Supporting Information

New Mn^{II}-Azido Coordination Polymers Based on Nicotinic/Isonicotinic Acids as Co-Ligands: Synthesis, Structure and Magnetic Properties

Qian Yang, Jiong-Peng Zhao, Bo-Wen Hu, Xiao-Feng Zhang and Xian-He Bu^*

Department of Chemistry, Nankai University, Tianjin 300071, P. R. China

	-	1	
Mn(1)-O(2)#4	2.092(2)	Mn(2)-O(1)#3	2.098(2)
Mn(1)-O(2)#5	2.092(2)	Mn(2)-N(1)	2.324(3)
Mn(1)-N(3)#6	2.278(3)	Mn(2)-N(4)	2.234(3)
Mn(1)-N(3)#7	2.278(3)	Mn(2)-N(7)	2.255(3)
Mn(1)-N(6)#8	2.288(3)	Mn(2)-N(3)#2	2.278(3)
Mn(1)-N(6)	2.288(3)	Mn(2)-N(4)#7	2.320(3)
O(2)#4-Mn(1)-O(2)#5	180.0	O(1)#3-Mn(2)-N(4)	96.62(10)
O(2)#4-Mn(1)-N(3)#6	93.47(9)	O(1)#3-Mn(2)-N(7)	90.37(9)
O(2)#5-Mn(1)-N(3)#6	86.53(9)	N(4)-Mn(2)-N(7)	96.16(10)
O(2)#4-Mn(1)-N(3)#7	86.53(9)	O(1)#3-Mn(2)-N(3)#2	92.47(9)
O(2)#5-Mn(1)-N(3)#7	93.47(9)	N(4)-Mn(2)-N(3)#2	92.89(10)
N(3)#6-Mn(1)-N(3)#7	180.0	N(7)-Mn(2)-N(3)#2	170.14(9)
O(2)#4-Mn(1)-N(6)#8	91.77(11)	O(1)#3-Mn(2)-N(4)#7	173.36(10)
O(2)#5-Mn(1)-N(6)#8	88.23(11)	N(4)-Mn(2)-N(4)#7	76.88(10)
N(3)#6-Mn(1)-N(6)#8	86.42(10)	N(7)-Mn(2)-N(4)#7	91.64(9)
N(3)#7-Mn(1)-N(6)#8	93.58(10)	N(3)#2-Mn(2)-N(4)#7	86.61(9)
O(2)#4-Mn(1)-N(6)	88.23(11)	O(1)#3-Mn(2)-N(1)	97.47(10)
O(2)#5-Mn(1)-N(6)	91.77(11)	N(4)-Mn(2)-N(1)	165.83(10)
N(3)#6-Mn(1)-N(6)	93.58(10)	N(7)-Mn(2)-N(1)	85.31(10)
N(3)#7-Mn(1)-N(6)	86.42(10)	N(3)#2-Mn(2)-N(1)	84.96(10)
N(6)#8-Mn(1)-N(6)	180.000(1)	N(4)#7-Mn(2)-N(1)	89.00(10)
#1 x-1,y+1,z	#2 -x,-y+1,-z+1	#3 -x+1,-y+1,-z+2	#4 x,y-1,z-1
#5 -x+2,-y+1,-z+2	#6 x+1,y-1,z	#7 -x+1,-y+1,-z+1	#8 -x+2,-y,-z+1
#9 x,y+1,z+1			
		2	
Mn(1)-O(1)#5	2.231(2)	Mn(2)-O(2)#6	2.154(2)
Mn(1)-O(1)#6	2.232(2)	Mn(2)-O(2)#7	2.154(2)
Mn(1)-N(5)	2.145(3)	Mn(2)-N(4)#8	2.254(2)
Mn(1)-N(10)#4	2.213(3)	Mn(2)-N(4)#1	2.254(2)

Table S1. Selected Bond Lengths [Å] and Angles [deg] for Complexes 1–2.

Mn(1)-N(8)	2.263(2)	Mn(2)-N(8)	2.320(3)
Mn(1)-N(4)	2.267(3)	Mn(2)-N(8)#9	2.320(3)
Mn(3)-N(7)#10	2.221(3)	Mn(3)-N(2)	2.260(3)
Mn(3)-N(7)#11	2.221(3)	Mn(3)-N(1)	2.264(3)
Mn(3)-N(2)#12	2.260(3)	Mn(3)-N(1)#12	2.264(3)
N(5)-Mn(1)-N(10)#4	102.36(12)	O(2)#6-Mn(2)-O(2)#7	180.0
N(5)-Mn(1)-O(1)#5	167.60(10)	O(2)#6-Mn(2)-N(4)#8	94.18(9)
N(10)#4-Mn(1)-O(1)#5	88.87(10)	O(2)#7-Mn(2)-N(4)#8	85.82(9)
N(5)-Mn(1)-O(1)#6	92.28(10)	O(2)#6-Mn(2)-N(4)#1	85.82(9)
N(10)#4-Mn(1)-O(1)#6	165.35(10)	O(2)#7-Mn(2)-N(4)#1	94.18(9)
O(1)#5-Mn(1)-O(1)#6	76.50(8)	N(4)#8-Mn(2)-N(4)#1	180.0
N(5)-Mn(1)-N(8)	96.30(11)	O(2)#6-Mn(2)-N(8)	93.24(9)
N(10)#4-Mn(1)-N(8)	89.86(10)	O(2)#7-Mn(2)-N(8)	86.76(9)
O(1)#5-Mn(1)-N(8)	88.88(9)	N(4)#8-Mn(2)-N(8)	91.52(9)
O(1)#6-Mn(1)-N(8)	89.13(8)	N(4)#1-Mn(2)-N(8)	88.48(9)
N(5)-Mn(1)-N(4)	87.94(10)	O(2)#6-Mn(2)-N(8)#9	86.76(9)
N(10)#4-Mn(1)-N(4)	93.13(10)	O(2)#7-Mn(2)-N(8)#9	93.24(9)
O(1)#5-Mn(1)-N(4)	86.19(8)	N(4)#8-Mn(2)-N(8)#9	88.48(9)
O(1)#6-Mn(1)-N(4)	86.73(8)	N(4)#1-Mn(2)-N(8)#9	91.52(9)
N(8)-Mn(1)-N(4)	174.19(9)	N(8)-Mn(2)-N(8)#9	180.000(1)
N(7)#10-Mn(3)-N(7)#11	180.0	N(7)#11-Mn(3)-N(1)	89.11(10)
N(7)#10-Mn(3)-N(2)#12	89.86(11)	N(2)#12-Mn(3)-N(1)	91.70(10)
N(7)#11-Mn(3)-N(2)#12	90.14(11)	N(2)-Mn(3)-N(1)	88.30(10)
N(7)#10-Mn(3)-N(2)	90.14(11)	N(7)#10-Mn(3)-N(1)#12	89.11(10)
N(7)#11-Mn(3)-N(2)	89.86(11)	N(7)#11-Mn(3)-N(1)#12	90.89(10)
N(2)#12-Mn(3)-N(2)	180.000(1)	N(2)#12-Mn(3)-N(1)#12	88.30(10)
N(7)#10-Mn(3)-N(1)	90.89(10)	N(2)-Mn(3)-N(1)#12	91.70(10)
N(1)-Mn(3)-N(1)#12	180.0		
#1 x,y+1,z	#2 -x+2,y-1/2,-z+3/2	#3 x+1,-y+3/2,z+1/2	#4 -x+1,y-1/2,-z+1/2
#5 x-1,-y+3/2,z-1/2	#6 -x+2,y+1/2,-z+3/2	#7 x-1,-y+5/2,z-1/2	#8 -x+1,-y+2,-z+1
#9 -x+1,-y+3,-z+1	#10 x,y-1,z	#11 -x+2,-y+2,-z+1	#12 -x+2,-y+1,-z+1
#13 -x+1,y+1/2,-z+1/2			

Figure S1. The XRPD diagrams for (a) complex 1; (b) complex 2.

Figure S2. The *ac* magnetic susceptibility curves at different frequencies for complex 1.

Figure S3. The magnetic network of complex 1. (The lines in different color are the different magnetic transmit constructed by the azido between Mn^{II} ions.)

Figure S4. The χ_m vs. *T* plots of **2** at 2 kOe.

Figure S5. The χ_m vs. *T* curves of **2** at 1 kOe and 2 kOe. Inset: curves of χ_m vs. *T* under various fields.