# 1,2-Trans-Selective Synthesis of Glycosyl Boranophosphates and Their Utility as Building Blocks for the Synthesis of Phosphodiester-linked Disaccharides 

Kazuki Sato, Natsuhisa Oka, Shoichi Fujita, Fumiko Matsumura and Takeshi Wada*<br>Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan

wada@k.u-tokyo.ac.jp

## Supporting Information

## Table of contents


#### Abstract

General information Experimental procedures 1. Preparation of per- $O$-acyl glycosides 2. Synthesis of authentic sample of dimethyl 2,3,4,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranosyl boranophosphate S4

References S5 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra S6

\section*{General information}

All the reactions were conducted under Ar atmosphere. Dry organic solvents were prepared by appropriate procedures. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz with tetramethylsilane ( $\delta 0.0$ ) as an internal standard in $\mathrm{CDCl}_{3} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 75.5 MHz with $\mathrm{CDCl}_{3}(\delta 77.0)$ as an internal standard in $\mathrm{CDCl}_{3}$. ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 121.5 MHz with $\mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0.0)$ as an external standard. COSY and HMQC were used to confirm the NMR peak assignments. Silica gel column chromatography was carried out using spherical, neutral, 63210 or $40-50 \mu \mathrm{~m}$ silica gel unless otherwise noted. Analytical TLC was performed on commercial glass plates bearing 0.25 mm layer of silica gel.


## Experimental procedures <br> 1. Preparation of per- $\boldsymbol{O}$-acyl glycosides

## 1,2,3,4,6-Penta-O-pivaloyl-D-glucopyranoside (S2).

Pivaloyl chloride ( $12.0 \mathrm{~mL}, 99 \mathrm{mmol}$ ) and catalytic amount of DMAP were added to a solution of D-glucose ( $\mathbf{S 1}$, $1.80 \mathrm{~g}, 10 \mathrm{mmol})$ in dry pyridine $(40 \mathrm{~mL})$ at rt while stirring. After 10 h , the solvent was evaporated under reduced pressure, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions $(3 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was recrystallized from methanol and purified by silica gel column chromatography using AcOEt-hexane ( $1: 4, \mathrm{v} / \mathrm{v}$ ) as an eluent to give $\mathbf{S 2}$ as a colorless foam ( $5.73 \mathrm{~g}, 0.95 \mathrm{mmol}, \alpha: \beta=52: 48,96 \%$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{1}$

Scheme S1. Synthesis of per- $O$-acyl glycosides S2, S3-S5, S7, S9 and S11





S3 ( $\mathrm{R}=\mathrm{Bz}$ ), 77\% $(\alpha: \beta=74: 26)$
S4 ( $\mathrm{R}=0$-CIBz), 79\% ( $\alpha: \beta=97: 3$ )
( $\mathrm{R}=\mathrm{An}$ ), 81\% $(\alpha: \beta=83: 17)$


$(\alpha: \beta=96: 4$



## 1,2,3,4,6-Penta- $\boldsymbol{O}$-benzoyl-D-glucopyranoside (S3).

Benzoyl chloride ( $13.9 \mathrm{~mL}, 120 \mathrm{mmol}$ ) was added dropwise to a solution of D-glucose ( $\mathbf{S 1}, 3.60 \mathrm{~g}, 20 \mathrm{mmol}$ ) in dry pyridine ( 24 mL ) at $0{ }^{\circ} \mathrm{C}$ while stirring. After being kept at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was allowed to warm to rt and stirred for 3 h . The reaction was quenched by adding a saturated $\mathrm{NaHCO}_{3}$ aqueous solution ( 100 mL ) and methanol $(10 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added to the mixture. The organic layer was separated, and washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions ( $3 \times 150 \mathrm{~mL}$ ). The aqueous layers were combined and back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$ mL ). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was recrystallized from ethanol ( 75 mL ) to give $\mathbf{S 3}$ as a colorless solid ( $10.8 \mathrm{~g}, 15 \mathrm{mmol}, \alpha: \beta=74: 26,77 \%$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{2}$

## 1,2,3,4,6-Penta- $O$-(2-chlorobenzoyl)-D-glucopyranoside (S4).

2-Chlorobenzoyl chloride ( $1.52 \mathrm{~mL}, 12 \mathrm{mmol}$ ) was added dropwise to a solution of D-glucose ( $\mathbf{S 1}, 0.362 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ in dry pyridine $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ while stirring. After being kept at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was allowed to warm to rt . After being stirred for 4.5 h at rt , the reaction was quenched with methanol ( 1 mL ), and the mixture was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions ( $3 \times 15 \mathrm{~mL}$ ). The aqueous layers were combined and back-extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was recrystallized from ethanol ( 50 mL ) to give $\mathbf{S 4}$ as a colorless solid ( $1.39 \mathrm{~g}, 1.6 \mathrm{mmol}, \alpha: \beta=97: 3,79 \%$ ). $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3071,3033,1750,1592,1571,1474$, 1437, 1253, 1107, 1020, 919, 858, 789, 744, 688, 650, 604, 515, 476. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.99-7.19$ (m, 20H, Ar), $6.90(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.29(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.84(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.68(\mathrm{dd}, J=3.3,10.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2), 4.70-4.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5,6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.0,164.4,164.2,164.1,163.6,134.4,134.1,133.9,133.8$, $133.5,133.3,133.1,132.8,132.1,131.8,131.6,131.5,131.4,131.2,131.1,131.0,129.3,128.7,128.6,128.0,126.9$,
126.8, $126.7(\mathrm{C}=\mathrm{O}, \mathrm{Ar}), 90.2$ (C-1), 70.5, 70.4 (C-2,3,5), 68.8 (C-4), 62.7 (C-6). HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{Cl}_{5} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 892.9894$; found: 892.9906.

## 1,2,3,4,6-Penta-O-(4-methoxybenzoyl)-D-glucopyranoside (S5).

4-Methoxybenzoyl chloride ( $5.13 \mathrm{~g}, 30 \mathrm{mmol}$ ) was added dropwise to a solution of D-glucose ( $\mathbf{S 1}, 0.903 \mathrm{~g}, 5.0$ $\mathrm{mmol})$ in dry pyridine $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ while stirring. After being kept at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was allowed to warm to rt and stirred overnight. The reaction was quenched with ethanol ( 3 mL ) and the mixture was diluted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions ( $3 \times 30 \mathrm{~mL}$ ). The aqueous layers were combined and back-extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was recrystallized from ethanol ( 80 mL ) and further purified by silica gel column chromatography using AcOEt-hexane ( $1: 1-3: 2$, $\mathrm{v} / \mathrm{v}$ ) as an eluent to give $\mathbf{S 5}$ as a colorless foam ( $3.47 \mathrm{~g}, 4.1 \mathrm{mmol}, \alpha: \beta=83: 17,81 \%$ ). IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ) 3007, 2961, 2840, 1729, 1606, 1512, 1460, 1421, 1318, $1262,1169,1096,922,846,767,695,614,509 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.19-7.80(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 7.04-6.72(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}$, $\mathrm{H}-1), 6.24(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.78(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.61(\mathrm{dd}, J=3.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.62-4.51(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-5,6), 4.41(\mathrm{dd}, \mathrm{J}=4.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.91,3.86,3.81,3.78,3.78\left(\mathrm{~s}, 5 \times 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 165.8,165.5,165.0,164.8,164.1,164.0,163.7,163.5,163.4,132.2,132.0,131.9,131.8,122.0,121.3,121.1,121.0$, 114.0, $113.6(\mathrm{C}=\mathrm{O}, \mathrm{Ar}), 89.9(\mathrm{C}-1), 70.4,70.2,70.1(\mathrm{C}-2,3,5), 68.6(\mathrm{C}-4), 62.4(\mathrm{C}-6), 55.5,55.4\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right) . \mathrm{HRMS}$ (ESI): calcd for $\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{O}_{16} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 873.2371; found: 873.2331.

## 1,2,3,4,6-Penta- $O$-benzoyl-D-galactopyranoside (S7).

Benzoyl chloride ( $3.5 \mathrm{~mL}, 30 \mathrm{mmol}$ ) was added dropwise to a solution of D-galactose ( $\mathbf{S 6}, 0.90 \mathrm{~g}, 5.0 \mathrm{mmol}$ ) in dry pyridine ( 25 mL ) at $0^{\circ} \mathrm{C}$ while stirring. After being kept at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was allowed to warm to rt and stirred overnight. Then, the reaction was quenched with methanol ( 3 mL ), and $\mathrm{CHCl}_{3}(18 \mathrm{~mL})$ was added. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions $(3 \times 20 \mathrm{~mL})$. The aqueous layers were combined and backextracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using AcOEt-hexane ( $1: 3, \mathrm{v} / \mathrm{v}$ ) as an eluent to give $\mathbf{S 7}$ as a colorless foam ( $3.39 \mathrm{~g}, 4.8 \mathrm{mmol}, \alpha: \beta=96: 4,97 \%$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{2}$

## 1,2,3,4,6-Penta- $\boldsymbol{O}$-benzoyl-D-mannopyranoside (S9).

Benzoyl chloride ( $6.3 \mathrm{~mL}, 54 \mathrm{mmol}$ ) was added dropwise to a solution of D-mannose ( $\mathbf{S 8}, 1.61 \mathrm{~g}, 8.9 \mathrm{mmol}$ ) in dry pyridine ( 30 mL ) at $0{ }^{\circ} \mathrm{C}$ while stirring. After being kept at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was allowed to warm to rt and stirred for 6 h . Then, the reaction was quenched with methanol $(6 \mathrm{~mL})$, and $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added to the mixture. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions $(3 \times 30 \mathrm{~mL})$. The aqueous layers were combined and back-extracted with $\mathrm{CHCl}_{3}(2 \times 60 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was recrystallized from ethanol ( 260 mL ) to give $\mathbf{S 9}$ as a colorless solid ( $5.17 \mathrm{~g}, 2.3 \mathrm{mmol}, \alpha: \beta=98: 2,83 \%$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{2}$

## 1,2,3,4-Tetra-O-benzoyl-L-fucopyranoside (S11).

Benzoyl chloride ( 3.0 mL ) was added to a solution of L -fucose ( $\mathbf{S 1 0}, 49 \mathrm{mg}, 3.0 \mathrm{mmol}$ ) in dry pyridine ( 10 mL ) at rt while stirring. After 5 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions ( $5 \times 50 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using AcOEt-hexane (1:7, v/v) as an eluent to give $\mathbf{S 1 1}$ as a colorless foam ( $1.71 \mathrm{~g}, 2.9 \mathrm{mmol}, \alpha: \beta=86: 14,98 \%$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{3}$
2. Synthesis of authentic sample of dimethyl 2,3,4,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranosyl boranophosphate .

Authentic sample of $\mathbf{1 2}$ was prepared from 1,2,3,4,6-penta- $O$-benzoyl-D-mannopyranoside ( $\mathbf{S 9}, \alpha: \beta=98: 2$ ) in 4 steps (Scheme S2).

Scheme S2. Synthesis of dimethyl 2,3,4,6-tetra-O-benzoyl- $\alpha$-D-mannopyranosyl boranophosphate 12.



## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-D-mannopyranoside (S12).

This material was prepared according to the procedure to synthesize 2,3,4,6-tetra- $O$-benzoyl-D-glucopyranoside reported by Fukase et al. ${ }^{4}$ A $40 \%$ methylamine solution in methanol ( 0.3 mL ) was added to a solution of $1,2,3,4,6-$ penta- $O$-benzoyl- $\alpha$-D-mannopyranoside ( $\mathbf{S 9}, 0.383 \mathrm{~g}, 0.55 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ at rt while stirring. After 2 h , the mixture was concentrated under reduced pressure. $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added to the residue and the organic layer was washed with brine $(10 \mathrm{~mL})$. The aqueous layers were combined and back-extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using AcOEt-hexane (1:2, v/v) as an eluent to give $\mathbf{S 1 2}$ as a yellow foam $(0.190 \mathrm{~g}, 0.32 \mathrm{mmol}, \alpha: \beta=92: 8,58 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the reported data. ${ }^{5}$

## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-D-mannopyranosyl- $N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite (S13).

This material was prepared according to the procedure to synthesize 2,3,4,6-tetra-O-acetyl- $\alpha$-D-mannopyranosyl)$N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite reported by Boons et al. ${ }^{6}$ Chlorobis( $N, N$-diisopropylamino)phosphine ( 32 $\mathrm{mg}, 0.12 \mathrm{mmol}$ ) was added to a solution of 2,3,4,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranoside ( $\mathbf{S 1 2}, 77 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$. The mixture was allowed to stir at rt for 10 min . Diisopropylethylamine $(0.23 \mathrm{~mL})$ was added dropwise to the mixture. After 24 h , the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography on NH silica gel (100-200 mesh) using AcOEt-hexane- $\mathrm{Et}_{3} \mathrm{~N}(12: 83: 15, \mathrm{v} / \mathrm{v} / \mathrm{v})$ as an eluent to give S13 as a colorless oil ( $45 \mathrm{mg}, 55 \mu \mathrm{~mol}, \alpha: \beta=98: 2,45 \%$ ). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3065,2971,1730,1603,1492$, 1452, 1364, 1268, 1181, 1108, 1069, 1027, 958, 870, 816, 710, 646, 528. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.16-7.23(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar})$, $6.13(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.02(\mathrm{dd}, J=3.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.66-5.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.39(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.68-4.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5,6), 4.49(\mathrm{dd}, J=4.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.79-3.54\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35-$ $1.21\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.3,165.6,165.5,165.4(\mathrm{C}=\mathrm{O}), 133.3,133.1,132.9,130.0$, 129.9, 129.8, 129.7, 129.5, 129.1, 129.0, 128.5, 128.4, 128.3 (Ar), 93.0 (C-1), 71.5 (C-2), 70.3 (C-3), 69.2 (C-5), 67.1 (C-4), $63.1(\mathrm{C}-6), 45.5,45.3,45.0,44.8\left(-\mathrm{N}-\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 24.5,24.4,24.3,24.2\left(-\mathrm{N}-\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 116.2. HRMS (ESI): calcd for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P} \overline{\mathrm{K}}[\mathrm{M}+\mathrm{K}]^{+}: 865.3231$; found: 865.3257.

## Authentic sample of dimethyl 2,3,4,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranosyl boranophosphate (12).

2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-D-mannopyranosyl- $N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite ( $\mathbf{S 1 3}, 45 \mathrm{mg}, 55 \mu \mathrm{~mol}$ ) was dried by repeated coevaporation with dry toluene and dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was treated with dry $\mathrm{MeOH}(9 \mu \mathrm{~L}$, $0.22 \mathrm{mmol})$ and a solution of $1 H$-tetrazole $(0.16 \mathrm{mg}, 22 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(2.2 \mathrm{~mL})$, which was dried over MS 3A overnight. The mixture was allowed to stir for 30 min , and dry $\mathrm{MeOH}(30 \mu \mathrm{~L}, 0.74 \mathrm{mmol})$ was added to the mixture. After being stirred for 6 h , the mixture was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, and the mixture was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions $(3 \times 10 \mathrm{~mL})$. The aqueous layers were combined and back-extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The organic layers were combined, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The
residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$, then $0.99 \mathrm{M} \mathrm{BH}_{3} \cdot \mathrm{THF} / \mathrm{THF}(0.25 \mathrm{~mL}, 0.25 \mathrm{mmol})$ was added dropwise. The mixture was allowed to stir for 2 h , washed with a saturated $\mathrm{NaHCO}_{3}$ aqueous solution ( 7 mL ), and extracted with toluene ( 6 mL ). The organic layer was separated and washed with saturated $\mathrm{NaHCO}_{3}$ aqueous solutions $(2 \times 7 \mathrm{~mL})$. The aqueous layers were combined and back-extracted with toluene $(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using AcOEt-hexane (1:3, v/v) as an eluent to give $\mathbf{1 2}$ as a colorless foam ( $24 \mathrm{mg}, 34 \mu \mathrm{~mol}, \alpha: \beta=$ $98: 2,61 \%$ from $\mathbf{S 1 3}$ ).

## References for Supporting Information

1) Haines, A. H.; Hughes, D. L. Carbohydr. Res. 2007, 342, 2264-2269.
2) D'Accorso, N. B.; Thiel, I. M. E.; Schüller, M. Carbohydr. Res. 1983, 124, 177-184.
3) Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L. Org. Lett. 2007, 9, 857-860.
4) Egusa, K.; Kusumoto, S.; Fukase, K. Eur. J. Org. Chem. 2003, 3435-3445.
5) Mbadugha, B. N. A.; Menger, F. M. Org. Lett. 2003, 5, 4041-4044.
6) Majumdar, D.; Elsayed, G. A.; Buskas, T.; Boons, G.-J. J. Org. Chem. 2005, 70, 1691-1697.











$\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$


( ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$


( ${ }^{31} \mathrm{P}$ NMR, $\mathrm{CDCl}_{3}$, 121.5 MHz)


( ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ )




(3, $\mathrm{R}=\mathrm{Bz}, \alpha: \beta=3: 97$ )



$\left.{ }^{(13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$
(3, $\mathrm{R}=o-\mathrm{ClBz}, \alpha: \beta=4: 96)$


(3, $\mathrm{R}=\boldsymbol{o}-\mathrm{ClBz}, \alpha: \beta=4: 96)$









( ${ }^{31} \mathrm{P}$ NMR, $\left.\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right)$

(11, $\alpha: \beta=8: 92$ )







(13, $\alpha: \beta=7: 93)$









$(\mathbf{S 1 3}, \alpha: \beta=98: 2)$











${ }^{\left({ }^{31} \mathrm{P}\right.} \mathrm{NMR}, \mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}, \mathrm{P}-\mathrm{H}$ decoupling)







(23, $\alpha: \beta=98: 2$ )
( ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$ )


( ${ }^{31} \mathrm{P}$ NMR, $\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}$ )





| $\infty$ |
| :--- |
| $\underset{子}{2}$ |








( ${ }^{31} \mathrm{P}$ NMR, $\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}, \mathrm{P}-\mathrm{H}$
decoupling)






