Functional Characterization of TtnD and TtnF Unveiling New Insights into Tautomycetin Biosynthesis

Yinggang Luo,^{†,Ω} Wenli Li,[†] Jianhua Ju,[†] Qiuping Yuan,[⊥] Noel R. Peters,[⊥] F. Michael Hoffmann,[⊥] Shengxiong Huang,[†] Tim S. Bugni,[†] Scott Rajski,[†] Hiroyuki Osada,[¥] and Ben Shen^{*†,‡,§}

[†]Division of Pharmaceutical Sciences, [⊥]University of Wisconsin Paul P. Carbone Comprehensive Cancer Center Small Molecule Screening Facility, [§]University of Wisconsin National Cooperative Drug Discovery Group, and [‡]Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705-2222, ^ΩCenter for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, and [¥]Antibiotics Laboratory, Chemical Biology Department, Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan

*To whom correspondence should be addressed: Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705. Tel.: (608) 263-2673; Fax: (608) 262-5345; E-mail: bshen@pharmacy.wisc.edu

Supporting Information

Table of Contents

1.	Table S1.	Targeted gene inactivation by use of DIRECT technology	
		in S. griseochromogenes	S 2
2.	Table S2.	Southern blot analysis confirming mutant genotypes	S 2
3.	Table S3.	Expression constructs for complementation to the $\Delta ttnD$	
		and $\Delta ttnF$ mutants	S 2
4.	References		S 2
5.	Figure S1.	Inactivation of <i>ttnD</i> by gene replacement	S 3
6.	Figure S2.	Inactivation of <i>ttnF</i> by gene replacement	S 3
7.	Figure S3.	¹ H NMR spectrum for TTN F-1 (3)	S 4
8.	Figure S4.	13 C NMR spectrum for TTN F-1 (3)	S5
9.	Figure S5.	¹ H NMR spectrum for TTN D-1 (4)	S6
10.	Figure S6.	¹³ C NMR spectrum for TTN D-1 (4)	S 7
11.	Figure S7.	¹ H NMR spectrum for TTN D-2 (5)	S 8
12.	Figure S8.	¹³ C NMR spectrum for TTN D-2 (5)	S 9
13.	Figure S9.	¹ H NMR spectrum for TTN D-3 (6)	S10
14.	Figure S10.	¹³ C NMR spectrum for TTN D-3 (6)	S11
15.	Figure S11.	¹ H NMR spectrum for TTN D-4 (7)	S12
16.	Figure S12.	¹³ C NMR spectrum for TTN D-4 (7)	S13

TABLE S1. Targeted gene inactivation by the REDIRECT technology in S. griseochromogenes

		/	
Gene	Primers ^a	Cosmid ^b	Strain
ΔttnD	<pre>ttnDF1: 5'-AATGAAGCGACTCAAGGATCTCCGCGAGTACCTGGCGGTGATTCCGGGGGATCCGTCGACC-3' ttnDR1: 5'-TGTCAGGCAAGGAGCTCGATGACCCGCTGCCGCACCGGCTC TGTAGGCTGGAGCTGCTTC-3'</pre>	pBS13025	SB13013
$\Delta ttnF$	<pre>ttnFF1: 5'-GGTGACGAGCACACGAAGCGAGACGGATCTGACCGGCCGG</pre>	pBS13026	SB13014
9x x 1 11			

^aUnderlined letters represent the nucleotide homologous to the DNA regions internal to targeted genes.

^bpBS13025 and pBS13026 are based on cosmid pBS13009 that carries a part of the *ttn* cluster.¹

TABLE S2. Southern analysis confirming the genotypes of mutant Strains^a

	Cana		Fragment replaced (bp)	Restriction Site used	Signal Size (kbp)	
Strains	targeted	Probe			WT	mutant
SB13013	$\Delta ttnD$	2200-bp <i>Bam</i> HI fragment from pBS13027 ^b	1380	XhoI	3.63	2.29
SB13014	$\Delta ttnF$	1370-bp <i>Bam</i> HI fragment from pBS13028 ^b	1440	XhoI	3.06	3.53

^aSee Figures S1 and S2 for details.

^bpBS13027 and pBS13028 were constructed by subcloning *Bam*HI fragments containing *ttnD* and *ttnF*, respectively, from cosmid pBS13012 that carries a part of the *ttn* cluster¹ into the same site of pUC18.²

TABLE S3. Expression constructs for complementation to the $\Delta ttnD$ and $\Delta ttnF$ mutants

Mutant strain	Gene mutated	Primers used to make the expression constructs ^a	Construct ^b	Complemented strain
SB13013	ΔttnD	<i>ttnD</i> FP3: 5'-CCA <u>ATGCAT</u> GAAGCGACTCAAGGAT-3' <i>ttnD</i> P3: 5'-GC <u>TCTAGA</u> TCAGGCAAGGAGCTCGAT-3'	pBS13029	SB13015
SB13014	$\Delta ttnF$	<i>ttnF</i> FP3: 5'-GCA <u>ATGCAT</u> ATGACGAGCACACGAAGCG-3' <i>ttnF</i> RP3: 5'-GC <u>TCTAGAT</u> CAGTCGATCCACTCCGG-3'	pBS13030	SB13016

^aThe *ttnD* and *ttnF* genes were amplified with the primers listed (*Nsi*I and *Xba*I restriction sites are underlined), respectively, from cosmid pBS13012.¹

^bThe PCR-amplified *ttnD* and *ttnF* genes from pBS13012 were digested with *Nsi*I and *Xba*I and cloned into the same sites of pBS6027³ to afford pBS13029 and pBS13030, respectively, in which the expression of *ttnD* and *ttnF* is under the control of the *ErmE** promoter.

REFERENCES

- 1. Li, W.; Luo, Y.; Ju, J.; Rajski, S. R.; Osada, H.; Shen, B. J. Nat. Prod. 2009, 72, 450-459.
- 2. Sambrook, J. E.; Fritsch, E. F.; Maniatis, T. *Molecular cloning: a Laboratory Manual*, 3rd Ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2000.
- 3. Li, W.; Ju, J.; Rajski, S. R.; Osada, H.; Shen, B. J. Biol. Chem. 2008, 283, 28607-28617.

FIGURE S1. Inactivation of *ttnD* in *S. griseochromogenes* by gene replacement using the REDIRECT Technology. (A) Construction of the $\Delta ttnD$ gene replacement mutant and restriction maps of *S. griseochromogenes* wild-type and SB13013 mutant strains showing the predicted fragment sizes upon *XhoI* digestion. (B) Southern analysis of the wild-type (lane 5) and SB13013 (lanes 2, 3 and 4 are three individual isolates) digested genomic DNAs and using the 2198-bp *Bam*H1 fragment as a probe. Lane 1, molecular weight standard.

FIGURE S2. Inactivation of *ttnF* in *S. griseochromogenes* by gene replacement using the REDIRECT Technology. (A) Construction of the $\Delta ttnF$ gene replacement mutant and restriction maps of *S. griseochromogenes* wild-type and SB13014 mutant strains showing predicted fragment sizes upon *XhoI* digestion. (B) Southern analysis of the wild-type (lane 5) and SB13014 (lanes 2, 3 and 4 are three individual isolates) digested genomic DNAs and using the 1370-bp BamH1 fragment as a probe. Lane 1, molecular weight standard.

Figure S3. ¹H-NMR of TTN F-1 (**3**) in CDCl₃.

Figure S4. ¹³C-NMR of TTN F-1 (3) in CDCl₃.

Figure S5. ¹H-NMR of TTN D-1 (4) in CDCl₃.

Figure S6. 13 C-NMR of TTN D-1 (4) in CDCl₃.

Figure S7. ¹H-NMR of TTN D-2 (**5**) in CDCl₃.

Figure S8. ¹³C-NMR of TTN D-2 (5) in CDCl₃.

Figure S9. ¹H-NMR of TTN D-3 (6) in CDCl₃.

Figure S10. ¹³C-NMR of TTN D-3 (6) in CDCl₃.

Figure S11. ¹H-NMR of TTN D-4 (7) in CDCl₃.

Figure S12. ¹³C-NMR of TTN D-4 (7) in CDCl₃.