Supplemental material

TABLE S1: Summary of data collection and structure refinement for the dead-end complex of E. coli MurA with fosfomycin.*

	E. coli MurA-fosfomycin
Data collection	
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions (Å)	a=64.4 b=61.8 c=134.4 α=β=γ=90°
Resolution range (Å)	20-1.7 (1.8-1.7)
Unique reflections	59154 (8874)
Completeness (%)	99.0 (95.9)
I/σI	27.7 (15.2)
R _{merge} ^b (%)	3.3 (9.2)
Structure refinement	
Protein atoms	3,151
Average B-factor (Å ²)	15.7
Inhibitor atoms	8 at Cys115 (8.4)
Average B-factor (Å ²)	10.1
UNAG atoms	39
Average B-factor (Å ²)	10.1
Solvent molecules	444
average B-factor (Å2)	27.7
rmsda bonds (Å)	0.011
rmsd angles (°)	1.5
R _{cryst} ^c (%)	15.9
R _{free} d (%)	18.7
Cross-validated estimated coordinate error:	
From Luzzati plot (Å)	0.18
From SigmaA (Å)	0.08

^{*}Values in parentheses refer to the highest resolution shell.

 $^{{}^{}a}R_{merge} = 100 \times \Sigma_{h}\Sigma_{i} |I_{hi} - I_{h}| / \Sigma_{hi}I_{hi} \text{ where h are unique reflection indices.}$ ${}^{b}r.m.s.d. = root mean square deviation from ideal values.}$

 $^{^{}c}R_{cryst}$ = 100 x Σ | F_{obs} - F_{model} | / ΣF_{obs} where F_{obs} and F_{model} are observed and calculated structure factor amplitudes, respectively. $^{d}R_{free}$ is R_{cryst} calculated for 1185 randomly chosen unique reflections, which were excluded from

the refinement.

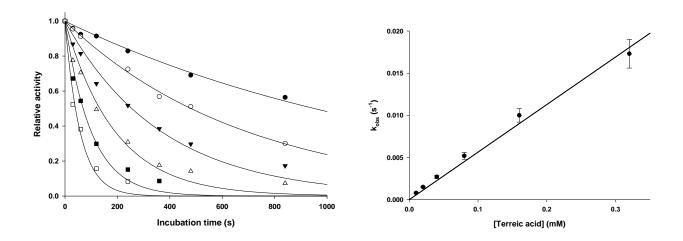


FIGURE S1. Inactivation of *E. cloacae* MurA by terreic acid in the presence of 0.005 mM UNAG. The terreic acid concentration was 0.01 mM (\bullet), 0.02 mM (\circ), 0.04 mM (\blacktriangle), 0.08 mM, (Δ), 0.16 mM (\blacksquare), and 0.32 mM (\square). Data were fit to equation 1. Right: replot of the observed first-order rate constant of inactivation vs terreic acid. Data were fit to equation 2 yielding $k_{\text{inact}} = 56.4 \pm 1.9 \,\text{M}^{-1} \,\text{s}^{-1}$.

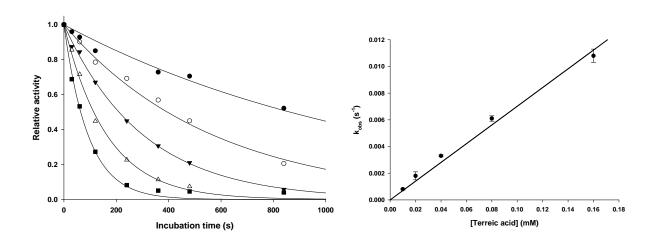


FIGURE S2. Inactivation of *E. cloacae* MurA by terreic acid in the presence of 0.010 mM UNAG. The terreic acid concentration was 0.01 mM (\bullet), 0.02 mM (\circ), 0.04 mM (\blacktriangle), 0.08 mM, (Δ), and 0.16 mM (\blacksquare). Data were fit to equation 1. Right: replot of the observed first-order rate constant of inactivation vs terreic acid. Data were fit to equation 2 yielding $k_{\text{inact}} = 70.1 \pm 2.5 \text{ M}^{-1} \text{ s}^{-1}$.

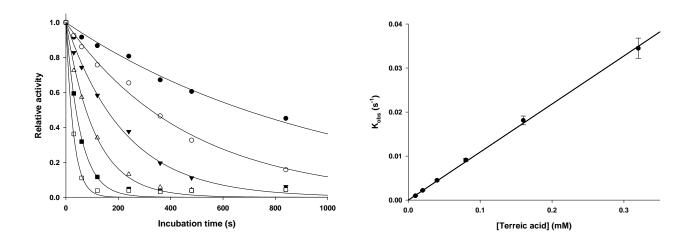


FIGURE S3. Inactivation of *E. cloacae* MurA by terreic acid in the presence of 0.025 mM UNAG. The terreic acid concentration was 0.01 mM (\bullet), 0.02 mM (\circ), 0.04 mM (\blacktriangle), 0.08 mM, (Δ), 0.16 mM (\blacksquare), and 0.32 mM (\square). Data were fit to equation 1. Right: replot of the observed first-order rate constant of inactivation vs terreic acid. Data were fit to equation 2 yielding $k_{\text{inact}} = 109.1 \pm 1.0 \, \text{M}^{-1} \, \text{s}^{-1}$.

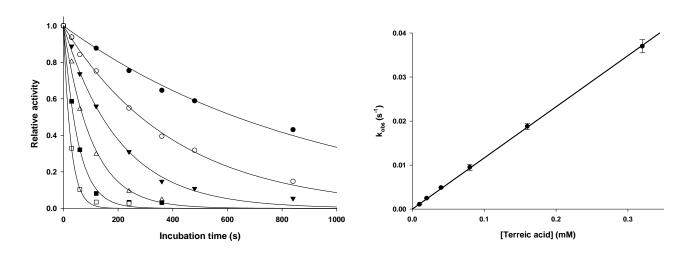


FIGURE S4. Inactivation of *E. cloacae* MurA by terreic acid in the presence of 0.05 mM UNAG. The terreic acid concentration was 0.01 mM (\bullet), 0.02 mM (\circ), 0.04 mM (\blacktriangle), 0.08 mM, (Δ), 0.16 mM (\blacksquare), and 0.32 mM (\square). Data were fit to equation 1. Inset: replot of the observed first-order rate constant of inactivation vs terreic acid. Data were fit to equation 2 yielding $k_{\text{inact}} = 116.2 \pm 0.6 \,\text{M}^{-1} \,\text{s}^{-1}$.

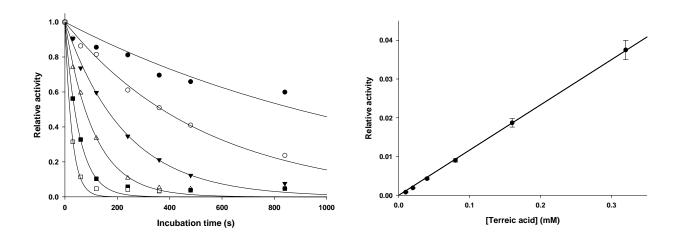


FIGURE S5. Inactivation of *E. cloacae* MurA by terreic acid in the presence of 0.1 mM UNAG. The terreic acid concentration was 0.01 mM (\bullet), 0.02 mM (\circ), 0.04 mM (\blacktriangle), 0.08 mM, (Δ), 0.16 mM (\blacksquare), and 0.32 mM (\square). Data were fit to equation 1. Inset: replot of the observed first-order rate constant of inactivation vs terreic acid. Data were fit to equation 2 yielding $k_{\text{inact}} = 116.7 \pm 0.9 \,\text{M}^{-1} \,\text{s}^{-1}$.

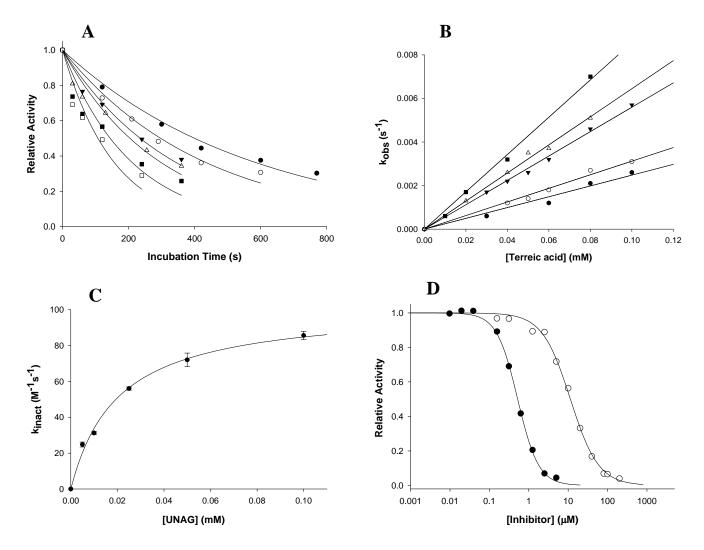


FIGURE S6: Inactivation of *E. coli* MurA by terreic acid using the MurA-MurB coupled assay. (A) Time-dependent loss of MurA activity in the presence of 0.025 mM UNAG. The terreic acid concentration was 0.03 mM (\bullet), 0.04 mM (\circ), 0.05 mM (\blacktriangledown), 0.06 mM (\triangle), 0.08 mM (\blacksquare), 0.10 mM (\square). Data were fit to equation 1.

- (B) Replot of the observed first-order rate constants of inactivation (k_{obs}) vs. terreic acid at varying UNAG concentrations [0.005 mM (\bullet), 0.01 mM (\circ), 0.025 mM (\blacktriangledown), 0.05mM (\triangle), 0.10 mM (\blacksquare)]. Data were fit to equation 2.
- (C) Replot of the second-order inactivation rate constants (k_{inact}) vs. UNAG concentration. Data were fit to equation 3, yielding $k_{inact}^* = 102 \pm 1.8 \text{ M}^{-1}\text{s}^{-1}$ and $K_{d(UNAG)} = 0.02 \pm 0.001 \text{ mM}$.
- (D) Dose-response curves for inhibition of MurA by fosfomycin (\bullet) and terreic acid (\circ). The enzyme was preincubated with inhibitor and 1mM UNAG for five minutes before the reaction was started by addition of 1mM PEP. Data were fit to equation 4, yielding IC₅₀ values of 0.52 \pm 0.01 μ M for fosfomycin and 11.4 \pm 0.5 μ M for terreic acid.

The assay mixture (1 mL) contained 50 mM HEPES (pH 7.5), 50 mM KCl, 0.59 μ M MurB, 0.25 mM NADPH, 0.32 μ M MurA, 1 mM PEP and 1 mM UNAG. MurA was pre-incubated with UNAG and terreic acid (or fosfomycin) in 975 μ l of 50 mM HEPES buffer (pH 7.5); at various time intervals, the reaction was initiated by addition of 1 mM PEP, 1 mM UNAG and MurB. The decrease in NADPH absorbance was recorded at 340 nm. *E. coli* MurB was cloned and purified as described (Schonbrunn et al. (2000) Biochemistry 39, 2164-2173).