.35–7.16 (m, 12 H), 7.09–7.07 (m, 1 H), 6.82–6.79 (m, 4 H), 5.35 (s, 1 H), 4.50 (d, J = 11.4 Hz, 1 H), 4.46 (d, J = 10.8 Hz, 1 H), 4.41 (d, J = 12.0 Hz, 1 H), 4.37 (d, J = 11.4 Hz,

1 H), 4.29 (s, 2 H), 4.10 (dd, J = 12.0, 1.8 Hz, 1 H), 4.05 (dd, J = 11.4, 3.0 Hz, 1 H), 3.89 (ddd, J = 11.4, 9.6, 5.4 Hz, 1 H), 3.80 (quin, J = 5.4 Hz, 1 H), 3.76 (s, 1 H), 3.42 (dd, J = 10.2, 5.4 Hz, 1 H), 3.33–3.30 (m, 7 H), 3.16–3.14 (m, 1 H), 2.32–2.30 (m, 3 H), 1.76 (t, J = 5.4 Hz, 1 H), 1.27 (s, 3 H), 1.20 (s, 9 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 187.7$, 169.1, 159.94, 159.90, 139.1, 136.7, 136.2, 134.3, 133.3, 130.9, 130.6, 130.1, 130.0, 129.7, 129.6, 128.6, 128.4, 128.0, 127.81, 127.76, 114.21, 114.20, 104.7, 82.3, 80.7, 80.5, 76.0, 73.3, 72.1, 71.7, 71.5, 70.6, 62.8, 54.85, 54.80, 42.8, 38.0, 27.1, 19.6, 16.0 ppm; HRMS (ESI-TOF); calcd for $C_{52}H_{60}O_9Si$ [M + H⁺]: 857.4079, found 857.4085.


DE Allylic alcohol 33a. To a stirred solution of DE pyranone **33** (27 g, 32 mmol, 1.0 equiv) in

PhMe (320 mL) at -50 °C was added (*R*)-CBS (1.0 M in PhMe, 48 mL, 48 mmol, 1.5 equiv) followed by BH₃•THF (1.0 M in THF, 48 mL, 48 mmol, 1.5 equiv), and the reaction mixture was warmed to -20 °C and stirred for 1 h. The reaction mixture was then quenched with MeOH

(160 mL) followed by 1.0 M aq. NaOH (160 mL), and the biphasic mixture was warmed to 25 °C and stirred vigorously for 30 min. The biphasic mixture was extracted with EtOAc (3 × 300 mL), and the combined organic layers were washed with H₂O (300 mL) and brine (300 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded DE allylic alcohol **33a** (25 g, 29 mmol, 93% yield) as a colorless oil. **33a**: $R_f = 0.35$ (silica gel, hexanes:EtOAc 15:7); $[\alpha]_D^{32} = +3.0$ (CH₂Cl₂, c = 0.89); IR (film) v_{max} 3463, 2932, 2857, 1669, 1612, 1586, 1512, 1463, 1427, 1301, 1247, 1174, 1111, 1078, 1035, 980, 822, 740, 702 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 7.88-7.81$ (m, 4 H), 7.40–7.39 (m, 2 H), 7.26–7.17 (m, 12 H), 6.81–6.79 (m, 4 H), 4.76 (d, J = 1.8 Hz, 1 H), 4.68 (d, J = 11.4 Hz, 1 H), 4.58 (d, J = 12.0 Hz, 1 H), 4.46 (d, J = 11.4 Hz, 1 H), 4.38 (d, J = 12.0 Hz, 1 H), 4.35 (d, J = 12.0 Hz, 1 H), 4.30 (d, J = 11.4 Hz, 1 H), 4.11 (d, J = 8.4 Hz, 1 H), 4.05 (dd, J = 11.4, 3.6 Hz, 1 H), 3.98–3.96 (m, 2 H), 3.81 (ddd, J = 10.8, 9.0, 3.6 Hz, 1 H), 3.55–3.50 (m, 2 H), 3.31–3.29 (m, 7 H), 3.25–3.22 (m, 2 H), 2.40 (d, J = 6.0 Hz, 2 H), 2.33 (dd, J = 11.4, 4.8 Hz, 1 H), 1.71 (t, J = 5.4 Hz, 1

H), 1.18 (s, 9 H), 1.17 (s, 3 H) ppm; 13 C NMR (150 MHz, C_6D_6): $\delta = 159.82$, 159.76, 150.1, 139.8, 136.4, 136.1, 134.3, 134.0, 131.1, 131.0, 130.05, 130.03, 129.6, 129.5, 128.5, 128.1, 128.0, 127.7, 127.5, 114.15, 114.14, 100.7, 82.8, 82.2, 76.7, 75.4, 73.2, 72.6, 72.1, 71.0, 70.9, 66.2, 63.3, 54.81, 54.80, 43.1, 37.2, 27.2, 19.6, 17.3 ppm; HRMS (ESI-TOF); calcd for $C_{52}H_{62}O_9Si$ [M + Na⁺]: 881.4055, found 881.4045.

DE TBS-Protected allylic alcohol 33b. To a stirred solution of DE allylic alcohol **33a** (25 g, 29

mmol, 1.0 equiv) in CH₂Cl₂ (300 mL) at 25 °C were added TBSCl (26 g, 174 mmol, 6.0 equiv) and imidazole (20 g, 290 mmol 11 equiv), and the reaction mixture was stirred at 25°C for 1 h. The reaction mixture was then quenched with sat. aq. NH₄Cl (300 mL), the biphasic mixture was

extracted with CH₂Cl₂ (3 × 300 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) gave DE TBSprotected allylic alcohol 33b (27 g, 28 mmol, 98% yield) as a pale yellow oil. 33b: $R_{\rm f} = 0.28$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_D^{32} = +24.6$ (CH₂Cl₂, c = 0.81); IR (film) v_{max} 2931, 2856, 1671, 1613, 1513, 1463, 1428, 1302, 1248, 1173, 1082, 1036, 988, 836, 779, 739, 702 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.87 - 7.79$ (m, 4 H), 7.42 - 7.41 (m, 2 H), 7.29 - 7.14 (m, 12 H), 7.11 - 7.117.08 (m, 1 H), 6.81–6.80 (m, 4 H), 4.78 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 1.8 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 12.0 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 = 12.0 Hz, 1 H), 4.43 (d, J = 10.8 Hz, 1 H), 4.40–4.34 (m, 3 H), 4.27 (d, J = 10.8 Hz, 1 H), 4.05 (dd, J = 11.4, 3.0 Hz, 1 H), 4.02-3.99 (m, 2 H), 3.92 (ddd, J = 11.4, 9.6, 5.4 Hz, 1 H), 3.56-3.51(m, 2 H), 3.45 (d, J = 7.8 Hz, 1 H), 3.32 (s, 3 H), 3.30 (s, 3 H), 3.29-3.27 (m, 1 H), 2.44 (d, J =6.0 Hz, 2 H), 2.38 (dd, J = 11.4, 4.8 Hz, 1 H), 1.74 (t, J = 5.4 Hz, 1 H), 1.31 (s, 3 H), 1.22 (s, 9 H), 1.06 (s, 9 H), 0.25 (s, 3 H), 0.23 (s, 3 H) ppm; 13 C NMR (150 MHz, C_6D_6): $\delta = 159.8$, 159.7, 149.5, 139.9, 136.3, 136.1, 134.2, 133.9, 131.12, 131.10, 130.03, 129.99, 129.5, 129.3, 128.5, 128.13, 128.11, 127.7, 127.5, 114.13, 114.07, 102.2, 82.7, 82.3, 76.8, 75.8, 73.2, 72.6, 72.3, 71.2, 70.7, 67.5, 63.4, 54.82, 54.80, 43.2, 37.3, 27.2, 26.3, 19.7, 18.6, 17.3, -3.7, -4.3 ppm; HRMS (ESI-TOF); calcd for $C_{58}H_{76}O_9Si_2$ [M + Na⁺]: 995.4920, found 995.4907.

DE Secondary alcohol 34. To a stirred solution of DE TBS-protected allylic alcohol **33b** (24 g,

25 mmol, 1.0 equiv) in THF (250 mL) at 0 °C was added BH₃•THF (1.0 M in THF, 250 mL, 250 mmol, 10.0 equiv), and the reaction mixture was stirred at 0 °C for 18 h. The reaction mixture was then quenched by the slow addition of 1.0 M NaOH (500 mL) and 35% H₂O₂ (120 mL), and

the biphasic mixture was warmed to 25 °C and stirred vigorously for 5 h. The biphasic mixture was then diluted with EtOAc (1000 mL), the layers were separated, and the organic layer was washed with sat. aq. Na₂SO₃ (600 mL) and brine (600 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 7:3) gave DE secondary alcohol 34 (13.3 g, 13.5 mmol, 54% yield) as a colorless oil. 34: $R_f = 0.41$ (silica gel, hexanes: EtOAc 7:3); $[\alpha]_D^{32} = +23.6$ (CH₂Cl₂, c = 0.81); IR (film) v_{max} 3468, 2930, 2856, 1612, 1514, 1463, 1360, 1302, 1248, 1172, 1094, 837, 780, 740, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.69 - 7.66$ (m, 4 H), 7.42 - 7.26 (m, 12 H), 7.09 - 7.07 (m, 2 H), 6.83 - 6.81 (m, 4 H), 4.75 (d, J = 11.4 Hz, 1 H), 4.59 (d, J = 11.4 Hz, 1 H), 4.51-4.47 (m, 3 H), 4.28 (d, J = 10.2 Hz, 1 H), 4.04–3.98 (m, 2 H), 3.92–3.90 (m, 2 H), 3.86–3.85 (m, 1 H), 3.80 (s, 3 H), 3.79 (s, 3 H), 3.63 (dd, J = 9.6, 8.4 Hz, 1 H), 3.56-3.54 (m, 2 H), 3.26 (dd, J = 9.6, 1.2 Hz, 1 H), 3.17 (dd, J = 9.6, 1.2 Hz)8.4 Hz, 1 H), 2.93 (d, J = 9.6 Hz, 1 H), 2.29 (dd, J = 11.4, 5.4 Hz, 1 H), 2.14–2.10 (m, 1 H), 1.59-1.55 (m, 1 H), 1.49 (t, J = 5.4 Hz, 1 H), 1.22 (s, 3 H), 1.09 (s, 9 H), 0.86 (s, 9 H), 0.14 (s, 3 H), 0.05 (s, 3 H) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 159.1$, 139.0, 135.8, 135.7, 133.5, 133.3, 130.5, 130.3, 129.61, 129.59, 129.2, 129.1, 128.2, 127.8, 127.6, 127.5, 127.4, 113.73, 113.71, 82.9, 81.8, 74.7, 74.0, 73.2, 72.98, 72.97, 72.3, 70.8, 70.7, 68.8, 62.3, 55.27, 55.25, 43.6, 36.0, 26.9, 25.9, 19.3, 18.3, 16.6, -3.9, -4.8 ppm; HRMS (ESI-TOF); calcd for C₅₈H₇₈O₁₀Si₂ [M + Na⁺]: 1013.5025, found 1013.5023.

DE Triol 34a. To a stirred solution of DE secondary alcohol (557 mg, 0.58 mmol, 1.0 equiv) in THF (10 mL) at 25 °C was added TBAF (1.0 M in THF, 2.9 mL, 2.9 mmol, 5.0 equiv), and the reaction mixture was stirred at the same temperature for 16 h. The reaction mixture was then

quenched with sat. aq. NH₄Cl (10 mL), the biphasic mixture was extracted with EtOAc (3 \times 10 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, EtOAc:MeOH 100:0 to 19:1) gave DE triol **34a** (370 mg, 0.58 mmol,

quant. yield) as a white foam. **34a:** $R_f = 0.30$ (silica gel, EtOAc:MeOH 19:1); $[\alpha]_D^{32} = +14.2$ (CH₂Cl₂, c = 1.1); IR (film) v_{max} 3681, 3396, 2937, 2866, 2844, 1612, 1513, 1455, 1355, 1302, 1247, 1173, 1057, 1033, 819, 739, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.33-7.29$ (m, 4 H), 7.26–7.24 (m, 3 H), 7.21–7.20 (m, 2 H), 6.87–6.86 (m, 4 H), 4.71 (d, J = 11.4 Hz, 1 H), 4.53 (d, J = 11.4 Hz, 1 H), 4.49 (d, J = 11.4 Hz, 1 H), 4.46 (s, 2 H), 4.30 (d, J = 10.8 Hz, 1 H), 3.88–3.83 (m, 3 H), 3.79–3.78 (m, 7 H), 3.68 (dt, J = 9.0, 1.8 Hz, 1 H), 3.62 (t, J = 9.0 Hz, 1 H), 3.56 (dd, J = 10.8, 3.0 Hz, 1 H), 3.51 (d, J = 4.8 Hz, 1 H), 3.38 (bs, 2 H), 3.14 (t, J = 9.0 Hz, 1 H), 2.97 (d, J = 9.6 Hz, 1 H), 2.19–2.17 (m, 1 H), 2.09–2.05 (m, 1 H), 1.56–1.52 (m, 1 H), 1.45–1.44 (m, 1 H), 1.05 (s, 3 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 159.3$, 159.1, 138.6, 130.3, 129.8, 129.4, 129.3, 128.3, 127.9, 127.5, 113.8, 113.7, 82.3, 82.1, 76.8, 76.3, 74.7, 73.0, 72.9, 72.4, 72.2, 71.9, 70.6, 69.5, 62.7, 55.2, 43.3, 36.1, 16.8 ppm; HRMS (ESI-TOF); calcd for C₃₆H₄₆O₁₀ [M + Na⁺]: 661.2983, found 661.2979.

DE Diol 35. To a stirred solution of DE diol **34a** (340 mg, 0.53 mmol, 1.0 equiv) in PhMe (7

oppmb mL) at 25 °C was added *n*-Bu₂SnO (132 mg, 0.53 mmol, 1.0 equiv), and the reaction mixture was equipped with a condenser and Dean–Stark apparatus, heated to 110 °C, and stirred for 12 h. The reaction mixture was then cooled to 25 °C, at which point BnBr (95 μL, 0.80 mmol, 1.5 equiv)

and n-Bu₄NI (196 mg, 0.53 mmol, 1.0 equiv) were added, and the reaction mixture was heated to 100 °C for 4.5 h. After cooling to 25 °C, the reaction mixture was diluted with EtOAc (25 mL) and washed with sat. aq. Na₂S₂O₃ (10 mL), H₂O (mL), and brine (10 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1 to 1:1) yielded DE diol **35** (330 mg, 0.45 mmol, 85% yield) as a pale yellow oil. **35:** $R_f = 0.28$

(silica gel, hexanes:EtOAc 1:1); $[\alpha]_D^{32} = -3.3$ (CH₂Cl₂, c = 0.81); IR (film) v_{max} 3456, 2926, 2869, 1612, 1513, 1455, 1357, 1302, 1247, 1173, 1075, 1033, 820, 738, 698 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 7.43-7.34$ (m, 4 H), 7.23–7.18 (m, 6 H), 7.13–7.09 (m, 4 H), 6.80–6.76 (m, 4 H), 4.90 (d, J = 11.4 Hz, 1 H), 4.86 (d, J = 12.0 Hz, 1 H), 4.66 (d, J = 12.0 Hz, 1 H), 4.63 (d, J = 12.0 Hz, 1 H), 4.35–4.33 (m, 3 H), 4.15 (d, J = 11.4 Hz, 1 H), 4.14–4.10 (m, 1 H), 4.00 (dt, J = 9.6, 1.8 Hz, 1 H), 3.82 (d, J = 11.4 Hz, 1 H), 3.71–3.68 (m, 1 H), 3.57–3.51 (m, 2 H), 3.48–3.45 (m, 2 H), 3.32–3.29 (m, 2 H), 3.29 (s, 3 H), 3.27 (s, 3 H), 3.20 (d, J = 10.2 Hz, 1 H), 2.40–2.35 (m, 2 H), 2.23 (dd, J = 11.4, 4.8 Hz, 1 H), 1.73–1.68 (m, 1 H), 1.65 (t, J = 6.0 Hz, 1 H), 1.57 (t, J = 5.4 Hz, 1 H), 1.02 (s, 3 H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 159.9$, 159.8, 140.0, 139.7, 131.1, 130.7, 129.6, 129.5, 128.7, 128.6, 128.1, 128.0, 127.8, 127.5, 114.2, 114.1, 84.1, 82.4, 80.6, 76.1, 75.2, 74.6, 73.9, 73.2, 73.1, 72.6, 71.8, 70.6, 69.7, 62.9, 54.80, 54.78, 44.1, 36.8, 17.0 ppm; HRMS (ESI-TOF); calcd for C₄₃H₅₂O₁₀ [M + Na⁺]: 751.3452, found 751.3442.

DE Iodide 35a. To a stirred solution of DE diol **35** (178 mg, 0.244 mmol, 1.0 equiv) in CH₂Cl₂

NaHCO₃, (10 mL), the resulting biphasic mixture was extracted with CH₂Cl₂ (3 × 5 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The mixture was passed through a plug of silica gel, eluting with 3:2 hexanes:EtOAc to yield the partially pure primary tosylate, which was carried forward without further purification. To a stirred solution of the so obtained primary tosylate in DME (10 mL) at 25 °C was added NaI (366 mg, 2.44 mmol, 10.0 equiv), and the reaction mixture was heated to 85 °C and stirred in the dark for 7 h. After cooling to 25 °C, the reaction mixture was diluted in EtOAc (30 mL), washed with brine (15 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) gave DE iodide **35a** (182 mg, 0.217 mmol, 89% yield over the two steps) as

a colorless oil. **35a:** $R_f = 0.26$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_D^{32} = -11.6$ (C₆H₆, c = 0.93); IR (film) v_{max} 3443, 2931, 2906, 2868, 1612, 1513, 1454, 1357, 1302, 1247, 1210, 1173, 1075, 1029, 820, 737, 698 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.45-7.41$ (m, 4 H), 7.22–7.18 (m, 6 H), 7.12-7.09 (m, 4 H), 6.79-6.77 (m, 4 H), 5.20 (d, J = 12.0 Hz, 1 H), 4.86 (d, J = 11.4 Hz, 1 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.65 (d, J = 12.0 Hz, 1 H), 4.35 (d, J = 12.0 Hz, 1 H), 4.33 (d, J = 12.0 Hz, 1 H), 4.35 (d, J = 12.0 Hz, 1 H), 4 12.0 Hz, 1 H), 4.30 (d, J = 10.8 Hz, 1 H), 4.13–4.10 (m, 1 H), 4.09 (d, J = 11.4 Hz, 1 H), 4.01 (dt, J = 9.6, 1.8 Hz, 1 H), 3.56 (dd, J = 10.2, 6.0 Hz, 1 H), 3.50 (dd, J = 9.6, 9.0 Hz, 1 H), 3.45(dd, J = 9.6, 4.2 Hz, 1 H), 3.32-3.27 (m, 9 H), 3.19 (d, J = 10.2 Hz, 1 H), 3.12 (dd, J = 10.8, 6.0)Hz, 1 H), 2.88 (ddd, J = 8.4, 5.4, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.32 (d, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2.4 Hz, 1 H), 2.40 (ddd, J = 14.4, 10.2, 2. 5.4 Hz, 1 H), 1.07 (s, 3 H) ppm; 13 C NMR (150 MHz, C_6D_6): $\delta = 160.0$, 159.7, 140.0, 139.9, 131.1, 130.4, 129.7, 129.5, 128.7, 128.5, 128.4, 128.2, 127.84, 127.77, 127.5, 114.2, 114.1, 84.5, 80.3, 79.8, 75.9, 75.3, 75.1, 74.6, 73.9, 73.2, 73.1, 72.6, 70.6, 69.6, 54.82, 54.80, 43.7, 36.8, 17.2, 8.2 ppm; HRMS (ESI-TOF); calcd for $C_{43}H_{51}IO_9$ [M + Cl⁻]: 873.2272, found 873.2236.

DE Enol ether 8. To a solution of DE iodide **35a** (163 mg, 0.194 mmol, 1.0 equiv) in THF (15

OPMB mL) at 0 °C was added KOt-Bu (261 mg, 2.33 mmol, 12 equiv), and the reaction mixture was stirred at 0 °C for 16 h. NaH (60% suspension in mineral oil, 77 mg, 1.94 mmol, 10.0 equiv), PMBCl (99 µL, 0.97 mmol, 5.0 equiv), and n-Bu₄NI (36 mg, 0.097 mmol, 0.5 equiv) were sequentially

added to the reaction mixture, and the reaction mixture was warmed to 25 °C and stirred for 36 h. The reaction mixture was quenched by slow sequential addition of MeOH (400 μL) and H₂O (20 mL), the biphasic mixture was extracted with EtOAc (3 × 15 mL), and the combined organic layers were washed with brine (20 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) gave DE enol ether 8 (140 mg, 0.168 mmol, 88% yield) as a colorless oil. **8:** $R_{\rm f} = 0.33$ (silica gel, hexanes:EtOAc 3:1); $\lceil \alpha \rceil_{\rm D}^{32} = +15.2$ $(C_6H_6, c = 0.91)$; IR (film) v_{max} 2933, 2906, 2865, 1612, 1513, 1455, 1302, 1247, 1173, 1082,

1035, 821, 737, 698 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): δ = 7.51–7.49 (m, 2 H), 7.41–7.40 (m, 2 H), 7.23–7.17 (m, 10 H), 7.12–7.07 (m, 2 H), 6.79–6.72 (m, 6 H), 5.18 (d, J = 11.4 Hz, 1 H), 4.89 (d, J = 10.8 Hz, 1 H), 4.86 (d, J = 11.4 Hz, 1 H), 4.84 (d, J = 12.0 Hz, 1 H), 4.71 (s, 1 H), 4.63 (d, J = 12.0 Hz, 1 H), 4.54–4.52 (m, 2 H), 4.39 (d, J = 10.2 Hz, 1 H), 4.36 (s, 3 H), 4.26 (d, J = 12.0 Hz, 1 H), 4.11–4.07 (m, 1 H), 4.05 (dt, J = 10.8, 1.2 Hz, 1 H), 3.89 (dd, J = 9.6, 9.0 Hz, 1 H), 3.82 (dd, J = 7.2, 4.8 Hz, 1 H), 3.53 (dd, J = 10.2, 6.0 Hz, 1 H), 3.46 (dd, J = 9.6, 4.2 Hz, 1 H), 3.29 (s, 3 H), 3.28 (s, 3 H), 3.28–3.27 (m, 1 H), 3.27 (s, 3 H), 3.21 (dd, J = 9.6, 8.4 Hz, 1 H), 2.28 (ddd, J = 13.8, 10.2, 1.8 Hz, 1 H), 2.11 (dd, J = 13.2, 4.2 Hz, 1 H), 1.99 (dd, J = 13.2, 7.2 Hz, 1 H), 1.55 (ddd, J = 13.2, 10.2, 1.2 Hz, 1 H), 1.11 (s, 3 H) ppm; ¹³C NMR (150 MHz, C₆D₆): δ = 159.8, 159.73, 159.68, 140.1, 139.9, 131.4, 131.2, 130.8, 129.8, 129.7, 129.4, 128.55, 128.52, 128.2, 127.8, 127.6, 127.5, 114.2, 114.1, 114.0, 92.6, 82.8, 81.8, 81.2, 75.20, 75.15, 75.0, 73.9, 73.8, 73.2, 73.0, 72.6, 69.8, 69.5, 54.79, 54.75, 44.9, 36.3, 18.7 ppm; HRMS (ESI-TOF); calcd for C₅₁H₅₈O₁₀ [M + Na⁺]: 853.3922, found 853.3929.

ABDE Enol ether 36. To a stirred solution of AB lactone **21** (410 mg, 0.65 mmol, 1.0 equiv) in

THF:HMPA (10:1, 66 mL) at -78 °C was added (PhO)₂P(O)Cl (1.35 mL, 6.48 mmol, 10.0 equiv) followed by KHMDS (0.5 M in PhMe, 3.86 mL, 1.93 mmol, 3.0

equiv), and the reaction mixture was stirred at –78 °C for 30 min. The reaction mixture was then quenched with 10% aq. NH₄OH (50 mL), warmed to 25 °C, and stirred vigorously for 30 min. The biphasic mixture was diluted in EtOAc (125 mL), the layers were separated, and the organic layer was washed with brine (75 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc:Et₃N 85:15:2) gave ketene acetal phosphate **7** (546 mg, 0.63 mmol, 97% yield), which was immediately carried on to the next step. To a stirred solution of enol ether **8** (647 mg, 0.78 mmol, 1.5 equiv) in THF (8 mL) at 25 °C was added 9-BBN (0.5 M in THF, 4.67 mL, 2.34 mmol, 4.5 equiv) and the reaction mixture was stirred at 25 °C for 4 h. 0.5 M aq. KHCO₃ (14.0 mL, 7.02 mmol, 13.5 equiv) was added to the reaction

mixture, and the biphasic mixture was stirred vigorously at 25 °C for 20 min. After a solution of ketene acetal phosphate 7 (451 mg, 0.52 mmol, 1.0 equiv) in THF (10 mL) was added to this mixture via cannula, SPhos (64 mg, 0.16 mmol, 0.3 equiv) and Pd(OAc)₂ (17 mg, 0.08 mmol, 0.15 equiv) were added, and the biphasic mixture was stirred vigorously at 25 °C for 72 h. The resulting mixture was then diluted with brine (20 mL), extracted with EtOAc (3 × 15 mL), and the combined organic extracts were dried (MgSO₄) and concentrated. The resulting residue was taken up in THF (65 mL) and cooled to 0 °C before 3.0 M ag. NaOH (9 mL) and 35% H₂O₂ (4.5 mL) were added. The biphasic mixture was stirred vigorously at 0 °C for 30 min and then diluted in EtOAc (125 mL). The layers were separated, and the organic phase was washed with sat. aq. Na₂SO₃ (50 mL) and brine (50 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc:Et₃N 45:5:1 to 40:10:1) yielded ABDE enol ether **36** (675 mg, 0.47 mmol, 90% yield) as a colorless oil. **36:** $R_{\rm f} = 0.21$ (silica gel, hexanes:EtOAc 3:1); $\lceil \alpha \rceil_D^{32} = -56.1$ (C₆H₆, c = 0.57); IR (film) ν_{max} 3032, 2936, 2911, 2868, 1612, 1513, 1454, 1350, 1302, 1247, 1172, 1077, 1029, 819, 735, 697, 680 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta =$ 7.79–7.59 (m, 4 H), 7.45–7.44 (m, 2 H), 7.36–7.34 m, 2 H), 7.29–7.27 (m, 6 H), 7.24–7.16 (m, 13 H), 7.13-7.05 (m, 9 H), 6.78-6.75 (m, 6 H), 5.34 (d, J = 10.8 Hz, 1 H), 5.20 (d, J = 12.0 Hz, 1 H), 5.04 (d, J = 10.8 Hz, 1 H), 4.93 (dd, J = 7.8, 4.8 Hz, 1 H), 4.91 (d, J = 12.0 Hz, 1 H), 4.90 (d, J = 11.4 Hz, 1 H), 4.78 (d, J = 10.8 Hz, 1 H), 4.72 (d, J = 12.0 Hz, 1 H), 4.64 (d, J = 11.4 Hz, 1 Hz) H), 4.56 (d, J = 12.0 Hz, 1 H), 4.42-4.33 (m, 7 H), 4.28 (t, J = 1.8 Hz, 1 H), 4.24 (d, J = 11.4 Hz, 1 H), 4.18 - 4.15 (m, 3 H), 4.09 - 4.05 (m, 2 H), 3.99 (d, J = 11.4 Hz, 1 H), 3.96 (dd, J = 9.6, 2.4Hz, 1 H), 3.90 (d, J = 9.0 Hz, 1 H), 3.60–3.54 (m, 3 H), 3.50 (d, J = 10.2 Hz, 1 H), 3.48 (dd, J = 10.2 Hz, 1 H), 3.4 10.2, 4.2 Hz, 1 H), 3.44 (t, J = 7.8 Hz, 1 H), 3.35–3.29 (m, 2 H), 3.28 (s, 3 H), 3.27 (s, 3 H), 3.26 (s, 3 H), 3.16 (dd, J = 9.6, 2.4 Hz, 1 H), 3.05 (d, J = 13.8 Hz, 1 H), 2.64–2.59 (m, 1 H), 2.38– 2.33 (m, 2 H), 2.28 (dd, J = 14.4, 10.2 Hz, 1 H), 2.12 (quin, J = 7.8 Hz, 1 H), 2.00 (d, J = 14.4Hz, 1 H), 1.76 (t, J = 11.4 Hz, 1 H), 1.59 (ddd, J = 13.2, 10.2, 2.4 Hz, 1 H), 1.15 (s, 3 H), 0.99 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 159.9$, 159.71, 159.69, 155.8, 140.18, 140.15, 140.11, 139.9, 139.7, 139.0, 131.5, 131.2, 130.7, 129.9, 129.8, 129.4, 129.0, 128.8,

128.7, 128.6, 128.54, 128.52, 128.4, 128.1, 128.0, 127.9, 127.80, 127.75, 127.68, 127.6, 127.5, 127.43, 127.42, 114.2, 114.1, 114.0, 106.4, 85.9, 82.9, 80.9, 79.5, 78.5, 76.7, 76.3, 76.2, 75.6, 75.5, 75.4, 75.13, 75.11, 75.9, 74.1, 73.6, 73.5, 73.2, 73.0, 72.9, 72.7, 72.0, 70.7, 70.5, 69.2, 54.78, 54.76, 44.6, 39.7, 36.6, 33.5, 27.1, 17.3, 10.4 ppm; HRMS (ESI-TOF); calcd for $C_{91}H_{102}O_{16}$ [M + Na⁺]: 1473.7060, found 1473.7052.

ABDE Secondary alcohol 36a. To a stirred solution of ABDE enol ether **36** (675 mg, 0.47

mmol, 1.0 equiv) in THF (30 mL) at 0 °C was added BH₃•THF (1.0 M in THF, 4.7 mL, 4.7 mmol, 10.0 equiv), and the reaction mixture was stirred at 0 °C for 18 h. The

reaction mixture was then quenched by slow addition of 1.0 M aq. NaOH (15 mL) and 35% H₂O₂ (2.5 mL), and the resulting biphasic mixture was warmed to 25 °C and stirred vigorously for 6 h. The resulting mixture was then diluted with EtOAc (60 mL), the layers were separated, and the organic layer was washed with sat. aq. Na₂SO₃ (30 mL) and brine (30 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexane:EtOAc 4:1 to 3:2) gave ABDE secondary alcohol 36a (476 mg, 0.32 mmol, 70% yield) as a white foam and its diastereomer **36b** (105 mg, 0.07 mmol, 15% yield). **36a:** $R_{\rm f} = 0.29$ (silica gel, hexanes:EtOAc 17:3); $\left[\alpha\right]_{D}^{32} = -10.9$ (CH₂Cl₂, c = 0.82); IR (film) v_{max} 3529, 2930, 2906, 2875, 1612, 1513, 1454, 1302, 1248, 1075, 1030, 821, 736, 698 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.59-7.44$ (m, 6 H), 7.31-7.18 (m, 20 H), 7.13-7.04 (m, 10 H), 6.79-6.73 (m, 6 H), 5.19 (d, <math>J = 11.4 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1 H), 4.98 (d, J = 10.8 Hz, 1 H), 4.91–4.85 (m, 3 H), 4.72 (d, J = 10.8Hz, 1 H), 4.70 (d, J = 12.0 Hz, 1 H), 4.62 (d, J = 10.8 Hz, 1 H), 4.47 (d, J = 12.6 Hz, 1 H), 4.43(d, J = 12.6 Hz, 1 H), 4.38-4.34 (m, 5 H), 4.28 (s, 1 H), 4.23 (dd, J = 10.8, 1.8 Hz, 1 H), 4.19-4.14 (m, 3 H), 4.09-4.06 (m, 2 H), 3.95 (dt, J = 9.6, 6.0 Hz, 1 H), 3.91-3.87 (m, 1 H), 3.85 (dd, J= 9.6, 9.0 Hz, 1 H), 3.76 (d, J = 7.8 Hz, 1 H), 3.69 - 3.65 (m, 2 H), 3.58 - 3.54 (m, 2 H), 3.50 - 3.47 (m, 2 H)(m, 2 H), 3.44-3.38 (m, 2 H), 3.33 (t, J = 9.0 Hz, 1 H), 3.28 (s, 3 H), 3.27 (s, 3 H), 3.26 (s, 3 H),3.19 (d, J = 10.8 Hz, 1 H), 3.06 (dd, J = 9.6, 2.4 Hz, 1 H), 2.64-2.58 (m, 1 H), 2.45 (dt, J = 13.8,) 4.8 Hz, 1 H), 2.37–2.34 (m, 2 H), 2.26 (quin, J = 6.0 Hz, 1 H), 2.00 (ddd, J = 15.0, 7.8, 1.2 Hz, 1 H), 1.71 (t, J = 11.4 Hz, 1 H), 1.68–1.61 (m, 2 H), 1.13 (s, 3 H), 0.97 (d, J = 6.6 Hz, 1 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 159.8$, 159.72, 159.71, 140.2, 140.1, 139.9, 139.6, 139.4, 139.0, 131.3, 131.2, 130.8, 129.95, 129.87, 129.4, 128.8, 128.65, 128.60, 128.55, 128.53, 128.18, 128.17, 128.14, 128.01, 127.98, 127.87, 127.85, 127.80, 127.6, 127.53, 127.51, 127.49, 114.15, 114.12, 114.0, 85.1, 84.8, 81.3, 80.6, 79.3, 79.0, 78.9, 77.3, 76.5, 75.5, 75.4, 75.3, 75.1, 74.8, 74.4, 74.3, 74.1, 74.0, 73.5, 73.2, 73.0, 72.9, 72.7, 70.7, 70.4, 69.3, 54.78, 54.75, 44.7, 40.9, 36.7, 34.6, 33.4, 17.2, 10.5 ppm; HRMS (ESI-TOF); calcd for $C_{91}H_{104}O_{17}$ [M + Na⁺]: 1491.7165, found 1491.7161.

ABDE Ketone 37 from oxidation of alcohol 36a. To a stirred solution of ABDE secondary

alcohol **36a** (476 mg, 0.32 mmol, 1.0 equiv) in CH_2Cl_2 (15 mL) at 0 °C was added DMP (551 mg, 1.30 mmol, 4.0 equiv), and the reaction mixture was warmed to 25 °C

and stirred for 2 h. The reaction mixture was quenched with sat. aq. Na₂S₂O₃:sat. aq. NaHCO₃ (1:1, 20 mL), the resulting biphasic mixture was stirred vigorously for 30 min and extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) gave ABDE ketone **37** (461 mg, 0.31 mmol, 97% yield) as a colorless oil. **37:** $R_f = 0.34$ (silica gel, hexanes:EtOAc 7:3); $[\alpha]_D^{32} = -2.9$ (CH₂Cl₂, c = 0.47); IR (film) v_{max} 2932, 2865, 1715, 1612, 1513, 1454, 1302, 1248, 1078, 1033, 820, 736, 698 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 7.61-7.60$ (m, 2 H), 7.48–7.44 (m, 4 H), 7.37–7.30 (m, 6 H), 7.25–7.16 (m, 13 H), 7.15–7.02 (m, 11 H), 6.79–6.70 (m, 6 H), 5.06 (d, J = 12.0 Hz, 1 H), 5.03 (d, J = 12.0 Hz, 1 H), 4.92–4.84 (m, 4 H), 4.71 (d, J = 12.0 Hz, 1 H), 4.61 (d, J = 10.8 Hz, 1 H), 4.55 (d, J = 12.6 Hz, 1 H), 4.50 (d, J = 12.6 Hz, 1 H), 4.44 (d, J = 12.0 Hz, 1 H), 4.40 (d, J = 12.6 Hz, 1 H), 4.38 (s, 2 H), 4.34–4.28 (m, 3 H), 4.25 (dd, J = 10.2, 1.8 Hz, 1 H), 4.19–4.14 (m, 2 H), 4.11–4.08 (m, 2 H), 4.01 (d, J = 10.8 Hz, 1 H), 3.94 (dt, J = 9.0, 6.6 Hz, 1 H), 3.82 (t, J = 9.0 Hz, 1 H), 3.77 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd, J = 10.2, 2.4 Hz, 1 H), 3.60–3.57 (m, 2 H), 3.55 (dd,

9.6, 1.8 Hz, 1 H), 3.51 (dd, J = 10.2, 4.2 Hz, 1 H), 3.45 (t, J = 7.8 Hz, 1 H), 3.36–3.34 (m, 2 H), 3.32–3.27 (m, 2 H), 3.28 (s, 3 H), 3.27 (s, 3 H), 3.25 (s, 3 H), 2.98 (dd, J = 10.2, 2.4 Hz, 1 H), 2.79 (d, J = 10.8 Hz, 1 H), 2.67–2.58 (m, 3 H), 2.39–2.28 (m, 3 H), 1.70–1.64 (m, 2 H), 1.11 (s, 3 H), 1.03 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 211.6$, 159.9, 159.75, 159.74, 140.2, 140.1, 140.0, 139.6, 139.3, 139.0, 131.2, 131.1, 130.5, 130.2, 129.9, 129.4, 128.7, 128.61, 128.58, 128.57, 128.56, 128.55, 128.19, 128.18, 128.14, 128.0, 127.9, 127.84, 127.77, 127.7, 127.6, 127.5, 127.4, 114.2, 114.1, 114.0, 84.5, 84.2, 83.6, 81.0, 78.6, 78.4, 78.0, 77.3, 76.5, 75.4, 75.3, 75.1, 74.8, 74.3, 74.1, 73.9, 73.8, 73.6, 73.2, 73.04, 72.95, 72.7, 72.3, 70.8, 70.5, 69.3, 54.8, 54.7, 44.6, 43.4, 37.9, 36.7, 33.4, 17.2, 10.4 ppm; HRMS (ESI-TOF); calcd for $C_{91}H_{102}O_{17}$ [M + Na⁺]: 1489.7009, found 1489.6981.

ABDE Ketone 37 from oxidation/isomerization of alcohol 36b. To a stirred solution of ABDE secondary alcohol diastereomer **36b** (105 mg, 0.071 mmol, 1.0 equiv) in CH₂Cl₂ (5 mL) at 0 °C was added DMP (121 mg, 0.29 mmol, 4.0 equiv), and the reaction mixture was warmed to 25 °C and stirred for 2 h. The reaction mixture was quenched with sat. aq. Na₂S₂O₃:sat. aq. NaHCO₃ (1:1, 5 mL), the resulting biphasic mixture was stirred vigorously for 30 min and extracted with CH₂Cl₂ (3 × 5 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) gave ABDE ketone diastereomer C₂₃-ent-37 (88 mg, 0.06 mmol, 84% yield). To a stirred solution of ABDE ketone diastereomer C₂₃-ent-37 (88 mg, 0.06 mmol, 1.0 equiv) in PhMe (20 mL) at 25 °C was added imidazole (817 mg, 12 mmol, 200 equiv), and the reaction mixture was heated to 105 °C and stirred for 120 h. The reaction mixture was then cooled to 25 °C, diluted with CH₂Cl₂ (40 mL), washed with brine (30 mL), dried (MgSO₄), and concentrated. Preparative-plate chromatography (silica gel, hexanes:EtOAc 3:1) yielded ABDE ketone 37 (59 mg, 0.04 mmol, 67% yield) along with recovered ketone diastereomer C₂₃-ent-37 (21 mg, 0.014 mmol, 24% yield).

ABCDE S,O-Acetal 38. To a stirred solution of ABDE ketone 37 (427 mg, 0.29 mmol, 1.0

equiv) in CH₂Cl₂:EtSH (5:1, 30 mL) at 25 °C was added Zn(OTf)₂ (529 mg, 1.45 mmol, 5.0 equiv), and the reaction mixture was stirred at 25 °C for 20 h. The resulting mixture was quenched by the addition of Et₃N (2

mL), and concentrated to afford the corresponding S,O-acetal diol, which was carried on crude. To a stirred solution of the crude diol in CH₂Cl₂ (15 mL) 25 °C were added imidazole (396 mg, 5.82 mmol, 20 equiv) and TESCI (488 µL, 2.91 mmol, 10.0 equiv), and the reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was quenched with sat. aq. NH₄Cl (20 mL), the resulting biphasic mixture was extracted with CH₂Cl₂ (3 × 15 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 97:3 to 9:1) gave ABCDE S,O-acetal 38 (367 mg, 0.27 mmol, 91% yield over the two steps) as a pale yellow oil. **38:** $R_{\rm f} = 0.35$ (silica gel, hexanes:EtOAc 9:1); $\lceil \alpha \rceil_{\rm D}^{32} = +40.4$ $(CH_2Cl_2, c = 0.74)$; IR (film) v_{max} 2946, 2911, 2875, 1454, 1249, 1085, 1028, 840, 734, 697 cm⁻¹ ¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.66-7.65$ (m, 2 H), 7.51-7.50 (m, 2 H), 7.43-7.38 (m, 4 H), 7.28-7.27 (m, 4 H), 7.24-7.17 (m, 10 H), 7.13-7.02 (m, 8 H), 5.30 (d, J = 12.0 Hz, 1 H), 5.24 (d, J = 12.0 Hz, 1 H), 4.84 (d, J = 12.0 Hz, 1 H), 4.81 (d, J = 12.0 Hz, 1 H), 4.66 (d, J = 12.0 Hz, 1 H), 4.62 (d, J = 12.0 Hz, 1 H), 4.54 (d, J = 12.0 Hz, 1 H), 4.48 (d, J = 9.6 Hz, 1 H), 4.43-4.34(m, 4 H), 4.32 (dd, J = 9.6, 1.8 Hz, 1 H), 4.19 (t, J = 1.2 Hz, 1 H), 4.14 (d, J = 11.4 Hz, 1 H),4.10 (dt, J = 9.6, 1.2 Hz, 1 H), 4.02 - 3.97 (m, 2 H), 3.83 (dd, J = 9.6, 1.8 Hz, 1 H), 3.77 - 3.74 (m, 1.00 Hz)3 H), 3.64 (dd, J = 9.6, 7.8 Hz, 1 H), 3.55 (q, J = 9.0 Hz, 2 H), 3.46 (t, J = 7.8 Hz, 1 H), 3.26 (dd, J = 7.2, 1.8 Hz, 1 H), 3.20 (d, J = 10.2 Hz, 1 H), 2.94 (ddd, J = 12.0, 9.6, 4.2 Hz, 1 H), 2.65–2.59 (m, 1 H), 2.47-2.40 (m, 2 H), 2.37 (dd, J = 15.6, 2.4 Hz, 1 H), 2.28-2.24 (m, 3 H), 2.15 (dt, J =9.0, 4.8 Hz, 1 H), 2.11 (dd, J = 11.4, 4.8 Hz, 1 H), 1.79–1.75 (m, 2 H), 1.23 (s, 3 H), 1.11 (t, J =7.8 Hz, 3 H), 1.07 (t, J = 7.8 Hz, 9 H), 1.04 (d, J = 6.6 Hz, 3 H), 1.02 (t, J = 7.8 Hz, 9 H), 0.80– 0.73 (m, 6 H), 0.62 (q, J = 7.8 Hz, 6 H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 140.3$, 140.2, 140.04, 140.01, 140.00, 139.6, 139.5, 138.8, 128.69, 128.65, 128.54, 128.50, 128.48, 128.45, 128.2, 128.1, 128.01, 127.98, 127.9, 127.8, 127.54, 127.52, 127.50, 127.4, 93.5, 85.6, 80.6, 78.6, 78.3, 77.4, 76.83, 76.76, 76.6, 76.2, 76.0, 75.0, 74.8, 74.7, 74.6, 73.8, 73.6, 73.5, 73.3, 73.0, 72.7, 70.8, 70.55, 70.47, 69.0, 66.2, 44.9, 43.91, 43.88, 35.1, 33.4, 19.8, 17.4, 14.5, 10.4, 7.4, 7.17, 7.15, 5.8, 4.88, 4.87, 1.0 ppm; HRMS (ESI-TOF); calcd for $C_{81}H_{110}O_{13}Si_2$ [M + Na⁺]: 1401.7097, found 1407.7089.

ABCDE Pentacycle 39. To a stirred solution of ABCDE S,O-acetal **38** (361 mg, 0.26 mmol, 1.0

equiv) in CH₂Cl₂ (18 mL) at 0 °C was added dry *m*-CPBA (180 mg, 0.73 mmol, 2.5 equiv) as a solution in CH₂Cl₂ (1.5 mL), and the reaction mixture was stirred at 0 °C for

30 min. AlMe₃ (2.0 M in hexanes, 729 μL, 1.46 mmol, 5.0 equiv) was subsequently added, and the reaction mixture was stirred at 0 °C for an additional 30 min. The reaction mixture was quenched with sat. aq. NaHCO₃ (20 mL), the resulting biphasic mixture was extracted with Et₂O (3 × 25 mL), and the combined organic layers were washed with sat. aq. Na₂S₂O₃ (30 mL), sat. aq. NaHCO₃ (30 mL) and brine (30 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) yielded ABCDE pentacycle 39 (327 mg, 0.25 mmol, 94% yield) as a white foam. **39:** $R_{\rm f} = 0.24$ (silica gel, hexanes:EtOAc 9:1); $\left[\alpha\right]_{D}^{32} = +24.7 \text{ (CH}_{2}\text{Cl}_{2}, c = 0.79); \text{ IR (film) } v_{\text{max}} 3030, 2952, 2906, 2875, 1496, 1454, 1083,$ 1028, 733, 696 cm⁻¹; 1 H NMR (600 MHz, $C_{6}D_{6}$): $\delta = 7.52-7.51$ (m, 4 H), 7.44–7.43 (m, 2 H), 7.40-7.39 (m, 2 H), 7.29-7.27 (m, 4 H), 7.24-7.18 (m, 9 H), 7.13-7.02 (m, 9 H), 5.28 (d, J =10.8 Hz, 1 H), 4.95 (d, J = 10.8 Hz, 1 H), 4.81 (d, J = 11.4 Hz, 1 H), 4.79 (d, J = 12.0 Hz, 1 H), 4.73 (d, J = 10.8 Hz, 1 H), 4.58 (d, J = 12.0 Hz, 1 H), 4.54 (d, J = 11.4 Hz, 1 H), 4.43 (d, J = 11.4 Hz, 1 Hz, 12.0 Hz, 1 H), 4.39 (d, J = 11.4 Hz, 1 H), 4.37 (d, J = 12.6 Hz, 1 H), 4.34 (dd, J = 11.4, 4.8 Hz, 1 H), 4.27 (dd, J = 9.6, 1.8 Hz, 1 H), 4.17–4.14 (m, 2 H), 4.10 (dt, J = 10.2, 1.8 Hz, 1 H), 3.99– 3.94 (m, 1 H), 3.77 - 3.71 (m, 4 H), 3.65 - 3.61 (m, 2 H), 3.60 (dd, J = 8.4, 7.2 Hz, 1 H), 3.54 (dd, J = 8.4, 7.2 Hz, 1 Hz), 3.54 (dd, J = 8.J = 9.0, 8.4 Hz, 1 H), 3.44 (dd, J = 9.0, 7.2 Hz, 1 H), 3.38 (ddd, J = 11.4, 9.6, 4.8 Hz, 1 H), 3.24 (dd, J = 9.6, 2.4 Hz, 1 H), 3.21 (d, J = 10.2 Hz, 1 H), 2.95 (ddd, J = 12.0, 9.6, 4.2 Hz, 1 H), 2.64

2.58 (m, 1 H), 2.41 (ddd, J = 13.8, 10.2, 1.8 Hz, 1 H), 2.36 (dd, J = 15.6, 3.6 Hz, 1 H), 2.18–2.12 (m, 2 H), 1.80–1.70 (m, 3 H), 1.59 (dd, J = 15.6, 4.2 Hz, 1 H), 1.22 (s, 3 H), 1.17 (s, 3 H), 1.07 (t, J = 7.8 Hz, 9 H), 1.02 (t, J = 7.8 Hz, 1 H), 1.00 (d, J = 7.2 Hz, 3 H), 0.81–0.71 (m, 6 H), 0.63 (q, J = 7.8 Hz, 6 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 140.17$, 140.16, 140.1, 139.7, 139.5, 138.8, 128.7, 128.6, 128.54, 128.51, 128.48, 128.46, 128.14, 128.10, 128.02, 128.01, 127.98, 127.84, 127.78, 127.7, 127.59, 127.56, 127.52, 127.4, 86.0, 80.9, 79.7, 79.1, 78.6, 77.5, 77.1, 76.9, 76.6, 79.2, 75.72, 75.67, 74.9, 74.6, 73.6, 73.49, 73.48, 73.47, 73.0, 72.8, 72.6, 70.7, 69.0, 66.1, 44.7, 44.6, 36.8, 34.2, 33.4, 21.0, 17.5, 10.3, 7.4, 7.2, 5.8, 4.9 ppm; HRMS (ESI-TOF); calcd for $C_{80}H_{108}O_{13}Si_2 [M + Na^+]$: 1355.7220, found 1355.7216.

ABCDE Primary alcohol 39a. To a stirred solution of ABCDE pentacycle **39** (159 mg, 0.119

mmol, 1.0 equiv) in CH₂Cl₂:MeOH (10:1, 6 mL) at 0 °C was added PPTS (15 mg, 0.060 mmol, 0.5 equiv), and the reaction mixture was stirred at 0 °C for 1 h. The reaction

mixture was quenched with Et₃N (500 µL), concentrated, and purified by flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 3:1) to yield ABCDE primary alcohol **39a** (128 mg, 0.105 mmol, 88% yield) as a white foam. **39a:** $R_f = 0.31$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_D^{32} = +15.1$ (C_6H_6 , c = 0.88); IR (film) v_{max} 3463, 2946, 2916, 2875, 1496, 1454, 1375, 1346, 1084, 1067, 1032, 828, 734, 697 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.53-7.49$ (m, 4 H), 7.41–7.39 (m, 2 H), 7.33–7.32 (m, 2 H), 7.33–7.27 (m, 4 H), 7.24–7.17 (m, 9 H), 7.13–7.02 (m, 9 H), 5.27 (d, J = 10.8 Hz, 1 H), 4.95 (d, J = 11.4 Hz, 1 H), 4.82 (d, J = 12.0 Hz, 1 H), 4.71 (d, J = 10.8 Hz, 1 H), 4.59 (d, J = 12.0 Hz, 1 H), 4.55 (d, J = 12.0 Hz, 1 H), 4.51 (s, 2 H), 4.43 (d, J = 12.0 Hz, 1 H). 4.40 (d, J = 11.4 Hz, 1 H), 4.37 (d, J = 12.0 Hz, 1 H), 4.35 (dd, J = 11.4, 4.8 Hz, 1 H), 4.27 (d, J = 10.2 Hz, 1 H), 4.17–4.15 (m, 2 H), 3.93 (t, J = 7.8 Hz, 1 H), 3.78 (s, 2 H), 3.27 (sext, J = 4.2 Hz, 1 H), 3.71–3.65 (m, 2 H), 3.62–3.58 (m, 2 H), 3.48–3.43 (m, 3 H), 3.35 (ddd, J = 13.8, 10.8, 4.2 Hz, 1 H), 3.25 (dd, J = 9.0, 1.8 Hz, 1 H), 3.16 (d, J = 10.2 Hz, 1 H), 2.94 (ddd, J = 12.6, 7.8, 3.6 Hz, 1 H), 2.65–2.59 (m, 1 H), 2.46 (dd, J = 13.8, 9.0 Hz, 1 H), 2.37

(dd, J = 16.2, 3.0 Hz, 1 H), 2.17 (dt J = 11.4, 4.2 Hz, 1 H), 2.10 (dd, J = 11.4, 4.2 Hz, 1 H), 1.79–1.72 (m, 2 H), 1.67 (t, J = 12.0 Hz, 1 H), 1.61 (dd, J = 16.8, 4.8 Hz, 1 H), 1.57 (ddd, J = 14.4, 10.2, 4.2 Hz, 1 H), 1.23 (s, 3 H), 1.13 (s, 3 H), 1.04 (t, J = 8.4 Hz, 9 H), 1.00 (d, J = 6.6 Hz, 1 H), 0.78–0.68 (m, 6 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 140.2, 140.1, 139.7, 139.6, 139.5, 138.8, 128.69, 128.66, 128.61, 128.59, 128.52, 128.49, 128.48, 128.1, 128.03, 127.98, 127.84, 127.77, 127.74, 127.43, 127.60, 127.56, 127.53, 127.50, 85.7, 80.7, 79.6, 79.0, 78.6, 77.2, 77.1, 76.9, 76.2, 75.7, 74.9, 74.6, 73.7, 73.6, 73.5, 73.0, 72.9, 71.9, 71.2, 70.7, 69.0, 64.9, 44.7, 44.6, 36.2, 34.2, 33.4, 21.1, 17.4, 10.3, 7.4, 5.8 ppm; HRMS (ESI-TOF); calcd for <math>C_{74}H_{94}O_{13}Si$ [M + H⁺]: 1219.6536, found 1219.6538.

ABCDE Ketophosphonate 6. To a stirred solution of ABCDE primary alcohol 40a (127 mg,

TPAP (3.7 mg, 0.01 mmol, 0.1 equiv), and the reaction mixture was stirred at 25 °C for 30 min. The reaction mixture was then diluted in hexanes (4 mL), and CeliteTM (500 mg) was added. This homogenous mixture was loaded directly onto a short plug of silica gel eluted with hexanes:Et₂O (1:1) to afford the partially purified aldehyde **41** (99 mg, 0.0813 mmol, 78% yield), which was carried on to the next step without further purification. To a stirred mixture of (PhO)₂P(O)CH₃ (43 μL, 0.407 mmol, 5.0 equiv) in THF (2 mL) at −78 °C was added *n*-BuLi (2.5 M in hexanes, 163 μL, 0.407 mmol, 5.0 equiv), and the resulting mixture was stirred at −78 °C for 1 h. To this reaction mixture was added a solution of aldehyde **41** in THF (2 mL) at −78 °C *via* cannula, and the resulting mixture was stirred at −78 °C for an additional 2.5 h. The mixture was quenched with sat. aq. NH₄Cl (5 mL), the resulting biphasic mixture was extracted with EtOAc (3 × 5 mL), and the combined organic extracts were dried (MgSO₄), and concentrated. The crude secondary alcohol was carried on to the next step without further purification. To a stirred solution of the crude secondary alcohol in CH₂Cl₂ (4 mL) at 25 °C was

added DMP (103 mg, 0.244 mmol, 3.0 equiv), and the reaction mixture was stirred at 25 °C for 30 min. The resulting mixture was quenched with sat. aq. Na₂S₂O₃:sat. aq. Na₄CO₃ (1:1, 5 mL), and the biphasic mixture was stirred vigorously at 25 °C for 30 min. The mixture was extracted with CH₂Cl₂ (3 × 5 mL), and the combined organic extracts were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3 to 1:1) gave ABCDE ketophosphonate 6 (72 mg, 0.054mmol, 66% yield) as a white foam along with recovered aldehyde 41 (17 mg, 0.014 mmol, 17% yield). 6: $R_f = 0.35$ (silica gel, hexanes: EtOAc 1:1); $\lceil \alpha \rceil_D^{32} = +23.2$ (C₆H₆, c = 0.73); IR (film) ν_{max} 2946, 2901, 2875, 1723, 1496, 1454, 1378, 1340, 1261, 1082, 1069, 1028, 828, 736, 697 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.52-7.49$ (m, 4 H), 7.41–7.38 (m, 4 H), 7.29–7.27 (m, 4 H), 7.23–7.18 (m, 8 H), 7.15–7.05 (m, 10 H), 5.25 (d, J = 11.4 Hz, 1 H), 4.95 (d, J = 12.0 Hz, 1 H), 4.83 (d, J = 12.0 Hz, 1 H), 4.75 (d, J = 12.0 Hz, 1 H)1 H), 4.69 (d, J = 10.8 Hz, 1 H), 4.60 (d, J = 12.0 Hz, 1 H), 4.55 (d, J = 12.0 Hz, 1 H), 4.44-4.41(m, 2 H), 4.40-4.36 (m, 3 H), 4.35 (dd, J = 12.0, 4.8 Hz, 1 H), 4.27 (dd, J = 9.6, 1.2 Hz, 1 H), 4.17-4.14 (m, 2 H), 9.30 (d, J = 9.6 Hz, 1 H), 3.78 (d, 2 H), 3.66 (t, J = 3.6 Hz, 1 H), 3.60 (t, J =7.8 Hz, 1 H), 3.57 (dd, J = 9.6, 8.4 Hz, 1 H), 3.49–3.45 (m, 1 H), 3.45 (d, J = 11.4 Hz, 3 H), 3.41 (d, J = 11.4 Hz, 3 H), 3.36-3.32 (m, 1 H), 3.24 (dd, J = 9.6, 2.4 Hz, 1 H), 3.20 (d, J = 7.2 Hz, 1 H)H), 3.16 (d, J = 7.2 Hz, 1 H), 3.12 (d, J = 9.6 Hz, 1 H), 2.92 (ddd, J = 12.6, 8.4, 4.2 Hz, 1 H), 2.64-2.58 (m, 1 H), 2.46 (dd, J = 12.6, 10.2 Hz, 1 H), 2.36 (dd, J = 15.6, 3.0 Hz, 1 H), 2.16 (dt, J = 15.6) = 11.4, 4.2 Hz, 1 H), 2.07 (dd, J = 11.4, 4.2 Hz, 1 H), 1.88 (ddd, J = 13.8, 10.2, 3.6 Hz, 1 H), 1.75 (q, J = 12.0 Hz, 1 H), 1.64-1.58 (m, 2 H), 1.22 (s, 3 H), 1.10 (s, 3 H), 1.02 (t, J = 7.8 Hz, 9 H), 1.00 (d, J = 6.6 Hz, 3 H), 0.77–0.66 (m, 6 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 203.9$, 203.8, 140.2, 140.0, 139.7, 139.5, 138.8, 138.4, 128.69, 128.66, 128.62, 128.52, 128.48, 128.47, 128.45, 128.14, 128.10, 128.02, 127.99, 127.93, 127.84, 127.75, 127.60, 127.54, 127.53, 127.50, 85.6, 82.2, 82.1, 80.7, 79.7, 79.1, 78.6, 77.1, 76.9, 76.2, 75.7, 74.9, 74.5, 73.7, 73.6, 73.5, 73.0, 72.91, 72.86, 70.7, 70.3, 69.0, 52.50, 52.46, 42.43, 42.39, 44.7, 44.3, 36.8, 35.93, 35.89, 35.0, 34.1, 33.4, 32.0, 21.1, 17.2, 10.3, 7.4, 5.7 ppm; HRMS (ESI-TOF); calcd for C₇₇H₉₉O₁₆PSi [M + H⁺]: 1339.6512, found 1339.6481.

Scheme S1. Furan-based Synthesis of G Ring Aldehyde **5**.

Furyl ketone S-2. To a stirred solution of TBDPS-protected furfuryl alcohol 22 (942 mg, 2.78 mmol, 2.5 equiv) in THF (10 mL) at 0 °C was added *n*-BuLi (2.5 M in hexanes, 1.74 mL, 2.78 mmol, 2.5 equiv), and the resulting mixture was stirred at 0 °C for 30 min and then cooled to -78 °C. A solution of Weinreb's amide S-1⁵ (250 mg, 1.12 mmol, 1.0 equiv) in THF (5 mL) was subsequently added, and the mixture was stirred at -78 °C for 75 min. The resulting mixture was then quenched with sat. aq. NH₄Cl (20 mL), the biphasic mixture was extracted with EtOAc (3 × 15 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3) gave furyl ketone S-2 (547 mg, 1.10 mmol, 98% yield) as a yellow oil. S-2: R_f = 0.20 (silica gel, hexanes:EtOAc 9:1); IR (film) v_{max} 3070, 2930, 2858, 1674, 1588, 1520, 1472, 1428, 1364, 1200, 1111, 1026, 1015, 823, 737, 700 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.79–7.68 (m, 4 H), 7.45–7.31 (m, 11 H), 7.14 (d, J = 3.6 Hz, 1 H), 6.36 (d, J = 3.0 Hz, 1 H), 4.71 (s, 2 H), 4.54 (s, 2 H), 3.88 (t, J = 6.6 Hz, 2 H), 3.08 (t, J = 6.6 Hz, 2 H), 1.08 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 187.0, 159.0, 152.0, 138.1, 135.5, 132.8, 129.9, 128.3, 127.8, 127.63,

127.57, 118.4, 109.4, 73.2, 65.3, 59.2, 38.7, 26.7, 19.2 ppm; HRMS (ESI-TOF); calcd for $C_{31}H_{34}O_4Si\ [M+H^+]$: 499.2299, found 499.2296.

Secondary alcohol S-3. To a solution of ketone **S-2** (10.4 g, 20.9 mmol, 1.0 equiv) in CH₂Cl₂:H₂O (1:1, 50 mL) at 25 °C were added HCO₂Na (14.2 g, 209 ОН mmol, 10.0 equiv), n-Bu₄NCl (1.74 g, 6.27 mmol, 0.3 equiv) and cat. ent-13 (262 mg, 0.42 mmol. 0.02 equiv), and the biphasic mixture was stirred vigorously at 25 °C for 24 h. The mixture was then diluted with H₂O (150 mL), extracted with CH₂Cl₂ (3 × 50 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 7:3) provided secondary alcohol S-3 [10.5 g, 20.9 mmol, quant. yield, ≥95% ee (based on ¹H NMR spectroscopic analysis of the corresponding Naproxen® ester)] as a pale yellow oil. **S-2:** $R_f = 0.31$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -$ 10.1 (CH₂Cl₂, c = 0.88); IR (film) v_{max} 3428, 3070, 2930, 2858, 1472, 1454, 1427, 1362, 1110, 1073, 1016, 941, 823, 791, 738, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.70-7.68$ (m. 4 H). 7.44-7.28 (m, 11 H), 6.15 (d, J = 3.0 Hz, 1 H), 6.08 (d, J = 3.0 Hz, 1 H), 4.87 (q, J = 5.5 Hz, 1 H), 4.63 (s, 2 H), 4.53 (d, J = 7.0 Hz, 1 H), 4.51 (d, J = 7.0 Hz, 1 H), 3.71–3.68 (m, 1 H), 3.66– 3.61 (m, 1 H), 2.91 (d, J = 4.5 Hz, 1 H), 2.12 (q, J = 5.5 Hz, 2 H), 1.05 (s, 9 H) ppm; ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: $\delta = 155.9$, 153.3, 137.9, 135.6, 133.4, 129.7, 128.4, 127.73, 127.67, 127.63. 107.9, 106.3, 73.3, 68.0, 66.9, 58.9, 35.1, 26.8, 19.2 ppm; HRMS (ESI-TOF); calcd for $C_{31}H_{36}O_4Si [M + Na^+]: 523.2275$, found 523.2280.

G Ring enone S-4. To a stirred solution of secondary alcohol **S-3** (1.50 g, 3.00 mmol 1.0 equiv) in CH_2Cl_2 (40 mL) at 25 °C was added dry m-CPBA (671 mg, 3.89 mmol, 1.3 equiv), and the reaction mixture was stirred at 25 °C for 1.5 h. The reaction mixture was then quenched with Me_2S (290 μ L, 3.89 mmol, 1.3 equiv) followed by sat. aq. $NaHCO_3$ (75 mL), the biphasic mixture was extracted with CH_2Cl_2 (3 × 30 mL), and the combined organic layers were washed with sat. aq. $NaHCO_3$ (50 mL) and brine (50 mL), and then dried ($MgSO_4$) and concentrated. The resulting hemiketal was taken on to the next step

without further purification. To a stirred solution of the crude hemiketal in CH₂Cl₂ (30 mL) at – 78 °C were added Et₃SiH (958 µL, 6.0 mmol, 2 equiv) and BF₃•OEt₂ (942 µL, 7.5 mmol, 2.5 equiv), and the resulting mixture was warmed to -45 °C and stirred for 2.5 h. The reaction mixture was then quenched with sat. aq. NaHCO₃ (50 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 25 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3) gave G ring enone **S-4** (1.19 g, 2.38 mmol, 79% yield) as a pale yellow oil. **S-4:** $R_f = 0.35$ (silica gel, hexanes: EtOAc 17:3); $[\alpha]_D^{32} = -50.1$ (CH₂Cl₂, c = 1.20); IR (film) v_{max} 3070, 2930, 2857, 1693, 1472, 1428, 1390, 1361, 1315, 1202, 1112, 823, 739, 701 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta =$ 7.69-7.67 (m, 4 H), 7.45-7.38 (m, 6 H), 7.31-7.24 (m, 5 H), 7.18 (d, J = 10.2 Hz, 1 H), 6.17 (dd, J = 10.2, 2.4 Hz, 1 H), 4.51 (d, J = 12.0 Hz, 1 H), 4.46 (d, J = 12.0 Hz, 1 H), 4.43 (t, J = 6.0 Hz, 1 H), 4.18 (dt, J = 8.4, 1.8 Hz, 1 H), 3.88 (dd, J = 10.2, 6.0 Hz, 1 H), 3.71 (dd, J = 11.4, 6.0 Hz, 1 H), 3.66–3.59 (m, 2 H), 2.42–2.36 (m, 1 H), 1.88–1.82 (m, 1 H), 1.08 (m, 9 H) ppm; ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3)$: $\delta = 196.5$, 148.9, 138.5, 135.6, 135.5, 133.1, 133.0, 129.84, 129.83, 128.3, 127.75, 127.72, 127.6, 127.5, 127.4, 77.1, 74.7, 72.7, 65.7, 65.2, 30.0, 26.8, 19.3 ppm; HRMS (ESI-TOF); calcd for $C_{31}H_{36}O_4Si$ [M + H⁺]: 501.2455, found 501.2456.

G Ring allylic alcohol S-5. To a stirred solution of G ring enone **S-4** (1.48 g, 2.96 mmol, 1.0 $_{\text{BnO}}$ G equiv) in MeOH:CH₂Cl₂ (1:1, 6 mL) at -10 °C were sequentially added $_{\text{S-5}}$ CeCl₃•7H₂O (551 mg, 1.48 mmol, 0.5 equiv) and NaBH₄ (112 mg, 2.96 mmol, 1.0 equiv), and the reaction mixture was stirred at -10 °C for 10 min. The mixture was then quenched with sat. aq. NH₄Cl (10 mL), and the biphasic mixture was acidified to pH = 5 with 1.0 M aq. HCl and then extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (15 mL) and brine (15 mL), and then dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) gave G ring allylic alcohol S-5 (1.47 g, 2.92 mmol, 99% yield) as a colorless oil. S-5: $R_f = 0.36$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -50.0$ (CHCl₃, c = 1.00); IR (film) v_{max} 3410, 2930, 2858, 1472,

1428, 1362, 1216, 1112, 823, 754, 701 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.74$ –7.62 (m, 4 H), 7.47–7.28 (m, 11 H), 5.88 (d, J = 10.4 Hz, 1 H), 5.84 (d, J = 10.4 Hz, 1 H), 4.53 (t, J = 8.4 Hz, 2 H), 4.22 (dd, J = 2.4, 1.2 Hz, 1 H), 4.02–3.91 (m, 1 H), 3.78–3.51 (m, 4 H), 3.34 (dd, J = 7.8, 3.6 Hz, 2 H), 2.08 (ddd, J = 14.4, 8.4, 4.2 Hz, 1 H), 1.94–1.85 (m, 1 H), 1.06 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 137.9$, 136.0, 133.96, 133.94, 130.2, 130.0, 128.87, 128.85, 128.24, 128.20, 127.96, 127.96, 127.95, 78.2, 77.6, 77.4, 77.2, 75.8, 73.6, 68.6, 67.9, 66.7, 34.8, 27.2, 19.7 ppm; HRMS (ESI-TOF); calcd for C₃₁H₃₈O₄Si [M + Na⁺]: 525.2431, found 525.2436.

G Ring diol S-6. To a stirred solution of G ring allylic alcohol S-5 (12.0 g, 23.8 mmol, 1.0 equiv) in THF (170 mL) at -78 °C was added LiDBB (1.0 M in THF, 47.6 mL, 47.6 mmol, 2.0 equiv), and the reaction mixture was warmed to -50 °C and stirred for 2.5 h. The reaction mixture was then quenched with sat. aq NH₄Cl (200 mL), the biphasic mixture was extracted with EtOAc (3 × 100 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes: EtOAc 4:1 to 1:4) gave G ring diol S-6 (9.4 g, 22.7 mmol, 96%) as a colorless oil. S-6: $R_{\rm f} = 0.36$ (silica gel, hexanes:EtOAc 1:3); $[\alpha]_{\rm D}^{32} = -19.8$ (CHCl₃, c = 1.00); IR (film) $v_{\rm max}$ 3341, 3071, 2929, 2857, 1589, 1472, 1427, 1390, 1361, 1262, 1183, 1111, 1063, 939, 823, 739, 701 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.67$ (ddd, J = 5.4, 2.4, 1.2 Hz, 4 H), 7.46–7.32 (m, 6 H), 5.83 (d, J = 1.2 Hz, 2 H), 4.27 (dd, J = 3.6, 2.4 Hz, 1 H), 4.05–3.94 (m, 1 H), 3.94–3.79 (m, 2 H), 3.68 (ddd, J = 10.4, 6.6, 1.2 Hz, 1 H), 3.58 (ddd, J = 10.4, 5.4, 1.2 Hz, 1 H), 3.44 (d, J = 4.2 Hz, 1 H)1 H), 2.12–2.02 (m, 1 H), 1.92–1.83 (m, 1 H), 1.05 (s, 9 H) ppm; 13 C NMR (150 MHz, CDCl₃): δ = 136.0, 130.2, 130.06, 130.05, 129.0, 128.0, 80.1, 77.6, 77.4, 77.2, 75.8, 68.3, 66.61, 61.62,35.6, 27.1, 19.6 ppm; HRMS (ESI-TOF); calcd for C₂₄H₃₂O₄Si [M+Na⁺]: 435.1962, found 435.1960.

G Ring pivaloate S-7. To a stirred solution of G ring diol **S-6** (2.0 g, 4.85 mmol, 1.0 equiv) in CH₂Cl₂ (30 mL) at 0 °C were added 2,4,6-collidine (2.15 mL, 19.0 mmol, 4.0 equiv) and PivCl (1.41 mL, 12.0 mmol, 2.5 equiv), and the resulting mixture was stirred at 0 °C for 40 h. The

PivO G OH H H H mixture was then quenched with sat. aq. NaHCO₃ (50 mL), the resulting biphasic mixture was extracted with EtOAc (3×50 mL), and the combined organic layers were washed with sat. aq. CuSO₄ (2×30 mL), H₂O (50 mL), and then dried (MgSO₄) and concentrated. The resulting crude primary ried on to the next step without further purification. To a solution of crude

and brine (50 mL), and then dried (MgSO₄) and concentrated. The resulting crude primary pivaloate was carried on to the next step without further purification. To a solution of crude pivaloate in THF (75 mL) at 25 °C was added TBAF (1.0 M in THF, 19.0 mL, 19.0 mmol, 4.0 equiv), and the reaction mixture was stirred at 25 °C for 1 h. The mixture was then quenched with sat. aq. NH₄Cl (75 mL), the resulting biphasic mixture was extracted with EtOAc (3 × 40 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:3) gave pivaloate G ring S-7 (990 mg, 3.83 mmol, 79% over the two steps) as a colorless oil. S-7: $R_f = 0.21$ (silica gel, hexanes:EtOAc 2:3); $[\alpha]_D^{32} = -64.0$ (CHCl₃, c = 1.00); IR (film) ν_{max} 3311, 2960, 1728, 1480, 1428, 1286, 1162, 1112, 757, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 5.89$ (d, J = 10.2 Hz, 1 H), 5.72 (d, J = 10.2 Hz, 1 H), 4.33–4.18 (m, 3 H), 3.98 (s, 1 H), 3.69 (d, J = 4.2 Hz, 1 H), 3.57–3.49 (m, 1 H), 3.40–3.33 (m, 1 H), 2.30–2.19 (m, 1 H), 1.99 (t, J = 5.4 Hz, 1 H), 1.88–1.79 (m, 1 H), 1.75 (d, J = 7.2 Hz, 1 H), 1.65 (s, 1 H), 1.20 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 179.0$, 131.6, 128.5, 77.6, 77.4, 77.2, 76.5, 75.9, 68.1, 65.5, 61.3, 39.1, 32.2, 27.6 ppm; HRMS (ESI-TOF); calcd for $C_{13}H_{22}O_{5}[M + Na^{+}]$; 281.1359, found 281.1359.

G Ring bis-benzyl ether S-8. To a stirred solution of pivaloate S-7 (600 mg, 2.55 mmol, 1.0 equiv) in cyclohexane:CH₂Cl₂ (2:1, 75 mL) at 0 °C were added Pivo BnOC(NH)CCl₃ (5.15 g, 20.4 mmol, 8.0 equiv) and TfOH (45 μL, 0.51 mmol, 0.2 equiv), and the resulting mixture was warmed to 25 °C and stirred for 1.5 h. The mixture was then filtered through a cotton plug and subsequently quenched with NaHCO₃ (100 mL), the biphasic mixture was extracted with Et₂O (3 × 50 mL), and the combined organic layers were washed with brine (75 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 19:1 to 17:3) provided G ring bis-benzyl ether S-8

(1.12 g, 2.55 mmol, quant. yield) as a colorless oil. **S-8:** $R_{\rm f} = 0.27$ (silica gel, hexanes:EtOAc 9:1); $[\alpha]_{\rm D}^{32} = -64.0$ (CHCl₃, c = 1.00); IR (film) $v_{\rm max}$ 2959, 1726, 1480, 1428, 1364, 1283, 1160, 1112, 1069, 723 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.44-7.32$ (m, 10 H), 6.00 (d, J = 10.2 Hz, 1 H), 5.85 (d, J = 10.2 Hz, 1 H), 4.67 (d, J = 11.4 Hz, 1 H), 4.64–4.49 (m, 3 H), 4.32–4.16 (m, 3 H), 3.86–3.78 (m, 1 H), 3.61–3.40 (m, 3 H), 1.29–1.14 (m, 11 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.8$, 138.5, 138.4, 129.7, 128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 127.6, 77.6, 77.4, 77.2, 75.0, 74.8, 74.4, 73.8, 72.6, 71.3, 61.4, 39.1, 32.2, 30.7, 27.6 ppm; HRMS (ESITOF); calcd for $C_{27}H_{34}O_{5}$ [M + Na⁺]: 461.2304, found 461.2307.

G Ring secondary alcohol S-9. To a stirred solution of G ring bis-benzyl ether S-8 (804 mg, 1.77 mmol, 1.0 equiv) in CH₂Cl₂ (50 mL) at 25 °C was added *m*-CPBA (70%, 2.51 g, 10.2 mmol, 4.0 equiv), and the reaction mixture was stirred at 25 °C for 36 h. The reaction mixture was then quenched with Me₂S (775 μL, 10.2 mmol, 4.0 equiv) followed by sat. aq. NaHCO₃ (75 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 30 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ (50 mL) and brine (50 mL), and then dried (MgSO₄) and concentrated. The residue was filtered through a short plug of silica gel, eluding with hexanes:EtOAc (4:1) to provide 834 mg of the corresponding epoxide as an inseparable ca. 4:1 mix of diastereomers, which was taken on to the next step without further purification. To a stirred solution of the partially purified epoxide obtained above (834 mg, 1.84 mmol, 1.0 equiv) in CH₂Cl₂ (35 mL) at 25 °C was added BnOH (956 μL, 9.2 mmol, 5.0 equiv) followed by BF₃•OEt₂ (231 μL, 1.84 mmol, 1.0 equiv), and the reaction mixture was stirred at 25 °C for 6 h. The resulting mixture was then quenched with sat. aq. NaHCO₃ (50 mL), the biphasic mixture was extracted with CH₂Cl₂ (3 × 25 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 9:1 to 3:2) gave G ring secondary alcohol **S-9** (610 mg, 1.09 mmol, 42% yield over the two steps) as a colorless oil. S-9: $R_f = 0.10$ (silica gel, hexanes:EtOAc 4:1); $[\alpha]_D^{32} = -44.7 \text{ (CH}_2\text{Cl}_2, c = 1.07); IR \text{ (film) } v_{\text{max}} 3482, 3030, 2969, 2906, 2871, 1724, 1496,$

1479, 1454, 1365, 1285, 1207, 1156, 1100, 1073, 1028, 736, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.31$ –7.20 (m, 15 H), 4.67 (d, J = 12.0 Hz, 1 H), 4.57 (d, J = 12.0 Hz, 2 H), 4.52 (d, J = 12.0 Hz, 1 H), 4.45 (d, J = 12.0 Hz, 1 H), 4.39 (d, J = 11.4 Hz, 1 H), 4.14 (dd, J = 7.8, 5.4 Hz, 2 H), 3.95 (d, J = 3.6 Hz, 1 H), 3.88 (t, J = 3.6 Hz, 1 H), 3.86–3.82 (m, 2 H), 3.69 (dd, J = 10.2, 4.2 Hz, 1 H), 3.64 (dd, J = 10.2, 3.6 Hz, 1 H), 3.57 (dd, J = 9.6, 3.0 Hz, 1 H), 2.18 (ddt, J = 13.8, 7.8, 3.0 Hz, 1 H), 1.66 (ddt, J = 13.8, 11.4, 5.4 Hz, 1 H), 1.13 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 178.6$, 138.5, 138.0, 137.4, 128.5, 128.4, 128.3, 127.9, 127.83, 127.77, 127.71, 127.63, 127.60, 76.5, 73.9, 73.7, 72.9, 72.7, 72.5, 71.4, 71.3, 70.5, 61.2, 38.7, 31.1, 27.2 ppm; HRMS (ESI-TOF); calcd for $C_{34}H_{42}O_{7}$ [M + H⁺]: 563.3003, found 563.3002.

G Ring inverted secondary alcohol S-10. To a stirred solution of G ring secondary alcohol S-9

(509 mg, 0.91 mmol, 1.0 equiv) in CH₂Cl₂ (15 mL) was added DMP (575 OBn (509 mg, 0.91 mmol, 1.0 equiv) in CH₂Cl₂ (15 mL) was added DMP (575 mg, 1.34 mmol, 1.5 equiv), and the reaction mixture was stirred at 25 °C for S-10 45 min. The resulting mixture was then quenched with sat. aq. NaHCO₃:sat. aq. Na₂S₂O₃ (1:1, 30 mL), and the biphasic mixture was stirred vigorously for 15 min. The mixture was extracted with CH₂Cl₂ (3 × 15 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ (20 mL) and brine (20 mL), and then dried (MgSO₄) and concentrated. The crude ketone was taken on to the next step without further purification. To a solution of the crude ketone obtained above in MeOH (20 mL) at -78 °C was added NaBH₄ (171 mg, 4.54 mmol, 5.0 equiv), and the reaction mixture was warmed to -10 °C and stirred for 15 min. The resulting mixture was then quenched with sat. aq. NH₄Cl (50 mL), the biphasic mixture was extracted with EtOAc (3 × 25 mL), and the combined organic layers were washed with brine (40 mL), dried (MgSO₄), and concentrated. Flash column chromatography (silica gel, hexanes: EtOAc 3:1) provided G ring inverted secondary alcohol S-10 (473 mg, 0.85 mmol, 93% yield over the two steps) as a colorless oil. **S-10:** $R_{\rm f} = 0.22$ (silica gel, hexanes:EtOAc 3:1); $\left[\alpha\right]_{D}^{32} = -36.3 \text{ (CH}_{2}\text{Cl}_{2}, c = 0.49); IR (film) } v_{\text{max}} 3480, 3030, 2959, 2906, 2871, 1724, 1479,$ 1454, 1365, 1284, 1160, 1101, 1057, 1028, 735, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ =

7.37–7.27 (m, 15 H), 5.02 (d, J = 11.4 Hz, 1 H), 4.70 (d, J = 12.0 Hz, 1 H), 4.60 (d, J = 11.4 Hz, 1 H), 4.57–4.54 (m, 3 H), 4.25–4.21 (m, 1 H), 4.19 (dd, J = 8.4, 7.2 Hz, 1 H), 4.15 (t, J = 2.4 Hz, 1 H), 3.86 (dt, J = 9.6, 2.4 Hz, 1 H), 3.70 (dd, J = 13.2, 4.8 Hz, 1 H), 3.60 (dd, J = 13.2, 4.2 Hz, 2 H), 3.56 (t, J = 6.6 Hz, 1 H), 3.22 (dd, J = 9.6, 1.8 Hz, 1 H), 2.43 (d, J = 9.6 Hz, 1 H), 2.21 (ddt, J = 16.2, 7.8, 2.4 Hz, 1 H), 1.68–1.62 (m, 1 H), 1.19 (s, 9 H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 178.5, 138.5, 138.2, 137.5, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7, 127.6, 127.5, 80.1, 75.8, 75.6, 74.7, 73.5, 71.8, 71.2, 70.0, 68.5, 61.2, 38.7, 30.8, 27.2 ppm; HRMS (ESI-TOF); calcd for $C_{34}H_{42}O_7$ [M + H $^+$]: 563.3003, found 563.3005.

G Ring tetra-benzyl ether S-11. To a vigorously stirred solution of G ring inverted secondary alcohol **S-10** (405 mg, 0.72 mmol, 1.0 equiv) in PhMe (10 mL) at 25 °C were con added BnBr (855 μL, 7.2 mmol, 10.0 equiv), n-Bu₄NI (133 mg, 0.36 mmol, 0.5 equiv) and 25% ag. NaOH (10 mL), and the resulting biphasic mixture was vigorously stirred at 25 °C for 20 h. The mixture was then diluted with H₂O (20 mL) and extracted with EtOAc (3 \times 15 mL), and the combined organic layers were washed with H₂O (15 mL) and brine (15 mL), and then dried (MgSO₄) and concentrated. chromatography (silica gel, 19:1 to 17:3) gave G ring tetra-benzyl ether S-11 (434 mg, 0.67 mmol, 92% yield) as a colorless oil. **S-11:** $R_f = 0.27$ (silica gel, hexanes:EtOAc 17:3); $[\alpha]_D^{32} = -$ 6.2 (CH₂Cl₂, c = 0.75); IR (film) v_{max} 3030, 2959, 2900, 2871, 1725, 1496, 1479, 1454, 1364, 1284, 1207, 1160, 1099, 1073, 1028, 735, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.36-7.30$ (m, 14 H), 7.27-7.23 (m, 6 H), 4.81 (d, J = 12.0 Hz, 1 H), 4.78 (d, J = 11.5 Hz, 1 H), 4.62 (d, J = 11.5 Hz, 1 12.5 Hz, 1 H), 4.58 (d, J = 12.0 Hz, 1 H), 4.56 (d, J = 11.5 Hz, 1 H), 4.51 (d, J = 12.0 Hz, 1 H), 4.46 (d, J = 11.5 Hz, 1 H), 4.41 (d, J = 12.0 Hz, 1 H), 4.25-4.15 (m, 3 H), 3.95-3.89 (m, 2 H), 3.71 (d, J = 2.5 Hz, 2 H), 3.51 (dd, J = 9.5, 2.0 Hz, 1 H), 3.12 (dd, J = 9.5, 2.0 Hz, 1 H), 2.20(ddt, $J = 16.5, 8.0, 2.0 \text{ Hz}, 1 \text{ H}), 1.69-1.62 (m, 1 H), 1.18 (s, 9 H) ppm; {}^{13}\text{C NMR} (125 \text{ MHz}, 1.18), 1.18 (s, 9 H) ppm; {}^{13}\text{C NMR} (125 \text{ MHz}, 1.18), 1.18 (s, 9 H) ppm; {}^{13}\text{C NMR} (125 \text{ MHz}, 1.18), 1.18 (s, 9 H) ppm; {}^{13}\text{C NMR} (125 \text{ MHz}, 1.18), {}^{13}\text{C NMR} (1$ CDCl₃): $\delta = 178.5$, 139.1, 138.4, 138.1, 137.8, 128.4, 128.35, 128.27, 128.1, 127.81, 127.80, 127.74, 127.67, 127.60, 127.5, 127.2, 79.6, 76.1, 74.3, 73.9, 73.5, 72.1, 71.6, 71.4, 71.2, 69.2,

61.4, 38.7, 30.9, 27.2 ppm; HRMS (ESI-TOF); calcd for $C_{41}H_{48}O_7$ [M + H⁺]: 653.3473, found 653.3471.

G Ring primary alcohol S-12. To a stirred solution of G ring tetra-benzyl ether **S-11** (423 mg, 0.65 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) at -78 °C was added Dibal-H (1.0 OBn M in CH₂Cl₂, 2.59 mL, 2.59 mmol, 4.0 equiv), and the reaction mixture was stirred at -78 °C for 1.5 h. The resulting mixture was then diluted with EtOAc (10 mL) and quenched with sat. ag. Rochelle's salt (20 mL), and the biphasic mixture was stirred vigorously at 25 °C for 16 h. The mixture was then extracted with EtOAc (3 × 15 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) gave G ring primary alcohol S-12 (369 mg, 0.65 mmol, quant. vield) as a colorless oil. S-11: $R_f = 0.26$ (silica gel, hexanes: EtOAc 3:2); $[\alpha]_D^{32} = -2.3$ (CH₂Cl₂, c = 0.94); IR (film) v_{max} 3493, 3030, 2872, 1496, 1454, 1364, 1332, 1307, 1207, 1089, 1072, 1027, 736, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.37-7.31$ (m, 12 H), 7.29–7.25 (m, 8 H), 4.84 (d, J = 12.0 Hz, 1 H), 4.80 (d, J = 12.0 Hz, 1 H), 4.58-4.55 (m, 3 H), 4.50 (d, J = 12.6 Hz, 1 H),4.44 (d, J = 11.4 Hz, 1 H), 4.39 (d, J = 12.0 Hz, 1 H), 4.20 (t, J = 1.8 Hz, 1 H), 4.06 (dt, J = 9.0,3.0 Hz, 1 H), 4.03 (ddd, J = 9.6, 4.8, 1.8 Hz, 1 H), 3.84–3.72 (m, 2 H), 3.69 (dd, J = 10.8, 1.8 Hz, 1 H), 3.61 (dd, J = 10.2, 4.8 Hz, 1 H), 3.45 (dd, J = 10.2, 2.4 Hz, 1 H), 3.18 (dd, J = 9.6, 2.4 Hz, 1 H), 2.90 (bs, 1 H), 2.08 (dguin, J = 14.4, 3.0 Hz, 1 H), 1.69 (ddt, J = 14.4, 8.4, 3.6 Hz, 1 H) ppm; 13 C NMR (150 MHz, CDCl₃): δ = 138.9, 138.1, 137.9, 137.6, 128.5, 128.41, 128.36, 128.2, 127.93, 127.90, 127.80, 127.77, 127.72, 127.6, 127.4, 79.0, 76.2, 75.5, 74.0, 73.8, 73.5, 71.7, 71.6, 71.2, 69.4, 61.8, 36.6 ppm; HRMS (ESI-TOF); calcd for $C_{36}H_{40}O_6$ [M + H⁺]: 569.2898, found 569.2896.

G Ring aldehyde 4. To a stirred solution of G ring primary alcohol S-12 (64 mg, 0.113 mmol, 0.113 mmol, 1.0 equiv) in CH₂Cl₂:MeCN (9:1, 5 mL) at 25 °C were added flame-dried 4 Å MS (85 mg), NMO (26 mg, 0.225 mmol, 2.0 equiv), and TPAP (4 mg, 0.011 mmol, 0.1 equiv), and the reaction mixture was stirred at 25 °C for 30 min.

The resulting mixture was then diluted in hexanes (7 mL), and CeliteTM (150 mg) was added. This homogenous mixture was directly subjected to flash column chromatography (silica gel, hexanes:EtAOc 7:3) to provided G ring aldehyde 5 (53 mg, 0.094 mmol, 83% yield) as a colorless oil. **5:** $R_f = 0.34$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_D^{32} = +1.2$ (CH₂Cl₂, c = 1.00); IR (film) v_{max} 3030, 2869, 1725, 1496, 1454, 1364, 1314, 1206, 1091, 1027, 735, 697 cm⁻¹; ^{1}H NMR (600 MHz, CDCl₃): $\delta = 9.74$ (t, J = 2.4 Hz, 1 H), 7.37 - 7.30 (m, 12 H), 7.28 - 7.25 (m, 8 H), 4.83 (d, J = 12.0 Hz, 1 H), 4.79 (d, J = 12.0 Hz, 1 H), 4.59 (d, J = 12.6 Hz, 1 H), 4.56 (d, J = 12.0 Hz), 4.57 (d, J = 12.0 Hz), 4.57 (d, J = 12.0 Hz), 4.58 (d, J = 12.0 Hz), 4.59 (d, J = 12.0 Hz), 4.50 (d 10.8 Hz, 1 H), 4.54 (d, J = 11.4 Hz, 1 H), 4.51 (d, J = 12.6 Hz, 1 H), 4.47 (d, J = 12.0 Hz, 1 H), 4.40 (sext, J = 4.2 Hz, 1 H), 4.34 (d, J = 12.0 Hz, 1 H), 4.20 (t, J = 1.8 Hz, 1 H), 4.02 (dt, J = 9.6, 2.4 Hz, 1 H), 3.69 (d, J = 2.4 Hz, 2 H), 3.51 (dd, J = 10.0, 2.4 Hz, 1 H), 3.16 (dd, J = 9.6, 1.8 Hz, 1 H), 2.75 (ddd, J = 16.2, 4.8, 2.4 Hz, 1 H), 2.49 (ddd, J = 16.2, 8.4, 2.0 Hz, 1 H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 201.2$, 138.9, 138.2, 137.9, 137.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.79, 127.77, 127.76, 127.72, 127.5, 127.4, 78.9, 75.9, 74.4, 74.0, 73.5, 71.74, 71.68, 71.0, 70.1, 69.0, 46.2 ppm; HRMS (ESI-TOF); calcd for $C_{36}H_{38}O_6$ [M + H⁺]: 567.2741, found 567.2731.

ABCDEG Enone 41. To a stirred solution of ABCDE ketophosphonate 6 (75 mg, 0.056 mmol,

1.0 equiv) in MeCN (1 mL) at 25 °C were added Bno Me H Me H OBn OBn 1.0 equiv) in MeCN (1 mL) at 25 °C were added flame-dried LiCl (7 mg, 0.168 mmol, 3.0 equiv) and *i*-Pr₂NEt (29 μL, 0.168 mmol, 3.0 equiv)

followed by dropwise addition of a solution of aldehyde 4 (44 mg, 0.078 mmol, 1.4 equiv) in 2 mL MeCN via cannula, and the reaction mixture was stirred at the same temperature for 72 h. The resulting mixture was then quenched with sat. aq. NH₄Cl (4 mL), the biphasic mixture was extracted with Et₂O (3 × 3 mL), and the combined organic extracts were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 17:3 to 2:3) yielded ABCDEG enone 41 (91 mg, 0.051 mmol, 91% yield) as a white foam along with recovered ABCDE ketophosphonate 6 (3 mg, 0.002 mmol, 4% yield). 41: $R_f = 0.33$ (silica gel,

hexanes: EtOAc 4:1); $\left[\alpha\right]_{D}^{32} = +11.8$ (C₆H₆, c = 0.80); IR (film) v_{max} 3027, 2951, 2875, 1691, 1623, 1496, 1454, 1345, 1203, 1083, 1028, 734, 697 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.56$ – 7.48 (m, 5 H), 7.45–7.37 (m, 6 H), 7.30–7.25 (m, 10 H), 7.24–7.16 (m, 13 H), 7.13–7.02 (m, 17 H), 6.75 (d, J = 16.2 Hz, 1 H), 5.26 (d, J = 10.8 Hz, 1 H), 4.95 (d, J = 11.4 Hz, 1 H), 4.86 (d, J = 10.8 Hz, 1 H), 4 12.0 Hz, 1 H), 4.81 (d, J = 11.4 Hz, 1 H), 4.79 (d, J = 11.4 Hz, 1 H), 4.71 (d, J = 11.4 Hz, 1 H), 4.61-4.54 (m, 3 H), 4.53-4.47 (m, 3 H), 4.43-4.32 (m, 8 H), 4.29 (d, J = 12.0 Hz, 1 H), 4.27 (dd, J = 9.6, 1.8 Hz, 1 H, 4.17-4.13 (m, 4 H), 4.12-4.08 (m, 3 H), 3.78-3.75 (m, 3 H), 3.68-3.64 (m, 3 H)2 H), 3.62-3.58 (m, 2 H), 3.55 (dd, J = 9.6, 1.8 Hz, 1 H), 3.42 (m, 2 H), 3.36 (ddd, J = 11.4, 7.2, 4.2 Hz, 1 H), 3.24 (dd, J = 10.2, 2.4 Hz, 1 H), 3.16 (d, J = 10.2 Hz, 1 H), 2.99 (dd, J = 9.0, 1.8 Hz, 1 H), 2.94 (ddd, J = 12.0, 8.4, 3.6 Hz, 1 H), 2.72–2.67 (m, 1 H), 2.64–2.58 (m, 1 H), 2.54 (t, J = 11.4 Hz, 1 H), 2.41–2.34 (m, 2 H), 2.16 (dt, J = 11.4, 4.2 Hz, 1 H), 2.10 (dd, J = 11.4, 4.8 Hz, 1 H), 1.94 (ddd, $J = 13.2 \, 10.2$, 3.0 Hz, 1 H), 1.76 (q, $J = 12.0 \, \text{Hz}$, 1 H), 1.69 (t, $J = 11.4 \, \text{Hz}$, 1 H), 1.60 (dd, J = 16.2, 4.2 Hz, 1 H), 1.22 (s, 3 H), 1.16 (s, 3 H), 1.00 (d, J = 6.6 Hz, 3 H), 0.99 (t, J = 8.4 Hz, 9 H), 0.72–0.60 (m, 6 H) ppm; ¹³C NMR (150 MHz, C₆D₆): $\delta = 200.1$, 145.3, 140.2, 140.1, 139.8, 139.7, 139.5, 139.4, 139.0, 138.8, 138.7, 138.6, 128.8, 128.69, 128.68, 128.63, 128.62, 128.60, 128.52, 128.50, 128.48, 128.45, 128.27, 128.26, 128.18, 128.17, 128.14, 128.10, 128.03, 128.02, 127.98, 127.94, 127.84, 127.83, 127.75, 127.7, 127.68, 127.64, 127.58, 127.54, 127.53, 127.49, 127.45, 85.8, 80.9, 80.8, 79.9, 79.7, 76.1, 78.59, 78.57, 77.1, 77.0, 76.9, 76.6, 76.2, 75.71, 75.67, 75.1, 74.9, 74.7, 74.5, 73.7, 73.64, 73.60, 73.5, 73.1, 73.0, 72.9, 72.3, 71.8, 71.2, 70.7, 70.0, 69.8, 69.0, 44.7, 44.6, 36.7, 35.4, 34.1, 33.4, 21.1, 17.4, 10.3, 7.4, 5.8 ppm; HRMS (ESI-TOF); calcd for $C_{111}H_{130}O_{18}Si [M + H^{+}]$: 1779.9099, found 1779.9063.

ABCDEFG Alkene 43. To a stirred solution of ABCDEG enone **41** (34 mg, 0.019 mmol, 1.0

equiv) in MeOH:CH₂Cl₂ (3:1, 3 mL) at 25 °C was added TsOH (11 mg, 0.057 mmol, 3.0 equiv), and the reaction mixture was stirred at

25 °C for 2.5 h. The resulting mixture was then quenched with sat. aq. NaHCO3 (5 mL), the

biphasic mixture was extracted with EtOAc (3 × 3 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The crude methyl acetal 42 was carried on to the next step without further purification. To a solution of crude acetal 42 in MeCN (2.5 mL) at -40 °C were added Et₃SiH (30 µL, 0.19 mmol, 10.0 equiv) and TMSOTf (12 µL, 0.012 mmol, 5 equiv), and the reaction mixture was warmed to -25 °C and stirred for 30 min. The resulting mixture was quenched with sat. aq. NaHCO₃ (3 mL), the biphasic mixture was extracted with Et₂O (3 × 3 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) gave ABCDEFG alkene 43 (22 mg, 0.013 mmol, 69% yield over the two steps) as a white foam. 43: $R_f = 0.19$ (silica gel, hexanes: EtOAc 4:1); $\lceil \alpha \rceil_D^{32} = -7.8$ (CH₂Cl₂, c = 0.79); IR (film) ν_{max} 3022, 2923, 2865, 1496, 1454, 1347, 1206, 1084, 1068, 1027, 735, 697 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): $\delta = 7.61-7.60$ (m, 2 H), 7.53–7.52 (m, 2 H), 7.46–7.44 (m, 2 H), 7.40–7.39 (m, 2 H), 7.35–7.23 (m, 14 H), 7.20–7.16 (m, 13 H), 7.14-7.05 (m, 15 H), 6.18 (dt, J = 15.0, 6.6 Hz, 1 H), 6.02 (dd, J = 15.6, 6.6 Hz, 1 H), 5.13 (d, J= 12.0 Hz, 1 H), 5.07 (d, J = 12.0 Hz, 1 H), 4.95 (d, J = 11.4 Hz, 1 H), 4.86 (d, J = 12.0 Hz, 1 H), 4.83 (d, J = 12.0 Hz, 1 H), 4.81 (d, J = 12.0 Hz, 1 H), 4.57 (d, J = 12.0 Hz, 1 H), 4.53 (d, J = 12.0 Hz, 1 H), 4.54 (d, J = 12.0 Hz, 1 H), 4.54 (d, J = 12.0 Hz, 1 H), 4.55 12.0 Hz, 1 H), 4.51 (d, J = 12.6 Hz, 1 H), 4.49 (d, J = 12.0 Hz, 1 H), 4.43–4.36 (m, 8 H), 4.31 (d, J = 11.4 Hz, 1 H), 4.27 (d, J = 10.2 Hz, 1 H), 4.24–4.12 (m, 7 H), 3.85–3.78 (m, 5 H), 3.74 (d, J= 10.8 Hz, 1 H), 3.65-3.59 (m, 3 H), 3.44 (t, J = 8.4 Hz, 1 H), 3.39 (dt, J = 10.8, 4.2 Hz, 1 H), 3.35-3.31 (m, 2 H), 3.25 (dd, J = 10.2, 1.8 Hz, 1 H), 3.21-3.17 (m, 2 H), 3.05 (ddd, J = 12.0, 8.4, 3.6 Hz, 1 H), 2.75 (ddd, J = 13.2, 3.6, 1.8 Hz, 1 H), 2.61 (sext, J = 7.2 Hz, 1 H), 2.52 (quin, J =7.2 Hz, 1 H), 2.35 (dd, J = 9.6, 2.4 Hz, 1 H), 2.32–2.26 (m, 2 H), 2.21 (dd, J = 10.8, 4.2 Hz, 1 H), 1.81 (q, J = 11.4 Hz, 2 H), 1.59 (dd, J = 16.2, 4.2 Hz, 1 H), 1.20 (s, 3 H), 1.13 (s, 3 H), 1.00 (d, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (150 MHz, C_6D_6): $\delta = 140.4$, 140.2, 140.0, 139.7, 139.5, 139.4, 139.1, 139.0, 138.9, 138.8, 131.0, 129.2, 128.72, 128.67, 128.58, 128.57, 128.51, 128.47, 128.3, 128.2, 128.14, 128.12, 128.10, 127.98, 127.97, 127.86, 127.85, 127.79, 127.68, 127.64, 127.58, 127.57, 127.51, 127.46, 85.5, 85.0, 81.6, 80.0, 79.9, 78.6, 77.3, 77.2, 76.92, 76.89, 76.8, 76.2, 75.8, 75.5, 75.1, 74.9, 74.8, 74.68, 74.66, 74.63, 73.67, 73.65, 73.5, 73.2, 73.0, 72.8, 72.0,

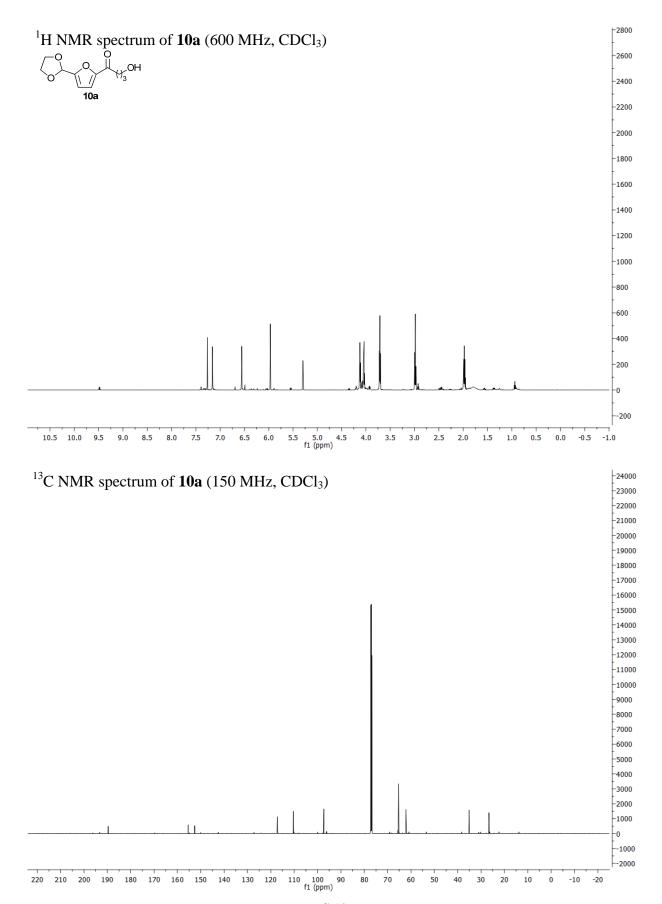
71.7, 71.5, 70.6, 70.1, 69.1, 65.5, 44.7, 44.6, 35.2, 34.5, 34.2, 33.4, 21.2, 17.7, 10.3 ppm; HRMS (ESI-TOF); calcd for $C_{105}H_{116}O_{17}$ [M + Na⁺]: 1671.8104, found 1671.8130.

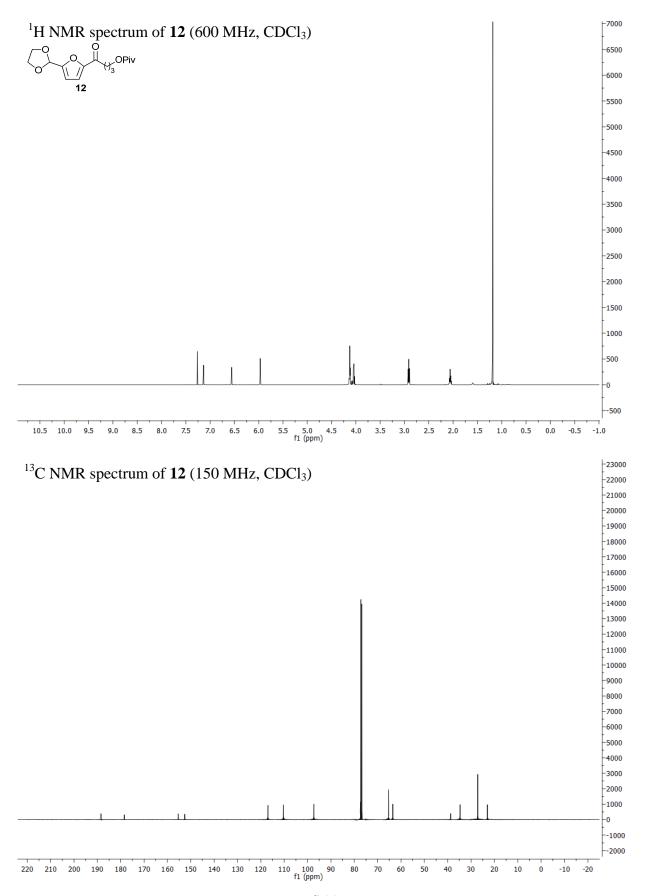
ABCDEFG Diol 44. To a stirred solution of ABCDEFG alkene **43** (23.0 mg, 0.014 mmol, 1.0

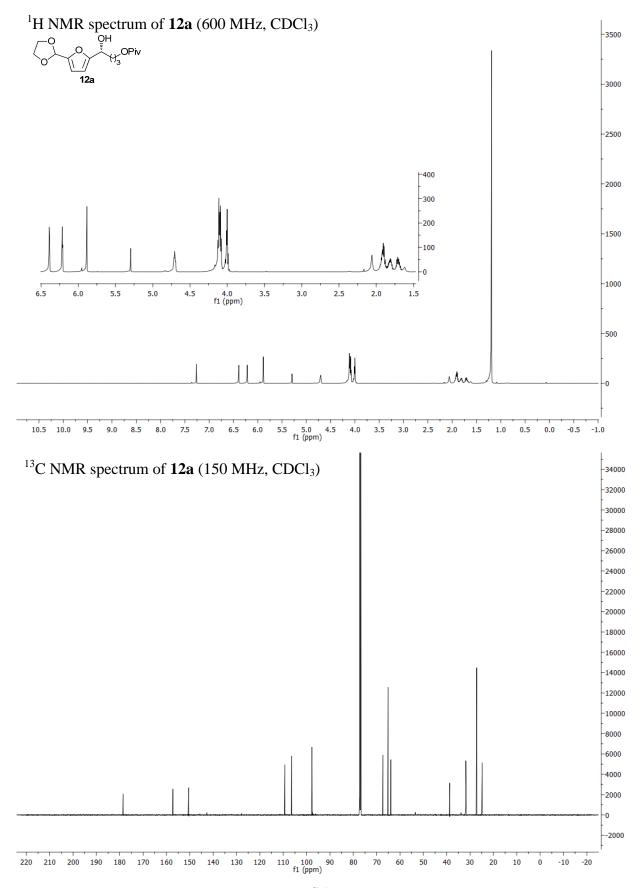
equiv) in acetone/H₂O (4:1, 5 mL) at 25 °C were added OsO₄ (2.5 wt% in *t*-BuOH, 7 μ L, 0.0007 mmol, 0.05 equiv) and NMO (5 mg, 0.042

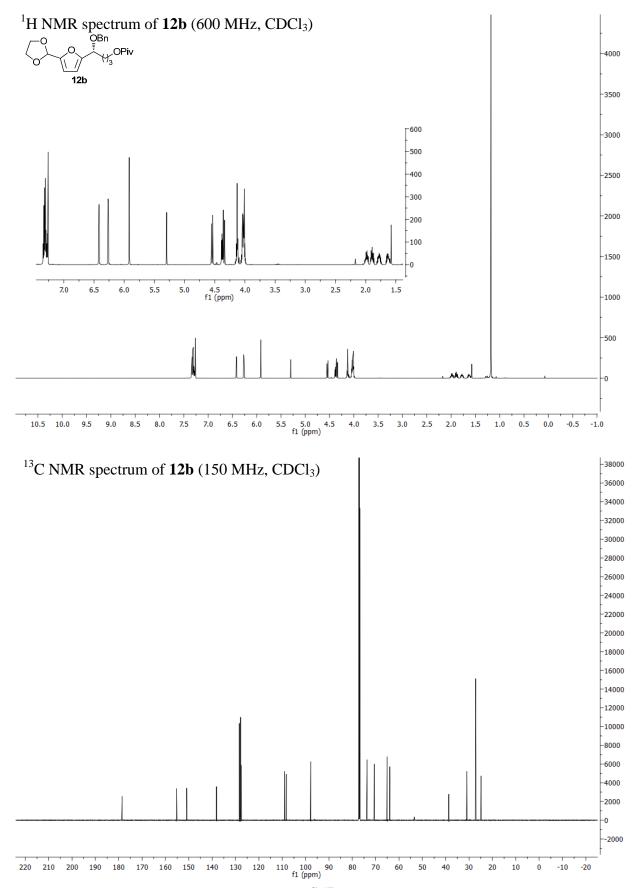
mmol, 3.0 equiv), and the reaction mixture was stirred at 25 °C for 72 h. The resulting mixture was quenched with sat. aq. Na₂SO₃ (5 mL), and the biphasic mixture was stirred vigorously at 25 °C for 30 min. The biphasic mixture was then extracted with EtOAc (3 × 5 mL), and the combined organic layers were dried (MgSO₄) and concentrated. Preparative-plate chromatography (silica gel, hexanes:EtOAc 3:2) gave ABCDEFG diol 44 (14.3 mg, 0.008 mmol, 61% yield) as a colorless oil, along with its opposite diastereomer (6 mg, 0.004 mmol, 26% vield). 44: $R_f = 0.25$ (silica gel, hexanes: EtOAc 3:2); $[\alpha]_D^{32} = +7.4$ (CH₂Cl₂, c = 0.62); IR (film) v_{max} 3463, 3029, 2923, 2855, 1496, 1453, 1362, 1346, 1207, 1085, 1067, 1027, 734, 697 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): $\delta = 7.63-7.61$ (m, 2 H), 7.51-7.52 (m, 2 H), 7.41-7.36 (m, 6 H), 7.31-7.24 (m, 12 H), 7.19-7.17 (m, 10 H), 7.13-7.02 (m, 12 H), 5.00 (d, J = 11.4 Hz, 1 H), 4.95(d, J = 11.4 Hz, 1 H), 4.94 (d, J = 11.4 Hz, 1 H), 4.80 (d, J = 11.4 Hz, 1 H), 4.77 (s, 2 H), 4.69(dd, J = 10.2, 3.0 Hz, 1 H), 4.56 (d, J = 11.4 Hz, 1 H), 4.53 (d, J = 12.0 Hz, 1 H), 4.51 (d, J = 12.0 Hz, 1 Hz, 1 Hz), 4.51 (d, J = 12.0 Hz, 1 Hz, 1 Hz), 4.51 (d, J = 12.0 Hz), 4.51 (d11.4 Hz, 1 H), 4.50 (d, J = 12.0 Hz, 1 H), 4.48–4.35 (m, 8 H), 4.28 (dd, J = 9.6, 1.2 Hz, 1 H), 4.24 (d, J = 12.0 Hz, 2 H), 4.19-4.11 (m, 5 H), 4.08 (ddd, J = 9.6, 4.2, 1.8 Hz, 1 H), 4.04 (bs, 1 H), 3.90 (bs, 1 H), 3.84 (dd, J = 9.6, 1.8 Hz, 1 H), 3.78 (d, J = 10.2 Hz, 1 H), 3.74 (t, J = 9.0 Hz, 1 H), 3.65-3.59 (m, 4 H), 3.57-3.54 (m, 2 H), 3.44 (dd, J = 9.0, 7.2 Hz, 1 H), 3.40 (dt, J = 10.8, 4.8 Hz, 1 H), 3.29-3.24 (m, 3 H), 3.15 (dd, J = 9.6, 1.8 Hz, 1 H), 3.01 (ddd, J = 12.6, 9.6, 3.6 Hz, 1 H), 2.71 (bs, 1 H), 2.61 (dg, J = 7.2, 3.0 Hz, 1 H), 2.55 (ddd, J = 14.4, 10.2, 3.0 Hz, 1 H), 2.38– 2.33 (m, 2 H), 2.24–2.19 (m, 2 H), 1.99 (ddd, J = 15.0, 6.0, 3.6 Hz, 1 H), 1.82–1.76 (m, 2 H), 1.59 (dd, J = 15.6, 3.0 Hz, 1 H), 1.43 (t, J = 12.0 Hz, 1 H), 1.19 (s, 3 H), 1.18 (s, 3 H), 1.00 (d, J = 1.00 Hz, 1 H) = 6.6 Hz, 3 H) ppm; 13 C NMR (150 MHz, C_6D_6); δ = 140.3, 140.2, 139.8, 139.7, 139.5, 139.4, 139.0, 139.9, 138.8, 138.7, 128.8, 128.70, 128.67, 128.66, 128.58, 128.51, 128.47, 128.17, 128.14, 128.02, 127.98, 127.83, 127.82, 127.70, 127.69, 127.64, 127.60, 127.58, 127.52, 85.4, 84.8, 80.5, 80.0, 79.4, 79.0, 78.6, 77.4, 77.2, 76.9, 76.4, 76.2, 75.7, 75.5, 74.81, 74.78, 74.6, 74.54, 74.50, 73.9, 73.6, 73.54, 73.50, 73.47, 73.0, 72.9, 72.8, 72.5, 72.3, 71.6, 71.5, 70.6, 69.6, 69.1, 67.9, 66.0, 44.6, 44.5, 35.3, 34.6, 34.2, 33.4, 21.1, 17.6, 10.3 ppm; HRMS (ESI-TOF); calcd for $C_{105}H_{118}O_{19}$ [M + H⁺]: 1683.8340, found 1683.8328.

ABCDEFG Model system 3. To a stirred solution of ABCDEFG diol **45** (21.3 mg, 0.0126)


mmol, 1.0 equiv) in EtOH (2.5 mL) at 25 °C was added 20% Pd(OH)₂/C (6 mg, 30% w/w), and the solution was purged with Ar, then H₂, and then


stirred at 25 °C for 6 d under an atmosphere of H₂ (balloon). The reaction mixture was then filtered through a short pad of CeliteTM, washed with MeOH, and concentrated. Trituration of the resulting residue with EtOAc (3 × 1.5 mL) and removal of the solvent provided pure heptacyclic ABCDEFG model system 3 (9.6 mg, 0.012 mmol, 97% yield) as a white foam. 3: R_f = 0.00 (silica gel, EtOAc:MeOH 17:3); $[\alpha]_D^{32}$ = +18.3 (MeOH, c = 0.48); IR (film) v_{max} 3362, 2919, 1593, 1413, 1384, 1350, 1264, 1079, 1064, 1034 cm⁻¹; ¹H NMR (600 MHz, CD₃OD:C₅D₅N 1:1): $\delta = 4.52$ (d, J = 9.0 Hz, 1 H), 4.46-4.44 (m, 2 H), 4.35 (bs, 1 H), 4.27 (bs, 1 H), 4.17-4.11 (m, 3 H), 4.04-3.99 (m, 3 H), 3.88 (d, J = 9.6 Hz, 1 H), 3.83-3.80 (m, 2 H), 3.79-3.71 (m, 3 H), 3.68-3.59 (m, 4 H), 3.40-3.38 (m, 2 H), 3.10 (t, J = 9.6 Hz, 1 H), 3.06 (d, J = 9.6 Hz)Hz, 1 H), 3.00 (ddd, J = 12.0, 8.4, 1.8 Hz, 1 H), 2.59 (t, J = 12.0 Hz, 1 H), 2.30–2.25 (m, 1 H), 2.21-2.14 (m, 3 H), 1.95 (dd, J = 10.8, 2.4 Hz, 1 H), 1.90 (dd, J = 15.6, 2.4 Hz, 1 H), 1.71 (q, J = 1.08) 11.4 Hz, 1 H), 1.67–1.62 (m, 2 H), 1.49 (t, J = 11.4 Hz, 1 H), 1.27 (s, 3 H), 1.17 (s, 3 H), 0.94 (d, J = 6.6 Hz, 3 H) ppm; ¹³C NMR (150 MHz, CD₃OD:C₅D₅N 1:1): $\delta = 86.0, 85.3, 81.0, 80.7, 79.6$, 77.2, 76.7, 76.53, 76.49, 75.3, 75.1, 73.5, 73.4, 73.1, 72.8, 72.4, 71.5, 69.72, 69.66, 69.44, 69.42,


67.5, 66.3, 66.2, 65.9, 63.4, 48.3, 44.9, 38.8, 37.8, 36.9, 34.4, 21.6, 17.9, 10.5 ppm; HRMS (ESITOF); calcd for $C_{35}H_{58}O_{19}$ [M + H⁺]: 783.3645, found 783.3649.


References


- (1) Lu, T.-J.; Yang, J.-F.; Sheu, L.-J. J. Org. Chem. 1995, 60, 2931.
- (2) Ager, D. J.; Allen, D. R.; Shaad, D. R. Synthesis 1996, 1283.
- (3) Li, M.; Scott, J.; O'Doherty, G. A. Tetrahedron Lett. 2004, 45, 1005.
- (4) Trost, B. M.; Machacek, M. R.; Faulk, B. D. J. Am Chem. Soc. 2006, 128, 6745.
- (5) Nicolaou, K. C.; Cole, K. P.; Frederick, M. O.; Aversa, R. J.; Denton, R. M. *Angew. Chem., Int. Ed.* **2007**, *46*, 8875.

