SUPPLEMENTARY FIGURE LEGENDS

Fig. S1. Facial selection of the carbonyl donor pyruate enolate in aldol addition reaction of 4hydroxy-2-oxopentanoate (HOPA) by HpaI and BphI. BphI is stereospecific, and the pyruvate enolate can only attack the R_e face of acetaldehyde to form (*S*)-HOPA. HpaI lacks stereospecific control and allows the carbonyl donor to attack either face.

Fig. S2. Lineweaver-Burk plots of HpaI and BphI in the aldol addition reaction to produce 4hydroxy-2-oxopentanoate (HOPA). (A) HpaI aldol addition reaction. Reaction rates were determined using 5 mM (\bullet), 10 mM (O), 20 mM (∇) and 300 mM (\triangle) of acetaldehyde. (B) BphI aldol addition reaction. Reaction rates were determined using 5 mM (\bullet), 10 mM (O), 20 mM (∇), 50 mM (\triangle) and 300 mM (\Box) of acetaldehyde.

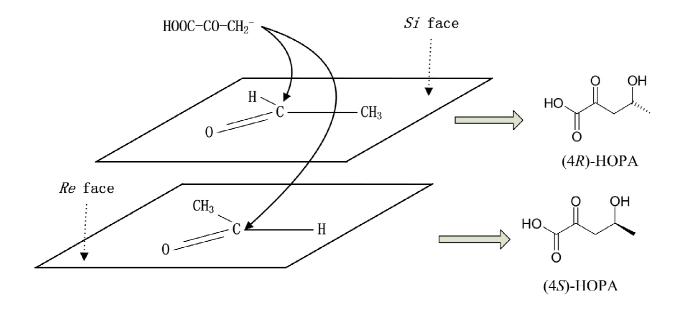

Fig. S3. Lineweaver-Burk plots of the product inhibition of HpaI and BphI in the HOPA aldol cleavage reaction. (A) Inhibition of HpaI with pyruvate ($K_{ic} = 0.51 \pm 0.07 \text{ mM}$). Reaction rates were determined using 0 mM (\bullet), 0.5 mM (O), 1 mM (\bigtriangledown), 2 mM (\triangle) and 3 mM (\blacksquare) of pyruvate. (B) Inhibition of HpaI with acetaldehyde ($K_{ic} = 20.0 \pm 0.96 \text{ mM}$). Reaction rates were determined using 0 mM (\bullet), 15 mM (O), 30 mM (\bigtriangledown), 50 mM (\triangle) 75 mM (\blacksquare) of acetaldehyde. (C) Inhibition of BphI with pyruvate ($K_{ic} = 0.34 \pm 0.04$). Reaction rates were determined using 0 mM (\bullet), 6 mM (\bigtriangledown) and 10 mM (\blacksquare) pyruvate. (D) Inhibition of BphI acetaldehyde ($K_{ic} = 59.1 \pm 5.0 \text{ mM}$, K_{iu} 94.3 ± 5.0). Reaction rates were determined using 0 mM (\bullet), 20 mM (\bigcirc), 50 mM (\bigtriangledown), 75 mM (\triangle) 100 mM (\blacksquare) acetaldehyde. Inhibition was calculated using the competitive inhibition for HpaI and mixed inhibition equation in Leonora. Reaction conditions contained; 2 mM divalent metal ions and either 20 U of ADH or 20 LDH in 100 mM HEPES buffer pH 8.0 at 25 °C.

Table S1. HPLC and Q-Tof-MS analysis of products synthesized by aldolases. M represents the aldol addition product of pyruvate or 2-ketoanoate with various aldehydes. The retention time was determined by HPLC using an Aminex® HPX-87X ion exchange column. Products were eluted using in 0.1% formic acid at a flow rate of 0.5 mL/min and detected at 215 nm.

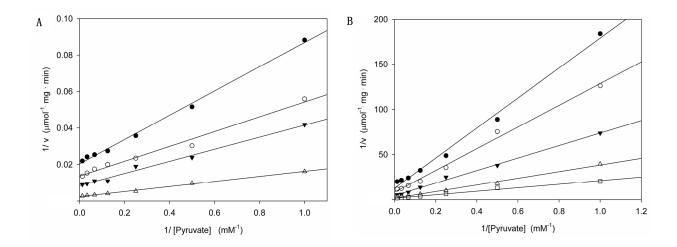
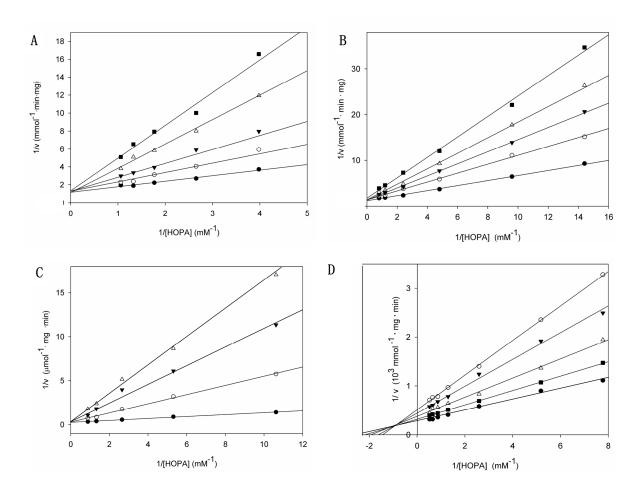

Carbonyl	5 11 0.1 //				Pyruv			at 213 II		2-
Donor					i yiu	, acc				Ketobutanoate
Aldehyde		Acetaldehyde	Glycolaldehyde	Propionaldehyde	(D,L)- Glyceraldehyde	Butyraldehyde	Isobutyraldehyde	Succinic Semialdehyde	Pentaldehyde	Acetaldehyde
Retention time (min)		40.04	13.29	53.23	12.69	85.55	60.35	36.7	137.96	42.01
Total Mass		132	148	146	178	160	160	190	174	146
Ions	Mass									
	change									
$[M-H]^{-1}$	-1	131	147	145	177	159	159		173	
[M-2H+Na ⁺ -	+3									
$H_2O]^{-1}$										
[M-2H+Na ⁺ -	-41							149		
$CO_2-H_2O]^{-1}$	40	00								
$[M-H-C_2H_2O]^{-1}$	-43	89		101		115				
$[M-H - CO_2]^{-1}$	-45	87 42		101		115				
[M-H -2CO ₂] ⁻¹ [M-H-H ₂ O] ⁻¹	-89 -19	43 113	129	127	159	141	141	171	155	127
$[M-H-H_2O]^{-1}$	-19 -37	115	129	127	139	141	141	1/1	133	127
[M-H-2H ₂ O]	-37		67	109	97			109	137	65
$[101-11-211_{2}O - CO_{2}]^{-1}$	-01		07		21			109		05
[M-H-2H ₂ O -	-109							81		
$CO_2-CO]^{-1}$	107							01		
[M-H-2H ₂ O-	-65		83	81					109	
CO] ⁻¹	00		05	01					107	
[M-H-2H ₂ O-	-93		55		85					
2CO] ⁻¹										
M-H-H ₂ O-	-47	85	101	99		113	113		127	
CO] ⁻¹										
[M-H-H ₂ O-	-63	69	85	83		97	97	127		83
$CO_2]^{-1}$										
[M-H-H ₂ O-	-91		57	55		69	69	99	83	55
$CO_2-CO]^{-1}$										
[M-H- H ₂ O -	-105		43							41
$CO_2 - C_2 H_2 O$] ⁻¹										
[M-H-CO ₂ -CO-	-87					73				
$CH_{2}]^{-1}$	<i>a</i> -									
$[M-H-H_2O -$	-89									
$CO-C_2H_2O$] ⁻¹			07	07	07	07	07		07	
$[CH_3COCO_2]^{-1}$			87	87	87	87	87		87	

Table S2. Properties of HOPA produced in aldol addition reaction by HpaI and BphI with pyruvate and acetaldehyde. Optical rotation was determined using an Autopol® III automatic polarimeter at 25°C. NMR spectrum was recorded with a Bruker Avance 600 MHz at 25°C.


Enzyme used in synthesis of HOPA	Properties of HOPA from aldol addition reaction by HpaI and BphI							
	NMR	HPLC Retention Time (min)	Optical rotation	% of HOPA degraded by BphI (%)				
HpaI	¹ H NMR (600 MHz,D ₂ O): δ =1.19(d, 3 H, CH ₃ , J=6.39Hz), 2.88(d, 2 H, CH ₂ , J=6.32Hz), 4.26(m, 1 H, CH, J=6.29Hz) ¹³ C NMR (600 MHz,D ₂ O): δ =24.9(CH ₃), 50.8(CH ₂), 66.4(CHOH), 172.8(C=O),	40.04	$[a]_{D}^{25}=0.11$	53.1 ± 2.9				
BphI	207.3(C=O(OH)). ¹ H NMR (600 MHz,D ₂ O): δ =1.16(d, 3 H, CH ₃ , J=6.36Hz), 2.86(d, 2 H, CH ₂ , J=6.24Hz), 4.23(m, 1 H, CH, J=6.30Hz) ¹³ C NMR (600 MHz,D ₂ O): δ =23.8(CH ₃), 49.1(CH ₂), 65.0(CHOH), 171.1(C=O),	40.00	$[a]_{D}^{25} = +15.4$	96.3 ± 4.7				
XylE, TodF, BphH	205.9(C=O(OH)). ¹ H NMR (600 MHz,D ₂ O): δ =1.18(d, 3 H, CH ₃ , J=6.30Hz), 2.86(d, 2 H, CH ₂ , J=6.31Hz), 4.27(m, 1 H, CH, J=6.36Hz) ¹³ C NMR (600 MHz,D ₂ O): δ =22.7(CH ₃), 48.6(CH ₂), 63.9(CHOH), 170.9(C=O),	39.24	$[a]_{D}^{25}$ =+12.3	91.7 ± 5.1				
HpaI product treated by BphI	206.1(C=O(OH)). ¹ H NMR (600 MHz,D ₂ O): δ =1.17(d, 3 H, CH ₃ , J=6.36Hz), 2.86(d, 2 H, CH ₂ , J=6.30Hz), 4.24(m, 1 H, CH, J=6.66Hz) ¹³ C NMR (600 MHz,D ₂ O): δ =22.1(CH ₃), 47.9(CH ₂), 63.6(CHOH), 168.1(C=O), 204.6(C=O(OH)).	39.43	$[a]_{D}^{25} = -11.3$	16.9 ± 2.0				

