Highly Enantioselective Organocatalytic Sulfa-Michael Addition to α, β-Unsaturated Ketones

Nirmal K. Rana,[†] Sermadurai Selvakumar,[†] and Vinod K. Singh^{*,†,‡}

[†] Department of Chemistry, Indian Institute of Technology, Kanpur, India–208 016. Fax: +91-512-2597436; E-mail: <u>vinodks@iitk.ac.in</u>

[‡] Indian Institute of Science Education and Research Bhopal, ITI (Gas Rahat) Building Govindpura, Bhopal, India-460 023.

Supporting information

Table of contents:

General methods	S2
Procedures and characterization data for important compounds	S3-S22
¹ H and ¹³ C NMR Spectra for 1g , 1h , 1i	S23-S25
¹ H and ¹³ C NMR Spectra for 8e-f, 2a-q, 3a-h, 4a-c, 5a-d, 6a-d and 7a-b	S26-S65
HPLC graph for 2a-q, 3a-h, 4a-c, 5a-d, 6a-d and 7a-b	S66-S103
Scan copy of HRMS for 6a , 3e	S104
References	S105

General Methods

Unless stated otherwise, all reactions were carried out in flamedried glassware. All solvents were purified and dried according to standard methods prior to use. Catalyst **1a-i** were prepared according to literature known procedure. All the thiols and enone 8a-d were commercially available and used without further purification. Enone 8e and 8f were prepared according to literature known procedures. ¹H spectra were recorded on 500 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 125 MHz in CDCl₃ using TMS or residual protio solvent signals as internal standard. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Highresolution mass spectra (HRMS) were obtained by the ESI ionization sources. Melting point was measured using commercial melting point apparatus. The enantioselectivity was determined by chiral HPLC analysis using chiracel OD-H, OB-H, OJ-H and chiralpak AD, AD-H, AS-H columns with a 200 UV-detector. Optical rotations were measured on a commercial automatic polarimeter and reported as follows: $\left[\alpha\right]_{D}^{T}$ (c = g/100 mL, solvent).

Experimental section

Preparation of chiral catalysts

Catalysts $\mathbf{1a}$, $\mathbf{1b}$, $\mathbf{2c}$, $\mathbf{1c}$, $\mathbf{1d}$, $\mathbf{2e}$, $\mathbf{1f}$, $\mathbf{1g}$, $\mathbf{1h}$, $\mathbf{4ad}$ $\mathbf{1i}$ were prepared according to literature known procedure.

1,1,1-trifluoro-N-((1S)-(6-methoxyquinolin-4-yl)((2S)-5-vinylquinuclidin-2-yl)meth-

yl)methanesulfonamide (1g)⁴: This compound was synthesized according to literature known procedure. Yield: 46%; ¹H NMR (500 MHz, CDCl₃): δ 1.24-1.25 (m, 1H), 1.39-1.42 (m, 1H), 1.93-1.97 (m, 3H), 2.65 (bs, 1H), 3.17-3.64 (m, 5H), 3.98 (s, 3H), 5.04-5.11 (m, 2H), 5.30-5.35 (m, 1H), 5.60-5.64 (m, 1H), 7.22 (d, J = 4.0 Hz, 1H), 7.39-7.48 (m, 1H), 8.03-8.18 (m, 2H), 8.79 (d, J = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ 24.0, 25.3, 28.2, 38.2, 41.7, 54.3, 55.8, 56.2, 65.3, 102.5, 117.3, 121.8, 123.3, 123.4, 124.3, 129.5, 131.1, 131.4, 138.9, 144.8, 147.5, 148.2, 148.3, 159.9 (excess peaks due to C-F coupling); [α]_D²³ = +22.0 (*c* 0.25, CHCl₃)]; HRMS (ES+) calc. for C₂₁H₂₅F₃N₃O₃S [M+H]⁺:456.1569, found: 456.1566.

N-((1S)-(6-methoxyquinolin-4-yl)((2S)-5-vinylquinuclidin-2-yl)methyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (1h)⁴: Yield: 55%; ¹H NMR (500 MHz, CD₃OD): δ 1.25-1.32 (m, 2H), 1.49-1.52 (m, 1H), 1.72-1.78 (m, 3H), 2.52 (bs, 1H), 2.94-2.97 (m, 2H), 3.37-3.49 (m, 2H), 4.00 (s, 3H), 5.02-5,10 (m, 2H), 5.22 (d, *J* = 11.0 Hz, 1H), 5.82 (dd, *J* = 17.0, 7.5 Hz, 1H), 7.35-7.43 (m, 3H), 7.65-7.79 (m, 4H), 8.45(d, *J* = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ 25.8, 27.1, 28.6, 39.7, 41.7, 54.5, 55.7, 56.2, 61.9, 101.8, 115.7, 121.0, 122.7, 123.7, 124.9, 125.4, 127.5, 127.7, 129.4, 131.3, 132.1, 132.4, 141.1, 144.6, 145.7, 147.0, 147.0, 147.9, 160.0 (excess peaks due to C-F coupling); $[\alpha]_D^{25}$ = +17.5 (*c* 1.0, CHCl₃)]; HRMS (ES+) calc. for $C_{28}H_{28}F_6N_3O_3S [M+H]^+$: 600.1756, found: 600.1752.

2,3,4,5,6-pentafluoro-*N*-((1S)-(6-methoxyquinolin-4-yl)((2S)-5-vinylquinuclidin-2yl)methyl)benzamide (1i)⁵: This compound was synthesized according to literature known procedure. Yield: 89%; ¹H NMR (500 MHz, CDCl₃): δ 1.02-1.06 (m, 1H), 1.24-1.43-1.48 (m, 1H), 1.61-1.70 (m, 3H), 2.30 (bs, 1H), 2.65-2.78 (m, 2H), 2.94-3.15 (m, 3H), 3.24 (dd, *J* = 14.0, 10.5 Hz, 1H), 3.97 (s, 3H), 4.93-4.98 (m, 2H), 5.67-5.70 (m, 1H), 7.39-7.41 (m, 2H), 7.59 (bs, 1H), 8.04 (d, *J* = 9.5 Hz, 1H), 8.76 (d, *J* = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ 25.8, 27.3, 28.6, 39.7, 41.7, 54.5, 55.7, 56.2, 61.9, 101.8, 115.9, 121.0, 122.7, 123.7, 124.9, 125.4, 127.5, 127.7, 129.4, 131.3, 132.1, 132.4, 141.1, 144.6, 145.7, 147.0, 147.9, 160.0, 172.0 (excess peaks due to C-F coupling); $[\alpha]_D^{23} = -$ 50.6 (*c* 0.5, CHCl₃)]; HRMS (ES+) calc. for C₂₇H₂₅F₅N₃O₂ [M+H]⁺ : 518.1868, found: 518.1863.

Synthesis of (*E*)-4,4-dimethyl-1-phenylpent-2-en-1-one (8e)⁶

1M Potassium hydroxide (0.7 mmol) was added to a solution of acetophenone (3.65 mmol) and pivalaldehyde (7.3 mmol) in methanol (17 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred at this temperature until completion of the reaction (TLC). Methanol was evaporated and the residue was suspended in water (15 mL). The mixture was neutralized with 2M HCl (0.35 mL, 0.7 mmol) and extracted with CH₂Cl₂ thrice. The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The product was isolated by column chromatography.

Yield: 84%; ¹H NMR (500 MHz, CDCl₃): δ 1.11 (s, 9H), 6.77 (d, J = 16.0 Hz, 1H), 7.02 (d, J = 16.0 Hz, 1H), 7.44-7.47 (m, 2H), 7.53-7.54 (m, 1H), 7.90-7.92 (m, 2H); ¹³C NMR

(125 MHz, CDCl₃): δ 28.8, 34.3, 121.0, 128.4, 128.6, 132.6, 138.3, 159.7, 191.7; HRMS (ES+) calc. for C₁₃H₁₇O [M+H]⁺: 189.1279, found: 189.1284.

Synthesis of (*E*)-1,5-diphenylpent-2-en-1-one (8f)⁷

To a solution of dihydro cinnamaldehyde (10 mmol) in dichloromethane at -78 C, was added BF₃.OEt₂ (6 mmol) dropwise. After 10 minutes Trimethyl-(1-phenyl-vinyloxy)-silane (11 mmol) in dichloromethane was added dropwise. The reaction mixture was stirred and allowed to warm to room temperature. The reaction was quenched by addition of 1N HCl. The organic layer was separated, washed with saturated brine and dried over anhydrous Na₂SO₄. The organic layer was evaporated and filtered through silicagel. It gave the mixture of alkene and β -hydroxyketone. A mixture of this aldol (10 mmol), *p*-toluenesulfonic acid hydrate (12 mmol), and toluene (40 mL) was heated to 40 °C for 4 hours. After completion (judged by TLC), sodium sulfate was added to the reaction mixture, filtered, and the solid residue was washed with toluene (50 mL). The solvent was removed from the filtrate *in vacuo* and the crude product was purified by column chromatography to give α , β -unsaturated ketone as crude yellow oil.

Yield: 65%; ¹H NMR (500 MHz, CDCl₃): δ 2.62-2.66 (m, 2H), 2.85 (t, *J* = 7.5 Hz, 2H), 6.84-6.88 (m, 1H), 7.07 (td, *J* = 15.5, 7.0 Hz, 1H), 7.20-7.22 (m, 3H), 7.27-7.32 (m, 2H), 7.43-7.46 (m, 2H), 7.52-7.56 (m, 1H), 7.86-7.88 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 34.5, 34.6, 126.3, 126.6, 127.9, 128.3, 128.5, 128.6, 132.7, 137.9, 140.9, 148.5, 190.9; HRMS (ES+) calc. for C₁₇H₁₇O [M+H]⁺ : 237.1279, found: 237.1286.

General Procedure for the enantioselective organocatalytic Michael addition of thiols with α , β -unsaturated ketones.

The thiol (0.6 mmol) was added to a mixture of enone (0.5 mmol) and the catalyst **1e** (50 μ l 0.01 M stock solution in dry toluene, 0.0289 mg, 0.0005 mmol) in toluene (1.0 mL) at the required temperature. The reaction mixture was stirred and the progress of the reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was concentrated in vacuum and the crude product was purified over silica gel by column chromatography. The enantiomeric excess of the Michael adduct was determined by chiral HPLC analysis.

(*S*)-3-(phenylthio)cyclohexanone (2a)⁸: This compound was obtained in >99% yield and 94% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*hexane/2-propanol 98:2]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 13.85$ min (*S*), $t_R(minor) = 17.98$ min (*R*); $[\alpha]_D^{25} = -85.2$ (*c* 1.0, CHCl₃) [lit.⁸ (*S*) ee = 78%; $[\alpha]_D^{23} = -$ 68.7 (*c* 1. 1, CHCl₃)]; ¹H NMR (500 MHz, CDCl₃): δ 1.66-1.77 (m, 2H), 2.11-2.16 (m, 2H), 2.26-2.39 (m, 3H), 2.66-2.69 (m, 1H), 3.39-3.42 (m, 1H), 7.26-7.35 (m, 3H), 7.41-7.42(m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 24.0, 31.2, 40.8, 46.1, 46.7, 127.7, 129.0, 132.9, 133.2, 208.7; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2943, 1712. HRMS (ES+) calc. for C₁₂H₁₅OS [M+H]⁺: 207.0844, found: 207.0845.

(*S*)-3-(*o*-tolylthio)cyclohexanone (2b)⁸: This compound was obtained in >99% yield and 95% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 8.14$ min (*S*), $t_R(minor) = 11.46$ min (*R*); $[\alpha]_D^{25} = -102.5$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.68-1.77 (m, 2H), 2.12-2.14 (m, 2H), 2.28-2.41 (m, 6H), 2.66 (d, *J* = 13.0 Hz, 1H),

3.38-3.40 (m, 1H), 7.12-7.27 (m, 3H), 7.35-7.37 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 20.9, 24.2, 31.4, 41.0, 45.6, 47.8, 126.5, 127.8, 130.6, 132.7, 133.3, 140.6, 208.9; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2941, 1713. HRMS (ES+) calc. for C₁₃H₁₇OS [M+H]⁺ : 221.1000, found: 221.1005.

(*S*)-3-(*p*-tolylthio)cyclohexanone (2c)⁸: This compound was obtained in >99% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 95:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 8.62$ min (*S*), $t_R(minor) = 10.64 \text{ min } (R); [\alpha]_D^{25} = -79.9 (c 1.0, CHCl_3); ^1H NMR (500 MHz, CDCl_3): \delta$ 1.64-1.72 (m, 2H), 2.08-2.13 (m, 2H), 2.14 (s, 3H), 2.25-2.35 (m, 3H), 2.61-2.65 (m, 1H), 3.28-3.34 (m, 1H), 7.10 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl_3): δ 20.0, 23.9, 31.1, 40.7, 46.3, 47.7, 129.0, 129.7, 133.8, 138.0, 208.8; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2941, 1713. HRMS (ES+) calc. for C₁₃H₁₇OS [M+H]⁺: 221.1000, found: 221.1009.

(*S*)-3-(2,4-dimethylphenylthio)cyclohexanone (2d): This compound was obtained in >99% yield and 88% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 7.40$ min (*S*), $t_R(minor) = 13.77$ min (*R*); $[\alpha]_D^{25} = -72.7$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.66-1.77 (m, 2H), 2.09-2.14 (m, 2H), 2.29-2.39 (m, 9H), 2.61-2.65 (m, 1H), 3.28-3.34 (m, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 7.04 (s, 1H), 7.29 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 20.9, 21.1, 24.2, 31.4, 41.0, 46.1, 47.8, 127.3, 128.8, 131.5, 134.5, 138.2, 141.1, 209.1; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2959, 1714. HRMS (ES+) calc. for C₁₄H₁₉OS [M+H]⁺ : 235.1157, found: 235.1158.

(*S*)-3-(2,6-dimethylphenylthio)cyclohexanone (2e)⁸: This compound was obtained in >99% yield and 99% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 6.81$ min (*R*), $t_R(\text{major}) = 8.30$ min (*S*); $[\alpha]_D^{25} = -103.5$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.62-1.67 (m, 1H), 1.74-1.81 (m, 1H), 2.04-2.14 (m, 2H), 2.29-2.41 (m, 3H), 2.55 (s, 6H), 2.55-2.59 (m, 1H), 3.15-3.20 (m, 1H), 7.09-7.14 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 22.2, 24.3, 31.7, 40.9, 46.3, 47.9, 128.2, 128.5, 131.5, 143.3, 208.9; IR(KBr pellet, cm⁻¹) 2958, 1715; m.p = 80 °C. HRMS (ES+) calc. for C₁₄H₁₉OS [M+H]⁺ : 235.1157, found: 235.1159.

(*S*)-3-(2-ethylphenylthio)cyclohexanone (2f): This compound was obtained in >99% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 7.55$ min (*S*), $t_R(minor) = 11.47$ min (*R*); $[\alpha]_D^{25} = -76.9$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.19 (t, J = 7.5 Hz, 3H), 1.58-1.80 (m, 2H), 2.11-2.16 (m, 2H), 2.28-2.41 (m, 3H), 2.66 (dd, J = 15.0, 5.0 Hz, 1H), 2.82 (q, J = 7.5, 2H), 3.38-3.43 (m, 1H), 7.12-7.16 (m, 1H), 7.19-7.25 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 15.4, 24.2, 27.3, 31.4, 41.0, 46.2, 47.8, 126.5, 128.0, 129.1, 132.1, 133.5, 146.5, 208.9; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2962, 1714. HRMS (ES+) calc. for C₁₄H₁₉OS [M+H]⁺ : 235.1157, found: 235.1155.

(S)-3-(naphthalen-2-ylthio)cyclohexanone (2g)⁹: This compound was obtained in 97% yield and 93% ee. The optical purity was determined by HPLC on chiralpak AD-H column [*n*-hexane/2-propanol 99:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 21.40$ min (S), $t_R(minor) = 29.34$ min (R); $[\alpha]_D^{25} = -78.9$ (c 1.0, CHCl₃); ¹H NMR (500 MHz,

CDCl₃): δ 1.68-1.81 (m, 2H), 2.11-2.20 (m, 2H), 2.29-2.44 (m, 3H), 2.70-2.74 (m, 1H), 3.50-3.56 (m, 1H), 7.46-7.50 (m, 3H), 7.76-7.90 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 23.9, 31.3, 40.8, 46.1, 47.7, 126.4, 126.6, 127.4, 127.6, 128.6, 130.2, 130.4, 132.1, 132.5, 133.6, 208.4; IR (KBr pellet, cm⁻¹): 2933, 1704; m.p = 58 °C. HRMS (ES+) calc. for C₁₆H₁₇OS [M+H]⁺ : 257.1000, found: 257.1004.

(*S*)-3-(4-tert-butylphenylthio)cyclohexanone (2h)⁸: This compound was obtained in >99% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 98:2]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 9.55$ min (*S*), $t_R(minor) = 12.83$ min (*R*); $[\alpha]_D^{25} = -59.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.30 (s, 9H), 1.67-1.75 (m, 2H), 2.11-2.14 (m, 2H), 2.27-2.38 (m, 3H), 2.64-2.67 (m, 1H), 2.32-2.35 (m, 1H), 7.31-7.36 (m, 4H), ¹³C NMR (125 MHz, CDCl₃): δ 24.2, 31.3, 31.4, 34.5, 40.9, 46.4, 47.9, 126.2, 129.3, 133.6, 151.3, 209.1; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2959, 1713. HRMS (ES+) calc. for C₁₆H₂₃OS [M+H]⁺ : 263.1470, found: 263.1472.

(*S*)-3-(2-methoxyphenylthio)cyclohexanone(2i)⁹: This compound was obtained in >99% yield and 97% ee. The optical purity was determined by HPLC on chiralcel OB-H column [*n*-hexane/2-propanol 99:1]; flow rate 1 mL/min; $\lambda = 254$ nm; *t*_R(major) = 61.60 min (*S*), *t*_R(minor) = 71.50 min (*R*); $[\alpha]_D^{25} = -99.7$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.57-1.74 (m, 2H), 2.10-2.15 (m, 2H), 2.27-2.38 (m, 3H), 2.63 (dd, *J* = 14.5, 4.5 Hz, 1H), 3.52-3.57 (m, 1H), 3.88 (s, 3H), 6.87-6.91 (m, 2H), 7.25-7.29 (m, 1H), 7.36-7.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 24.1, 31.1, 40.9, 43.9, 47.7, 55.7, 110.9, 120.7, 120.9, 129.4, 134.6, 159.1, 209.1; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2921, 1710. HRMS (ES+) calc. for C₁₃H₁₇O₂S [M+H]⁺: 237.0949, found: 237.0948.

(*S*)-3-(4-methoxyphenylthio)cyclohexanone (2j)⁹: This compound was obtained in >99% yield and >99% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 18.39 \text{ min } (S)$, $t_R(minor) = 37.94 \text{ min } (R)$; $[\alpha]_D^{25} = -61.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.64-1.67 (m, 2H), 2.09-2.11 (m, 2H), 2.26-2.32 (m, 3H), 2.59- 2.62 (m, 1H), 3.22-3.24 (m, 1H), 3.79 (s, 3H), 6.82-6.85 (m, 2H), 6.36-6.39 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 24.2, 31.3, 40.9, 47.1, 47.9, 55.4, 114.7, 122.9, 136.6, 160.1, 209.2; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2941, 1712. HRMS (ES+) calc. for C₁₃H₁₇O₂S [M+H]⁺ : 237.0949, found: 237.0947.

(*S*)-3-(2-fluorophenylthio)cyclohexanone (2k): This compound was obtained in >99% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 9.98$ min (*S*), $t_R(minor) = 16.53$ min (*R*); $[\alpha]_D^{25} = -68.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.58-1.73 (m, 2H), 2.10-2.14 (m, 2H), 2.29-2.38 (m, 3H), 2.64 (dd, *J* = 15.0, 5.0 Hz, 1H), 3.46-3.51 (m, 1H), 7.06-7.11 (m, 2H), 7.28-7.31 (m, 1H), 7.41-7.45 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 24.0, 31.3, 40.9, 45.4, 47.9, 116.1 (d, *J* = 22.5 Hz), 119.7 (d, *J* = 17.5 Hz), 124.6 (d, *J* = 7.8 Hz), 130.4 (d, *J* = 8.8 Hz), 136.2, 162.8 (d, *J* = 246.2 Hz), 208.6 (excess peaks due to C-F coupling); IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2944, 1713. HRMS (ES+) calc. for C₁₂H₁₄FOS [M+H]⁺: 225.0749, found: 225.0745.

(*S*)-3-(4-fluorophenylthio)cyclohexanone (21): This compound was obtained in >99% yield and 91% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 11 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 9.64 min (*S*), $t_{\rm R}$ (minor) = 24.54 min (*R*); $[\alpha]_{\rm D}^{25} = -65.6$ (*c* 1.0, CHCl₃);¹H NMR (500 MHz,

CDCl₃): δ 1.66-1.71 (m, 2H), 2.10-2.15 (m, 2H), 2.28-2.35 (m, 3H), 2.62 (dd, J = 14.0, 4.0 Hz, 1H), 3.31 (m, 1H), 6.99-7.03 (m, 2H), 7.40-7.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 24.1, 31.2, 40.9, 46.9, 47.8, 116.2 (d, J = 21.3 Hz), 127.9, 136.2 (d, J = 8.8 Hz), 162.9 (d, J = 246.3 Hz), 208.7 (excess peaks due to C-F coupling); IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2923, 1713. HRMS (ES+) calc. for C₁₂H₁₄FOS [M+H]⁺ : 225.0749, found: 225.0747.

(*S*)-3-(2,4-difluorophenylthio)cyclohexanone (2m): This compound was obtained in >99% yield and 85% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 8.82$ min (*S*), $t_R(minor) = 19.60$ min (*R*); $[\alpha]_D^{25} = -68.4$ (*c* 1.0, CHCl₃);¹H NMR (500 MHz, CDCl₃): δ 1.63-1.72 (m, 2H), 2.06-2.14 (m, 2H), 2.24-2.35 (m, 3H), 2.58-2.62 (m, 1H), 3.35-3.41 (m, 1H), 6.82-6.87 (m, 2H), 7.40-7.45 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 23.8, 31.1, 40.7, 45.8, 47.6, 104.4, 104.7, 104.9, 111.8, 111.9, 112.0, 112.0, 114.8, 115.0, 137.8, 137.9, 162.2, 162.3, 162.4, 162.5, 164.2, 164.3, 164.4, 164.8, 208.3 (excess peaks due to C-F coupling); IR (NaCl cell, CH₂Cl², cm⁻¹): 2929, 1713. HRMS (ES+) calc. for C₁₂H₁₃F₂OS [M+H]⁺: 243.0655, found: 243.0659.

(*S*)-3-(2-chlorophenylthio)cyclohexanone (2n): This compound was obtained in >99% yield and 91% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 99:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 17.64$ min (*S*), $t_R(minor) = 24.95$ min (*R*); $[\alpha]_D^{25} = -70.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.58-1.81 (m, 2H), 2.12-2.17 (m, 2H), 2.30-2.44 (m, 3H), 2.68 (dd, *J* = 14.5, 3.0 Hz, 1H), 3.55-3.59 (m, 1H), 7.19-7.22 (m, 2H), 7.40-7.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 24.2, 31.1, 40.9, 44.9, 47.6, 127.3, 128.8, 130.3, 132.6, 133.8, 137.0,

208.4; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2943, 1713. HRMS (ES+) calc. for $C_{12}H_{14}ClOS$ $[M+H]^+$: 241.0454, found: 241.0456.

(*S*)-3-(4-chlorophenylthio)cyclohexanone (20)⁸: This compound was obtained in >99% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 99:1]; flow rate 0.5 mL/min; $\lambda = 254$ nm; $t_R(major) = 43.20$ min (*S*), $t_R(minor) = 51.99$ min (*R*); $[\alpha]_D^{25} = -79.0$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.65-1.73 (m, 2H), 2.07-2.14(m, 2H), 2.25-2.35 (m, 3H), 2.62-2.66 (m, 1H), 3.35-3.40 (m, 1H), 7.26 (d, *J* = 13.4 Hz, 2H), 7.32 (d, *J* = 13.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 23.8, 31.1, 40.7, 46.2, 47.5, 129.1, 131.5, 134.0, 134.4, 208.1; IR (KBr pellet, cm⁻¹): 2954, 1704; m.p = 76 °C. HRMS (ES+) calc. for C₁₂H₁₄ClOS [M+H]⁺ : 241.0454, found: 241.0457.

(*S*)-3-(2-bromophenylthio)cyclohexanone (2p): This compound was obtained in 95% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 99:1]; flow rate 0.5 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 45.28$ min (*R*), $t_R(\text{major}) = 49.57$ min (*S*); $[\alpha]_D^{25} = -117.5$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.68-1.83 (m, 2H), 2.12-2.19 (m, 2H), 2.31-2.45 (m, 3H), 2.68-2.72 (m, 1H), 3.54-3.60 (m, 1H), 7.09-7.12 (m, 1H), 7.24-7.27 (m, 1H), 7.40-7.42 (m, 1H), 7.58-7.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 24.1, 30.9, 40.8, 45.1, 47.4, 127.3, 127.8, 128.6, 133.2, 133.4, 133.6, 208.3; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2940, 1712. HRMS (ES+) calc. for C₁₂H₁₄BrOS [M+H]⁺ : 284.9949, found: 284.9946.

(S)-3-(4-bromophenylthio)cyclohexanone (2q): This compound was obtained in 97% yield and 89% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 11.01$

min (*S*), $t_{\rm R}(\text{minor}) = 18.37 \text{ min } (R); [\alpha]_{\rm D}^{25} = -67.7 (c 1.0, CHCl_3); {}^{1}\text{H NMR} (500 \text{ MHz}, CDCl_3): \delta 1.68-1.73 (m, 2H), 2.11-2.14 (m, 2H), 2.27-2.37 (m, 3H), 2.65 (dd,$ *J* $= 14.5, 4.5 Hz, 1H), 3.37-3.41(m, 1H), 7.25-7.28 (m, 2H), 7.42-7.44 (m, 2H); {}^{13}\text{C NMR} (125 \text{ MHz}, CDCl_3): \delta 24.0, 31.2, 40.9, 46.3, 47.7, 122.2, 132.3, 134.8, 137.0, 208.5; IR (KBr pellet, cm⁻¹): 2953, 1704; m.p = 90 °C. HRMS (ES+) calc. for C₁₂H₁₄BrOS [M+H]⁺ : 284.9949, found: 284.9948.$

(*R*)-4,4-dimethyl-3-(phenylthio)cyclohexanone (3a)¹⁰: This compound was obtained in >99% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 23.34$ min (*S*), $t_R(\text{major}) = 28.41$ min (*R*); $[\alpha]_D^{25} = -108.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.15 (s, 3H), 1.24 (s, 3H), 1.60-1.66 (m, 1H), 1.86-1.90 (m, 1H), 2.27-2.31 (m, 1H), 2.41-2.48 (m, 1H), 2.54-2.64 (m, 2H), 3.15-3.18 (m, 1H), 7.21-7.23 (m, 4H), 7.38-7.40 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 21.1, 29.1, 34.7, 37.9, 38.7, 45.5, 57.7, 127.5, 129.2, 132.8, 134.6, 209.1; IR (KBr pellet, cm⁻¹): 2953, 2925, 1706; m.p = 78 °C. HRMS (ES+) calc. for C₁₄H₁₉OS [M+H]⁺ : 235.1157, found: 235.1159.

(*R*)-4,4-dimethyl-3-(naphthalen-2-ylthio)cyclohexanone (3b)⁹: This compound was obtained in 96% yield and 91% ee. The optical purity was determined by HPLC on chiralpak AD-H column [*n*-hexane/2-propanol 99:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 13.44 min (*S*), $t_{\rm R}$ (major) = 15.77 min (*R*); $[\alpha]_{\rm D}^{25} = -81.2$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.25 (s, 3H), 1.30 (s, 3H), 1.63-1.69 (m, 1H), 1.89-1.93 (m, 1H), 2.29-2.32 (m, 1H), 2.43-2.50 (m, 1H), 2.56-2.68 (m 2H), 3.29 (dd, *J* = 11.0, 5.0 Hz, 1H), 7.44-7.49 (m, 3H), 7.74-7.87 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 21.0, 29.1, 34.7, 37.8, 38.6, 45.3, 57.4, 126.2, 126.5, 127.3, 127.6, 128.7, 129.7, 131.3, 131.8, 132.3,

133.6, 208.9; IR (KBr pellet, cm⁻¹) 2962, 2922, 1706. HRMS (ES+) calc. for $C_{18}H_{21}OS$ [M+H]⁺: 285.1313, found: 285.1316.

(*R*)-4,4-dimethyl-3-(*o*-tolylthio)cyclohexanone (3c): This compound was obtained in 96% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 8.64$ min (*S*), $t_R(\text{major}) = 9.36$ min (*R*); $[\alpha]_D^{25} = -108.3$ (*c* 0.25, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.25 (s, 3H), 1.28 (s, 3H), 1.64 (dt, *J* = 10.0, 5.0 Hz, 1H), 1.86-1.93 (m, 1H), 2.30 (td, *J* = 15.3, 5.0 Hz, 1H), 2.38-2.51 (m, 4H), 2.53-2.60 (m, 2H), 3.13 (dd, *J* = 10.5, 5.5 Hz, 1H), 7.11-7.25 (m, 3H), 7.37 (d, *J* = 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 21.0, 21.3, 29.0, 34.7, 37.9, 38.7, 45.3, 56.7, 126.7, 127.7, 130.6, 133.4, 133.5, 140.6, 209.2; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 3009, 2958, 1704. HRMS (ES+) calc. for C₁₅H₂₁OS [M+H]⁺: 249.1313, found: 249.1315.

(*R*)-4,4-dimethyl-3-(*p*-tolylthio)cyclohexanone (3d): This compound was obtained in >99% yield and >99% ee. The optical purity was determined by HPLC on chiralcel OB-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 6.11$ min (*R*), $t_R(minor) = 10.08$ min (*S*); $[\alpha]_D^{25} = -99.7$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.20 (s, 3H), 1.26 (s, 3H), 1.61 (dt, *J* = 12.5, 5.0 Hz, 1H), 1.85-1.90 (m, 1H), 2.25-2.30 (m, 1H), 2.31 (s, 3H), 2.40-2.61 (m, 3H), 3.08 (dd, *J* = 15.0, 5.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 21.1, 21.2, 29.1, 34.7, 37.9, 38.7, 45.4, 58.2, 129.9, 131.8, 133.5, 137.7, 209.3; IR (KBr pellet, cm⁻¹): 3020, 2949, 1705; m.p = 76 °C. HRMS (ES+) calc. for C₁₅H₂₁OS [M+H]⁺ : 249.1313, found: 249.1317.

S14

(*R*)-3-(2-methoxyphenylthio)-4,4-dimethylcyclohexanone (3e): This compound was obtained in 94% yield and 97% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 11.76 \text{ min } (S)$, $t_R(\text{major}) = 14.95 \text{ min } (R)$; $[\alpha]_D^{25} = -143.1 (c 1.0, \text{CHCl}_3)$; ¹H NMR (500 MHz, CDCl₃): δ 1.22 (s, 3H), 1.25 (s, 3H), 1.59-1.65 (m, 1H), 1.85-1.89 (m, 1H), 226-2.29 (m,1H), 2.40-2.60 (m, 3H), 3.23 (dd, J = 10.0, 5.0 Hz, 1H), 3.86 (s, 3H), 6.83-6.89 (m, 2H), 7.22-7.24 (m, 1H), 7.34-7.36 (m, 1H); ¹³C NMR (125 MHz, CDCl_3): δ 20.6, 28.9, 34.6, 37.9, 38.8, 45.3, 54.8, 55.7, 110.9, 121.0, 121.9, 129.2, 134.3, 158.9, 209.6; IR (KBr pellet, cm⁻¹) 3071, 3007, 1707; m.p = 95 °C.; HRMS (ES+) calc. for C₁₅H₂₁O₂S [M+H]⁺: 265.1262, found: 265.1262.

(*R*)-3-(4-methoxyphenylthio)-4,4-dimethylcyclohexanone (3f): This compound was obtained in 98% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; λ = 254 nm; $t_R(\text{minor}) = 11.47 \text{ min } (S)$, $t_R(\text{major}) = 16.04 \text{ min } (R)$; $[\alpha]_D^{25} = -65.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.19 (s, 3H), 1.26 (s, 3H), 1.59 (dt, *J* = 13.0, 5.0 Hz, 1H), 1.84-1.89 (m, 1H), 2.25-2.29 (m, 1H), 2.39-2.57 (m, 3H), 2.98 (dd, *J* = 11.0, 5.0 Hz, 1H), 3.81 (s, 3H), 6.81 (d, *J* = 9.0 Hz, 2H), 7.35 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 21.0, 29.2, 31.3, 34.6, 37.9, 38.8, 45.6, 57.9, 126.2, 130.9, 133.0, 150.9, 209.4; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2923, 1591; HRMS (ES+) calc. for C₁₅H₂₁O₂S [M+H]⁺ : 265.1262, found: 265.1267.

(*R*)-3-(4-chlorophenylthio)-4,4-dimethylcyclohexanone (3g): This compound was obtained in >99% yield and 91% ee. The optical purity was determined by HPLC on chiralcel OB-H column [*n*-hexane/2-propanol 98:2]; flow rate 1 mL/min; $\lambda = 254$ nm;

 $t_{\rm R}$ (major) = 11.89 min (*R*), $t_{\rm R}$ (minor) = 15.10 min (*S*); $[\alpha]_{\rm D}^{25}$ = -78.6 (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.20 (s, 3H), 1.25 (s, 3H), 1.63 (dt, *J* = 15.0, 4.5 Hz, 1H), 1.86-1.96 (m, 1H), 2.27-2.32 (m, 1H), 2.41-2.49 (m, 1H), 2.52-2.61 (m, 2H), 312 (ddd, *J* = 10.0, 5.0, 1.5 Hz, 1H), 7.25 (dd, *J* = 8.5, 2.0 Hz, 2H), 7.32 (dd, *J* = 8.5, 2.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 21.2, 29.1, 34.8, 37.9, 38.6, 45.3, 58.0, 129.4, 133.2, 133.8, 134.1, 208.8; IR (KBr pellet, cm⁻¹): 2972, 2859, 1706; m.p = 98 °C.; HRMS (ES+) calc. for C₁₄H₁₇ClOSNa [M+Na]⁺ : 291.0586, found: 291.0587.

(*R*)-3-(4-tert-butylphenylthio)-4,4-dimethylcyclohexanone (3h): This compound was obtained in 92% yield and 91% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 90:10]; flow rate 0.7 mL/min; $\lambda = 220$ nm; $t_{\rm R}({\rm minor}) = 7.12 \text{ min}$ (*S*), $t_{\rm R}({\rm major}) = 12.84 \text{ min}$ (*R*); $[\alpha]_{\rm D}^{25} = -57.0$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.21 (s, 3H), 1.29 (bs, 12H), 1.59-1.66 (m, 1H), 1.87-1.91 (m, 1H), 2.27-2.32 (m, 1H), 2.42-2.43 (m, 1H), 2.52-2.64 (m, 2H), 3.10 (dd, *J* = 10.5, 4.5 Hz, 1H), 7.29-7.34 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 21.0, 27.8, 29.2, 31.3, 34.5, 37.9, 38.8, 45.6, 57.9, 126.2, 133.1, 150.9, 169.9, 209.4; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2961, 1715. HRMS (ES+) calc. for C₁₈H₂₆OSNa [M+Na]⁺ : 313.1602, found: 313.1600.

(*S*)-3-(phenylthio)cyclopentanone (4a)¹⁰: This compound was obtained in >99% yield and 80% ee. The optical purity was determined by HPLC on chiralcel OB-H column [*n*hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 20.15$ min (*S*), $t_R(minor) = 25.77$ min (*R*); $[\alpha]_D^{25} = +7.4$ (*c* 1.0, CHCl₃); [lit.⁸ (*S*) ee = 21%; $[\alpha]_D^{23} = +1.8$ (*c* 1. 3, CHCl₃)] ¹H NMR (500 MHz, CDCl₃): δ 1.97-2.04 (m, 1H), 2.18-2.27 (m, 2H), 2.30-2.37 (m, 1H), 2.43-2.50 (m, 1H), 2.59 (dd, *J* = 18.5, 7.0 Hz, 1H), 3.86-3.91 (m, 1H), 7.19-7.40 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 29.4, 36.9, 43.5, 45.3, 127.5, 129.2, 132.1, 134.3, 216.5; IR (NaCl cell, CH_2Cl_2 , cm⁻¹): 2923, 1742. HRMS (ES+) calc. for $C_{11}H_{13}OS [M+H]^+$: 193.0687, found: 193.0689.

(*S*)-3-(*a*-tolylthio)cyclopentanone (4b): This compound was obtained in 98% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 8.64$ min (*R*), $t_R(\text{major}) = 9.36$ min (*S*); $[\alpha]_D^{25} = +16.9$ (*c* 1.0, CHCl₃);¹H NMR (500 MHz, CDCl₃): δ 2.00-2.06 (m, 1H), 2.19-2.27 (m, 2H), 2.30-2.37 (m, 1H), 2.39 (s, 3H), 2.47-2.53 (m, 1H), 2.60 (dd, J = 18.5, 7.0 Hz, 1H), 3.86-3.91 (m, 1H), 7.15-7.21 (m, 3H), 7.33-7.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 20.8, 29.3, 36.7, 42.6, 45.3, 126.6, 127.3, 130.6, 131.6, 133.5, 139.6, 216.7; IR (NaCl cell, CH2Cl2, cm⁻¹): 2919, 1743.; HRMS (ES+) calc. for C₁₂H₁₄OSNa [M+Na]⁺: 229.0663, found: 229.0667.

(*S*)-3-(2-methoxyphenylthio)cyclopentanone (4c): This compound was obtained in 98% yield and 88% ee. The optical purity was determined by HPLC on chiralcel OB-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 33.25$ min (*S*), $t_R(minor) = 41.07$ min (*R*); $[\alpha]_D^{25} = +18.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.98-2.01 (m, 1H), 2.18-2.30 (m, 3H), 2.46-2.50 (m, 1H), 2.56 (dd, *J* = 19.0, 7.5 Hz, 1H), 3.87 (s, 3H), 3.98-4.00 (m, 1H), 6.86-6.92 (m, 2H), 7.24-7.28 (m, 1H), 7.33-7.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 29.3, 36.8, 41.6, 45.3, 55.9, 110.9, 121.1, 122.2, 129.2, 133.4, 158.8, 216.9; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2932, 1742.; HRMS (ES+) calc. for C₁₂H₁₄O₂SNa [M+Na]⁺ : 245.0612, found: 245.0613.

(S)-3-(phenylthio)cycloheptanone (5a)⁸: This compound was obtained in 98% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*hexane/2-propanol 98:2]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}(\text{minor}) = 10.08$ min (*R*), $t_{\rm R}$ (major) = 12.45 min (*S*); $[\alpha]_{\rm D}^{25}$ = -35.9 (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.47-1.54 (m, 1H), 1.62-1.74 (m, 2H), 1.82-1.84 (m, 1H), 1.94- 1.96 (m, 1H), 2.11-2.14 (m, 1H), 2.44-2.57 (m, 2H), 2.68-2.79 (m, 2H), 3.37-3.41 (m, 1H), 7.23-7.40 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 23.9, 28.2, 36.9, 44.1, 44.2, 49.5, 127.5, 129.2, 132.5, 134.1, 211.6; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2928, 1700. HRMS (ES+) calc. for C₁₃H₁₇OS [M+H]⁺: 221.1000, found: 221.1005.

(*S*)-3-(*a*-tolylthio)cycloheptanone (5b): This compound was obtained in 98% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 98:2]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 9.92$ min (*R*), $t_R(\text{major}) = 12.89$ min (*S*); $[\alpha]_D^{25} = -39.0$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.47-1.55 (m, 1H), 1.63-1.73 (m, 2H), 1.83-1.87 (m, 1H), 1.97-2.01 (m, 1H), 2.10-2.14 (m, 1H), 2.45-2.51 (m, 1H), 2.56-2.61 (m, 1H), 2.67-2.71 (m, 2H), 3.51-3.56 (m, 1H), 3.88 (s, 3H), 6.87-6.93 (m, 2H), 7.25-7.28 (m, 1H), 7.36 (dd, *J* = 7.5, 1.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 23.9, 28.3, 36.7, 41.9, 44.0, 49.4, 55.7, 110.9, 121.0, 121.8, 129.1, 133.7, 158.8, 211.8; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2927, 1700.; HRMS (ES+) calc. for Cl₁₄H₁₉OS [M+H]⁺: 235.1157, found: 235.1150.

(*S*)-3-(2-methoxyphenylthio)cycloheptanone (5c): This compound was obtained in 95% yield and 92% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 90:10]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 9.28$ min (*R*), $t_R(\text{major}) = 17.33$ min (*S*); $[\alpha]_D^{25} = -61.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.50-1.56 (m, 1H), 1.67-1.76 (m, 2H), 1.84-1.86 (m, 1H), 1.97- 2.00 (m, 1H), 2.11-2.15 (m, 1H), 2.40 (s, 3H), 2.46-2.52 (m, 1H), 2.65-2.60 (m, 1H), 2.72-2.75 (m, 2H), 3.35-3.39 (m, 1H), 7.14-7.17 (m, 2H), 7.19-7.21 (m, 1H), 7.357.38 (m, 1H); ¹³C

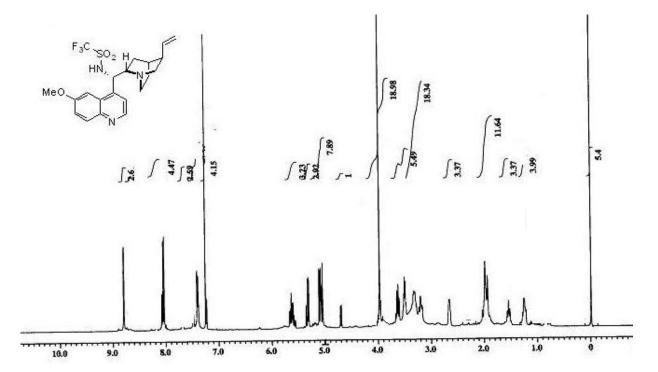
NMR (125 MHz, CDCl₃): δ 20.7, 23.9, 28.2, 36.8, 43.4, 44.0, 49.4, 126.5, 127.3, 130.5, 132.2, 133.4, 139.9, 211.6; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2929, 1698.; HRMS (ES+) calc. for C₁₄H₁₈O₂SNa [M+Na]⁺ : 273.0925, found: 273.0926.

(*S*)-3-(2,6-dimethylphenylthio)cycloheptanone (5d): This compound was obtained in 93% yield and 91% ee. The optical purity was determined by HPLC on chiralpak AS-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 5.29$ min (*R*), $t_R(\text{major}) = 7.89$ min (*S*); $[\alpha]_D^{25} = -43.9$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.43-1.47 (m, 1H), 1.60- 1.73 (m, 2H), 1.80-1.84 (m, 1H), 1.95-2.00 (m, 2H), 2.40-2.47 (m, 1H), 2.50 (s, 6H), 2.53-2.60 (m, 2H), 2.68-2.74 (m, 1H), 3.12-3.17 (m, 1H), 7.00-7.11 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 22.2, 23.9, 28.3, 37.0, 44.1, 44.2, 49.5, 128.2, 128.5, 132.2, 143.5, 211.7; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2927, 1700.; HRMS (ES+) calc. for C₁₅H₂₁OS [M+H]⁺ : 249.1313, found: 249.1317.

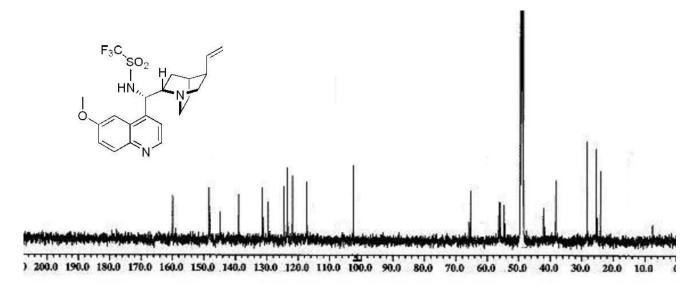
(*R*)-4,4-dimethyl-3-(naphthalen-2-ylthio)-1-phenylpentan-1-one (6a): This compound was obtained in 95% yield and 82% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 8.40 min (*S*), $t_{\rm R}$ (major) = 9.54 min (*R*); $[\alpha]_{\rm D}^{25} = -125.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.08 (s, 9H), 3.34-3.36 (m, 2H), 4.01 (dd, *J* = 7.5, 5.5 Hz, 1H), 7.37-7.42 (m, 4H), 7.49-7.55 (m, 2H), 7.67-7.73 (m, 3H), 7.83-7.89 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 27.9, 36.3, 41.2, 55.5, 125.7, 126.4, 127.4, 127.7, 128.2, 128.4, 128.6, 128.7, 128.9, 132.0, 133.1, 133.8, 134.8, 137.3, 198.8; IR (KBr pellet, cm⁻¹): 2923, 1590; m.p = 65 °C.; HRMS (ES+) calc. for C₂₃H₂₅OS [M+H]⁺ : 349.1626, found: 349.1626. (*R*)-4,4-dimethyl-1-phenyl-3-(*o*-tolylthio)pentan-1-one (6b): This compound was btained in 98% yield and 90% ee. The optical purity was determined by HPLC on chiralpak AD column [*n*-hexane/2-propanol 99:1]; flow rate 0.5 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 13.88 min (*R*), $t_{\rm R}$ (minor) = 16.04 min (*S*); $[\alpha]_{\rm D}^{25} = -59.2$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.03 (s, 9H), 2.35 (s, 3H), 3.18-3.45 (m, 2H), 3.97-3.98 (m, 1H), 7.00-7.08 (m, 3H), 7.36-7.54 (m, 4H), 7.85-7.91 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 20.8, 27.8, 36.0, 41.5, 54.1, 126.0, 126.6, 128.1, 128.6, 130.1, 130.2, 133.1, 136.2, 137.2, 138.2, 198.7; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2961, 1685.; HRMS (ES+) calc. for C₂₀H₂₅OS [M+H]⁺ : 313.1626, found: 313.1622.

(*R*)-3-(4-chlorophenylthio)-4,4-dimethyl-1-phenylpentan-1-one (6c): This compound was obtained in 97% yield and 87% ee. The optical purity was determined by HPLC on chiralcel OD-H column [*n*-hexane/2-propanol 99:1]; flow rate 0.5 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 10.30 min (*R*), $t_{\rm R}$ (minor) = 12.64 min (*S*); $[\alpha]_{\rm D}^{25} = -114.2$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.11 (s, 9H), 3.30-3.41 (m, 2H), 3.86 (dd, J = 8.5, 4.5 Hz, 1H), 7.21-7.24 (m, 2H), 7.43-7.45 (m, 2H), 7.49-7.52 (m, 2H), 7.59 -7.62 (m, 1H), 7.95-7.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 27.8, 36.3, 41.1, 56.4, 128.2, 128.7, 129.0, 132.3, 132.4, 133.2, 136.1, 137.2, 198.6; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2959, 2921, 2851, 1685.; HRMS (ES+) calc. for C₁₉H₂₂ClOS [M+H]⁺ : 333.1080, found: 333.1086.

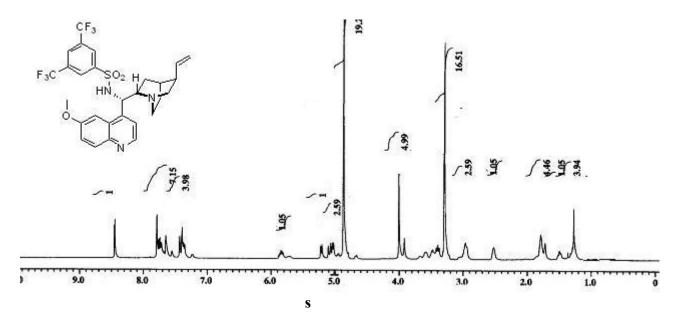
(*R*)-3-(4-fluorophenylthio)-4,4-dimethyl-1-phenylpentan-1-one (6d): This compound was obtained in 92% yield and 86% ee. The optical purity was determined by HPLC on chiralcel OD-H column [*n*-hexane/2-propanol 99:1]; flow rate 0.5 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 8.83 min (*R*), $t_{\rm R}$ (minor) = 10.63 min (*S*); $[\alpha]_{\rm D}^{25} = -68.2$ (*c* 1.0, CHCl₃);¹H NMR (500 MHz, CDCl₃): δ 1.05 (s, 9H), 3.23 (dd, J = 17.5, 4.0 Hz, 1H), 3.34 (dd, J =

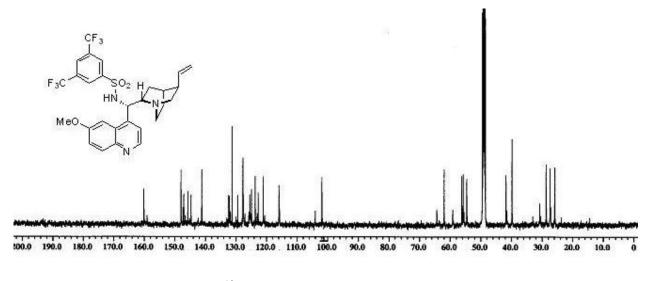

17.5, 9.0 Hz, 1H), 3.75 (dd, J = 8.5, 4.5 Hz, 1H), 6.88-6.92 (m, 2H), 7.42-7.46 (m, 4H), 7.53-7.56 (m, 1H), 7.89-7.91 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 28.2, 36.3, 41.2, 57.3, 115.6, 115.7, 115.8, 116.2, 127.5, 127.8, 128.0, 128.1, 128.6, 132.3, 132.4, 133.1, 133.7, 133.8, 137.3, 138.6, 138.7, 160.9, 162.9, 198.7 (excess peaks due to C-F coupling); IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2960, 2918, 2850, 1684.; HRMS (ES+) calc. for C₁₉H₂₂FOS [M+H]⁺ : 317.1375, found: 317.1372.

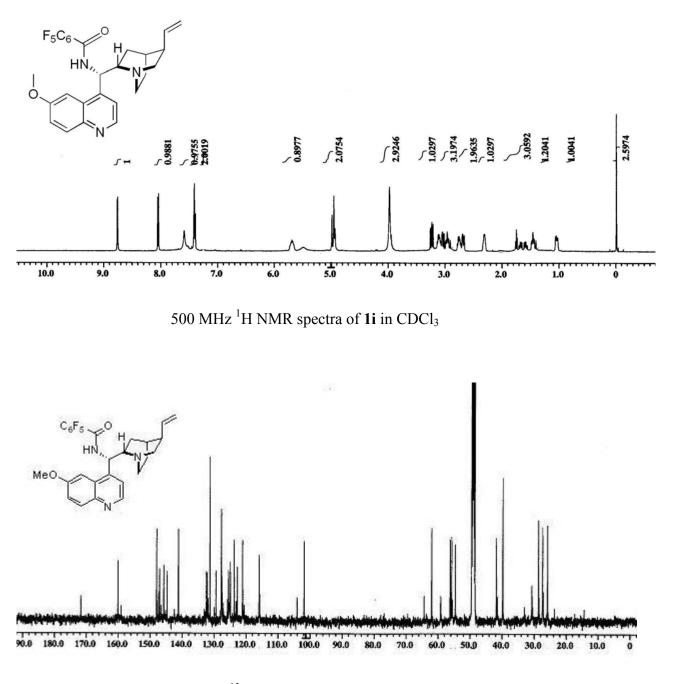
(*S*)-1,5-diphenyl-3-(*o*-tolylthio)pentan-1-one (7a): This compound was obtained in 97% yield and 94% ee. The optical purity was determined by HPLC on chiralcel OJ-H column [*n*-hexane/2-propanol 95:5]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{major}) = 10.22$ min (*S*), $t_R(\text{minor}) = 12.51$ min (*R*); $[\alpha]_D^{25} = -27.3$ (*c* 0.15, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 2.30-2.49 (m, 5H), 2.80-3.05 (m, 2H), 3.19-3.33 (m, 2H), 3.84-3.88 (m, 1H), 7.11-7.24 (m, 9H), 7.35-7.414 (m, 2H), 7.58-7.61 (m, 1H), 7.85-7.92 (m, 2H); ¹³C NMR (125MHz, CDCl₃): δ 20.8, 33.1, 36.4, 42.9, 44.1, 125.9, 126.9, 127.8, 128.0, 128.3, 128.4, 128.6, 130.4, 131.6, 133.2, 126.5, 127.0, 129.6, 141.4, 198.2; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2919, 2850, 1587.; HRMS (ES+) calc. for C₂₄H₂₅OS [M+H]⁺ : 361.1626, found: 361.1620.

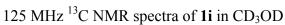

(*S*)-3-(2,6-dimethylphenylthio)-1,5-diphenylpentan-1-one (7b): This compound was obtained in 96% yield and 99% ee. The optical purity was determined by HPLC on chiralpak AD-H column [*n*-hexane/2-propanol 99:1]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 7.91 min (*S*), $t_{\rm R}$ (minor) = 10.12 min (*R*); $[\alpha]_{\rm D}^{25} = -60.9$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 1.89-1.91 (m, 1H), 2.02-2.07 (m, 1H), 2.51 (s, 6H), 2.76-2.81 (m, 1H), 2.84-2.89 (m, 1H), 3.06-3.16 (m, 2H), 3.60-3.63 (m, 1H), 7.06-7.15 (m, 6H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz 2H), 7.51 (t, J = 7.0 Hz, 1H), 7.72 (d, J =

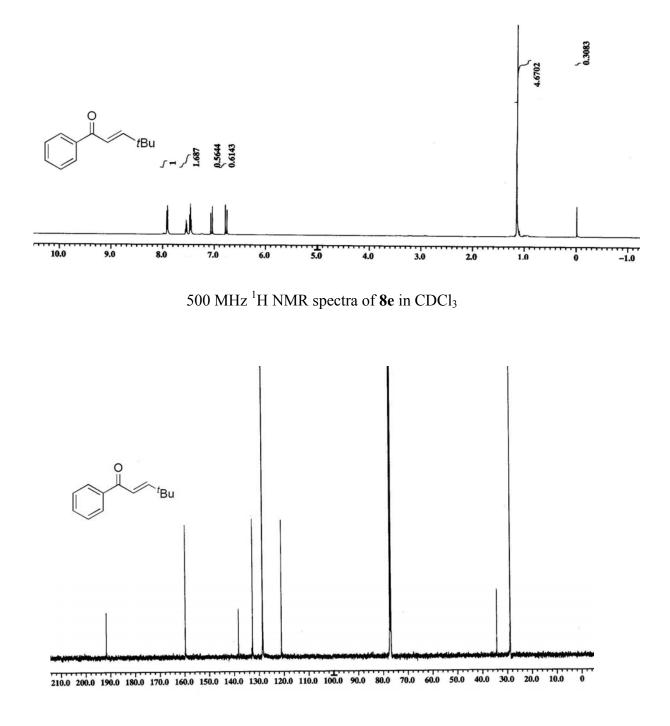
7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 22.3, 32.9, 36.3, 43.7, 43.9, 125.8, 126.7, 127.9, 128.2, 128.3, 128.4, 128.5, 132.2, 133.1, 136.7, 141.4, 143.5, 198.3; IR (NaCl cell, CH₂Cl₂, cm⁻¹): 2918, 2851, 1589.; HRMS (ES+) calc. for C₂₅H₂₇OS [M+H]⁺ : 375.1783, found: 375.1784.

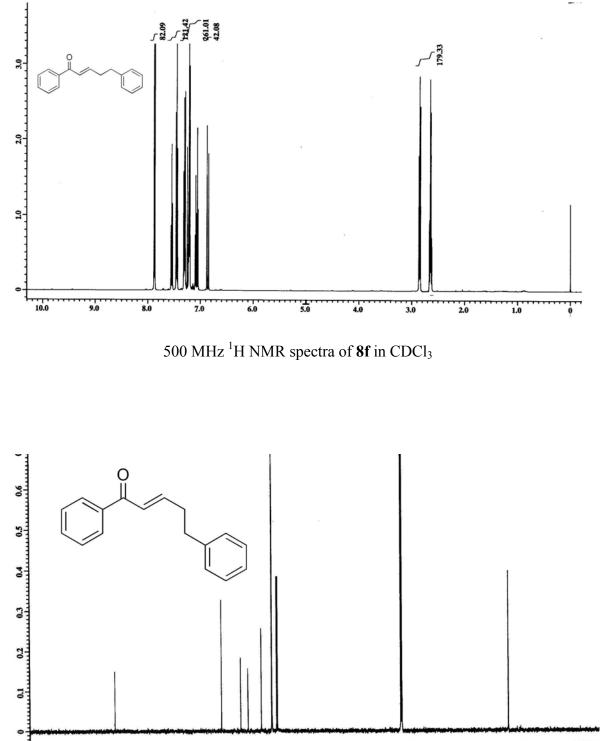

Spectra:

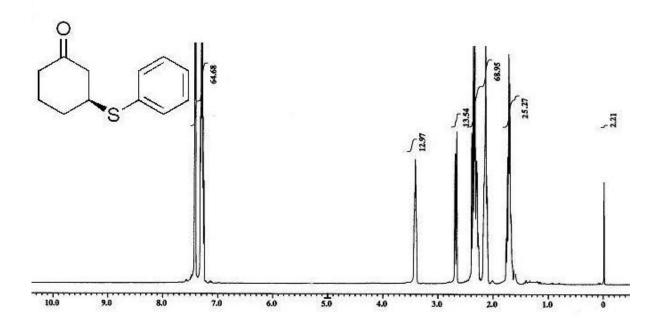

500 MHz ¹H NMR spectra of **1g** in CDCl₃


125 MHz ¹³C NMR spectra of **1g** in CD₃OD

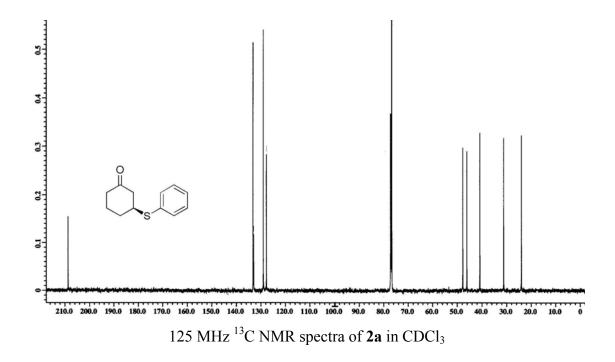


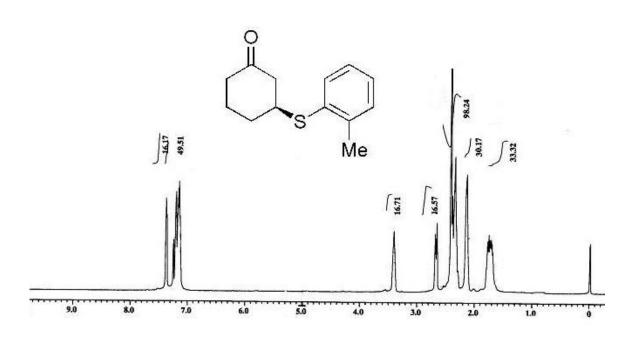

500 MHz ¹H NMR spectra of 1h in CD₃OD


125 MHz ¹³C NMR spectra of **1h** in CD₃OD

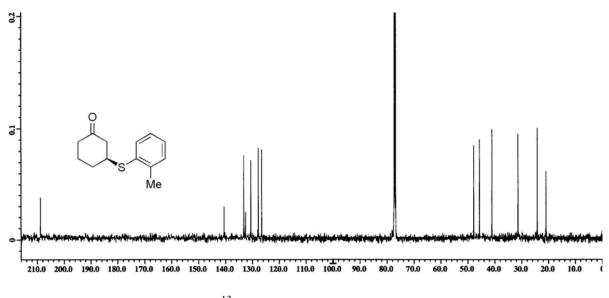


125 MHz ¹³C NMR spectra of **8e** in CDCl₃

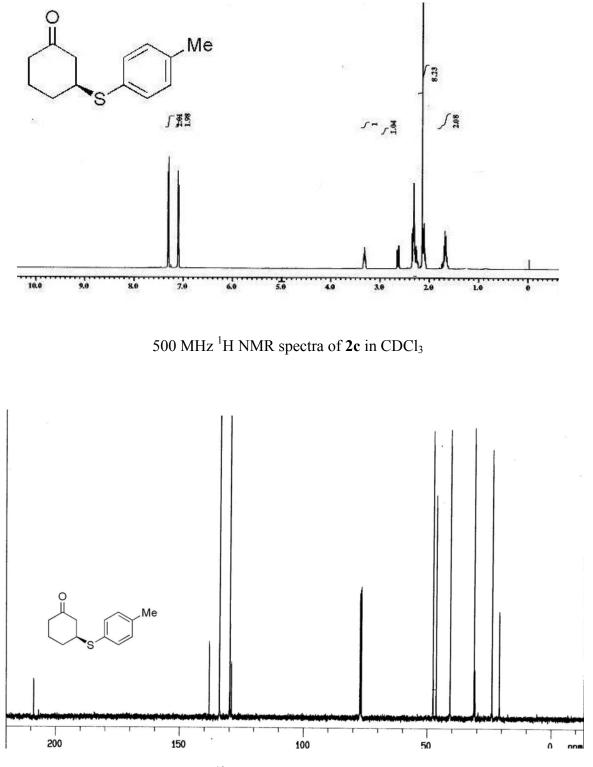


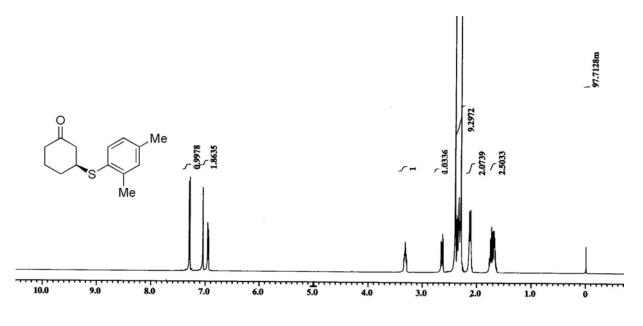

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

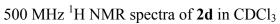
125 MHz 13 C NMR spectra of **8f** in CDCl₃



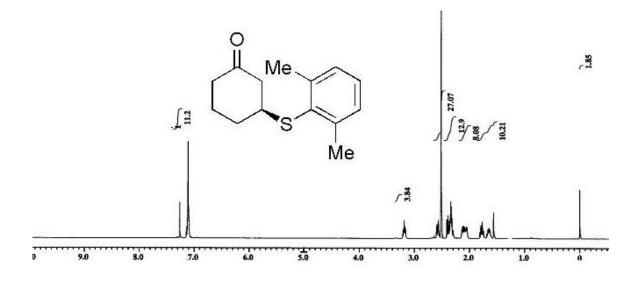
500 MHz ¹H NMR spectra of **2a** in CDCl₃

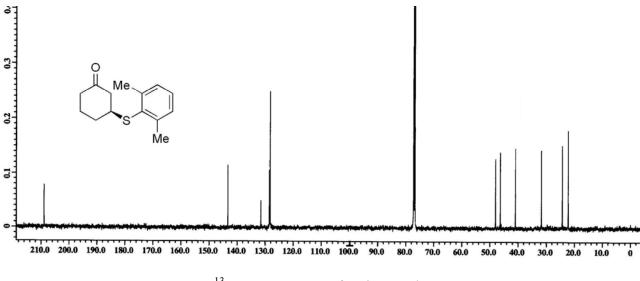


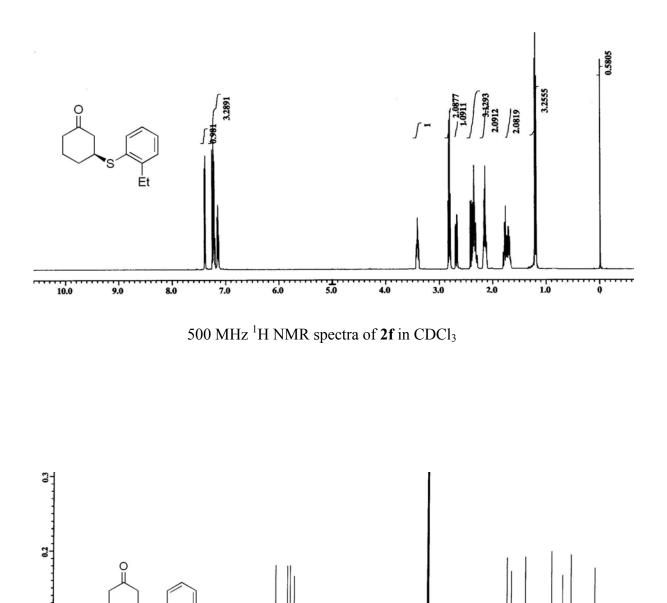

500 MHz ¹H NMR spectra of **2b** in CDCl₃

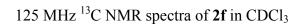


125 MHz 13 C NMR spectra of **2b** in CDCl₃


100 MHz ^{13}C NMR spectra of 2c in CDCl_3

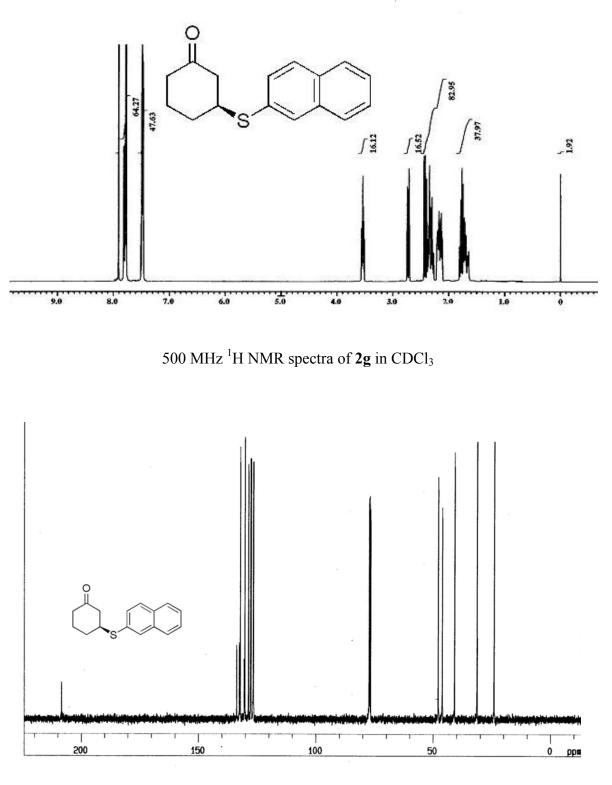


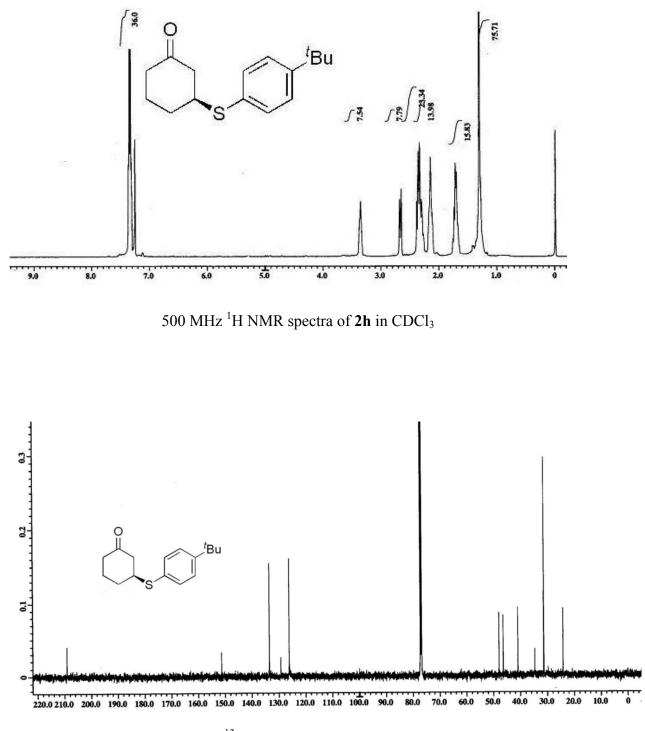

125 MHz ¹³C NMR spectra of **2d** in CDCl₃



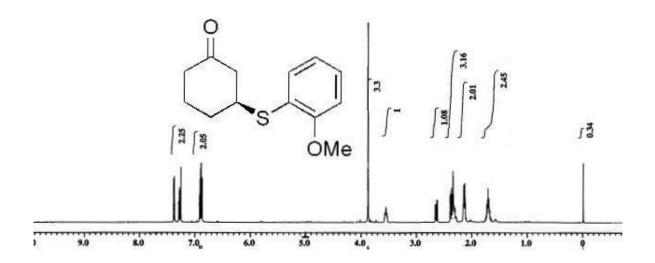
500 MHz ¹H NMR spectra of 2e in CDCl₃

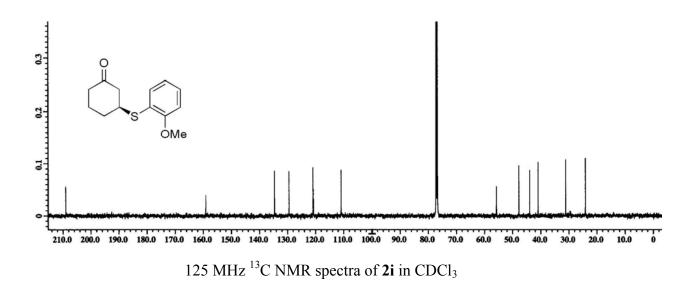
125 MHz ^{13}C NMR spectra of 2e in CDCl_3

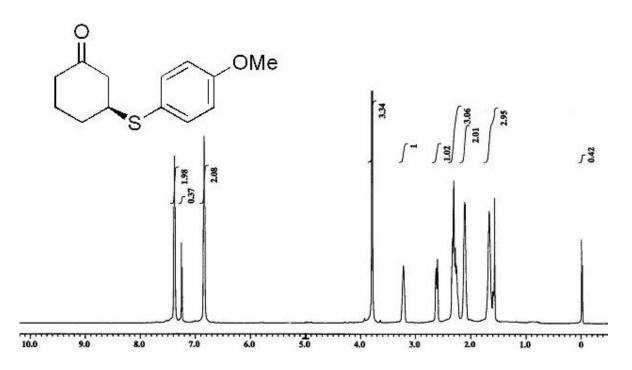



210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

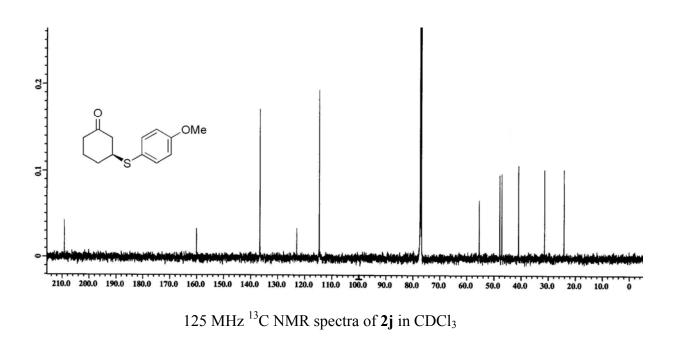
0.1

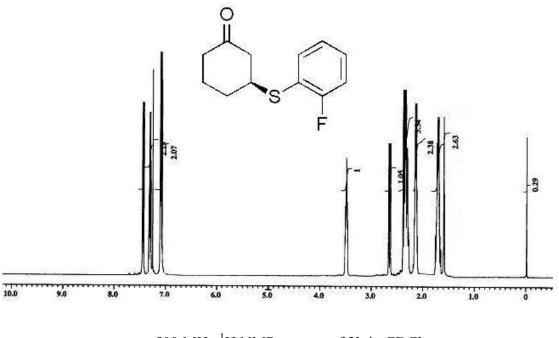

0

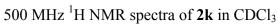

100 MHz ^{13}C NMR spectra of $\mathbf{2g}$ in CDCl_3

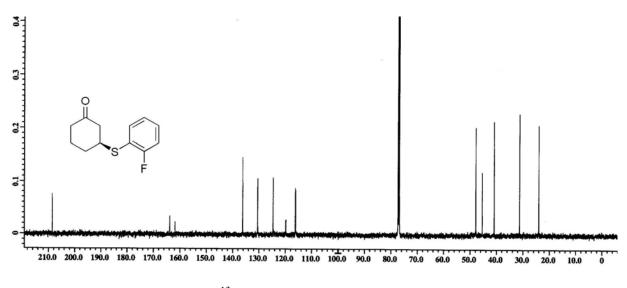


125 MHz ¹³C NMR spectra of **2h** in CDCl₃

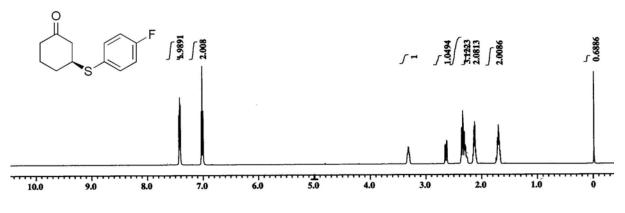


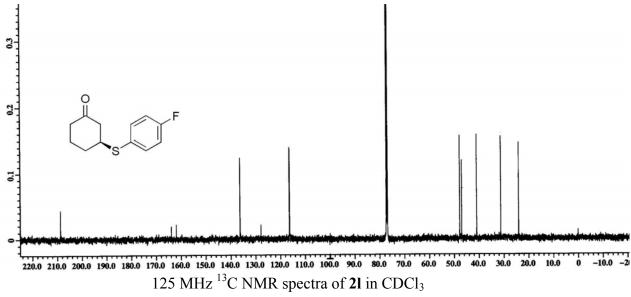

500 MHz ¹H NMR spectra of **2i** in CDCl₃

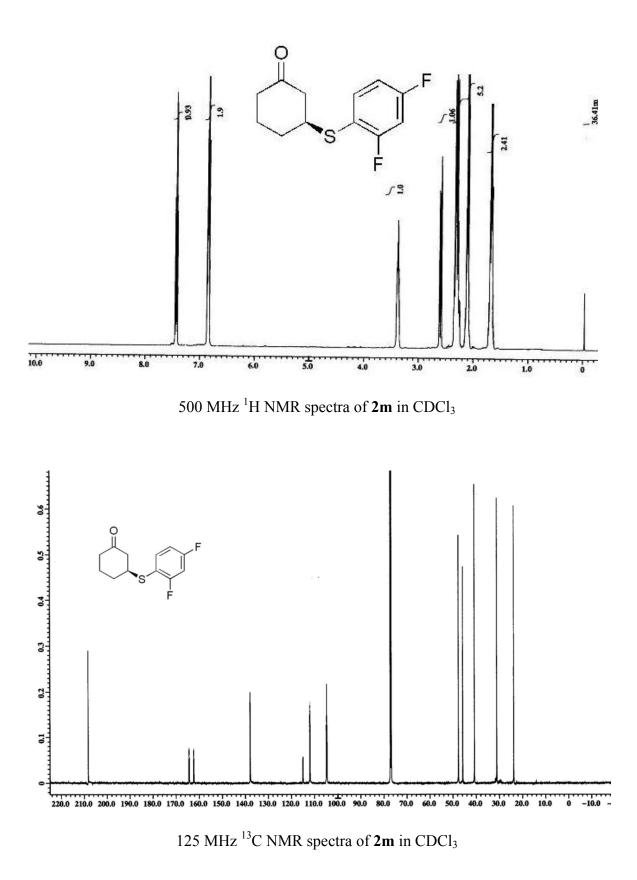




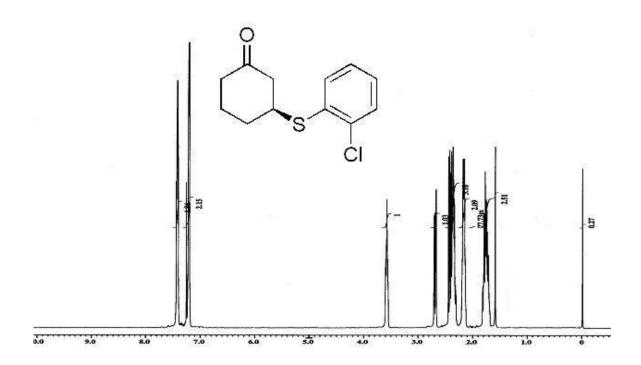
500 MHz ¹H NMR spectra of **2j** in CDCl₃



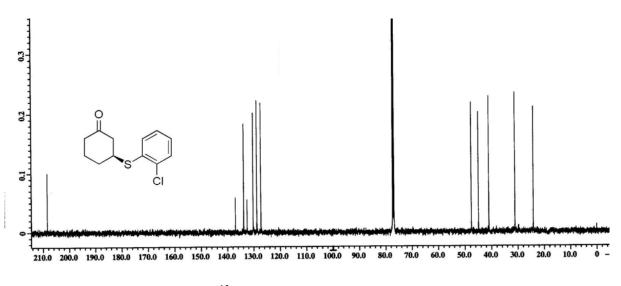


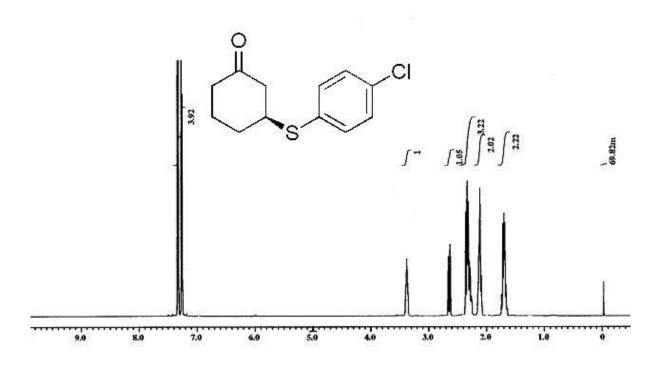


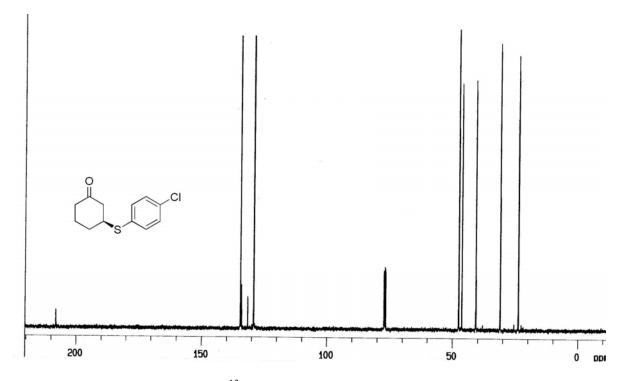
125 MHz ^{13}C NMR spectra of 2k in CDCl_3

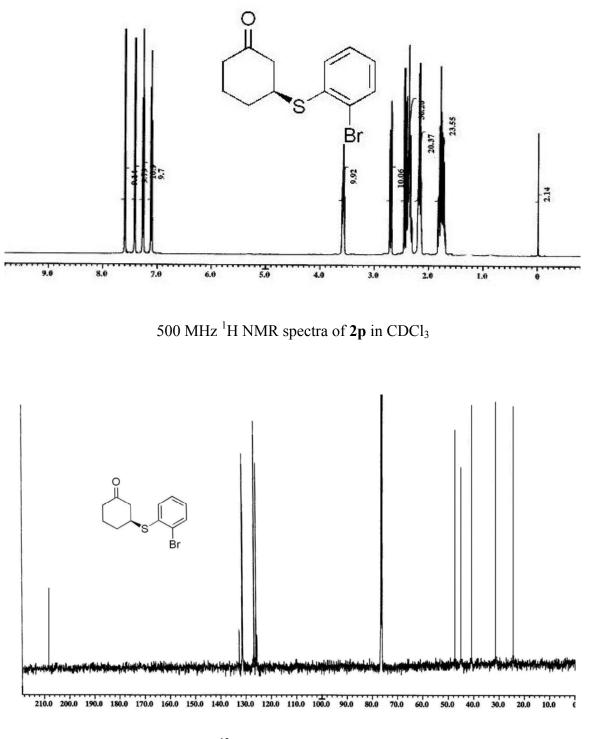


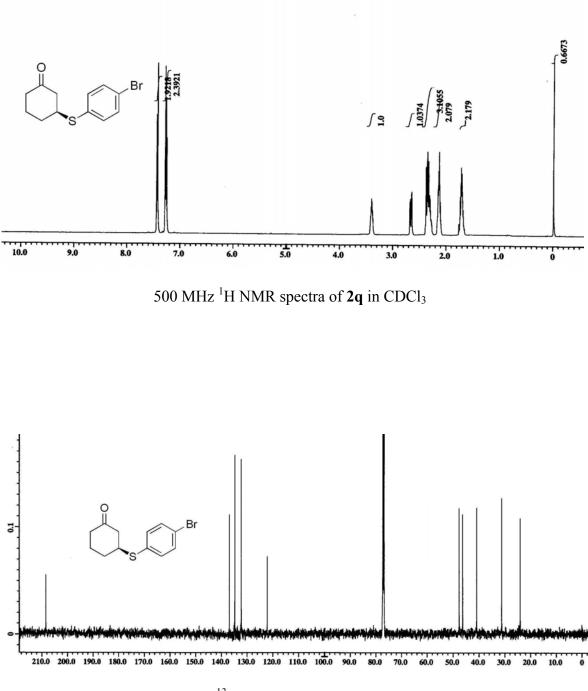
500 MHz 1 H NMR spectra of **21** in CDCl₃

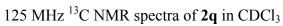


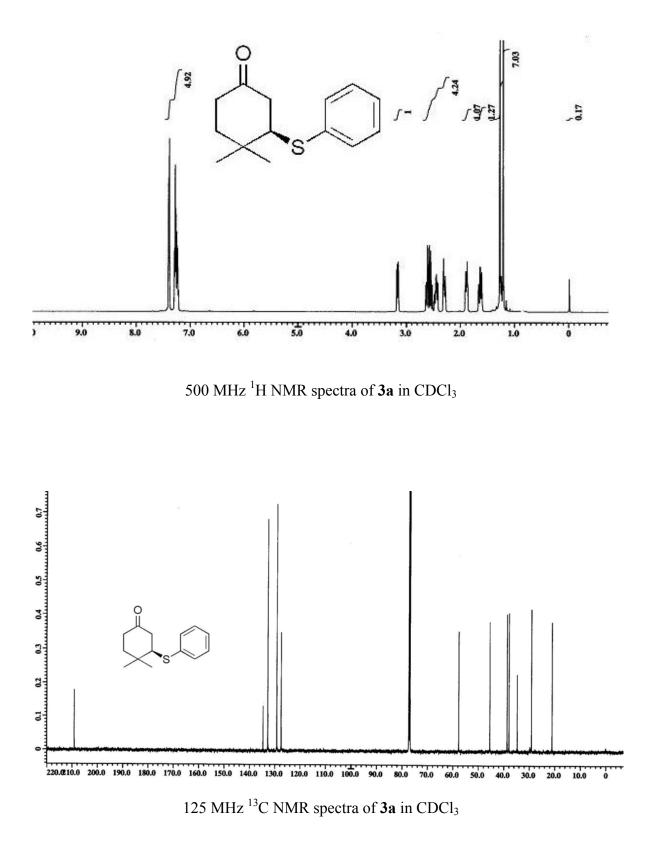

S40

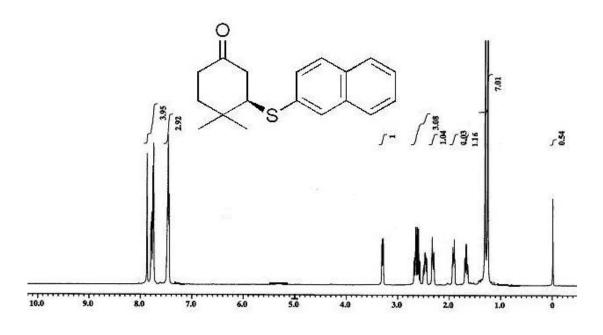

500 MHz ¹H NMR spectra of 2n in CDCl₃


125 MHz 13 C NMR spectra of **2n** in CDCl₃

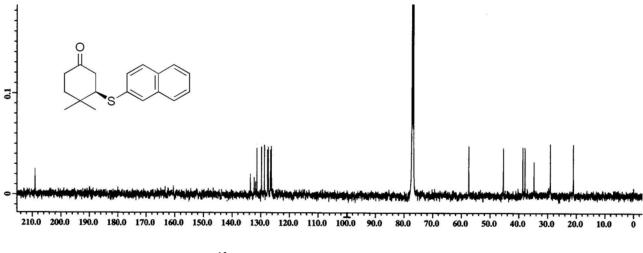

500 MHz ¹H NMR spectra of **20** in CDCl₃

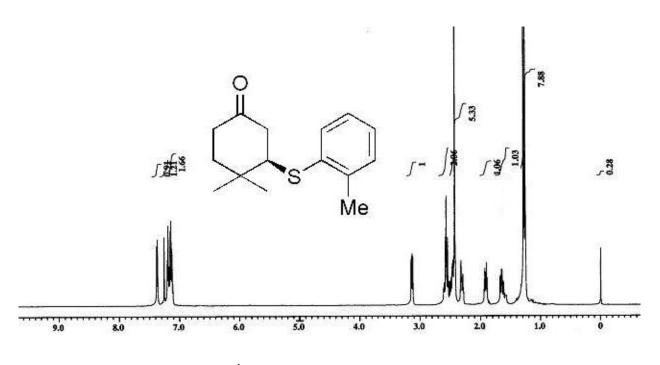


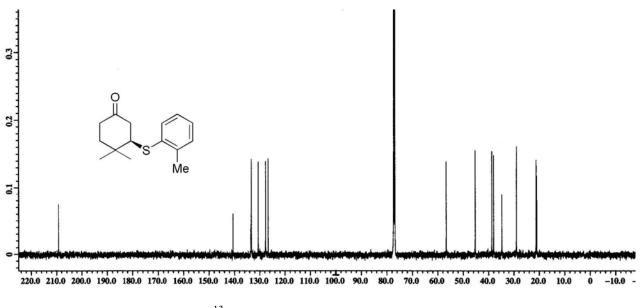

100 MHz ¹³C NMR spectra of **20** in CDCl₃

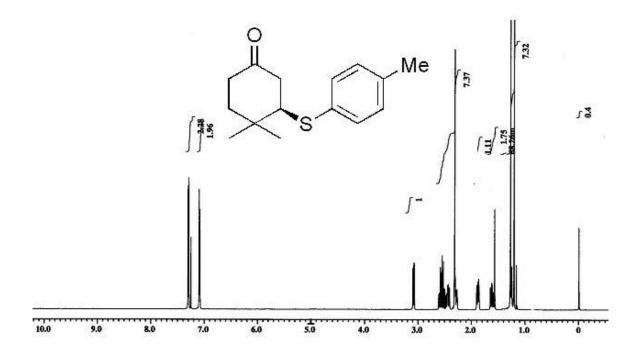


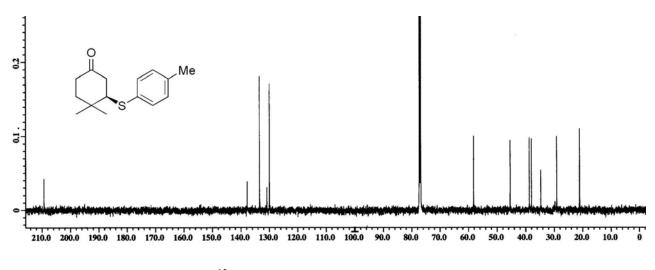
125 MHz ¹³C NMR spectra of **2p** in CDCl₃

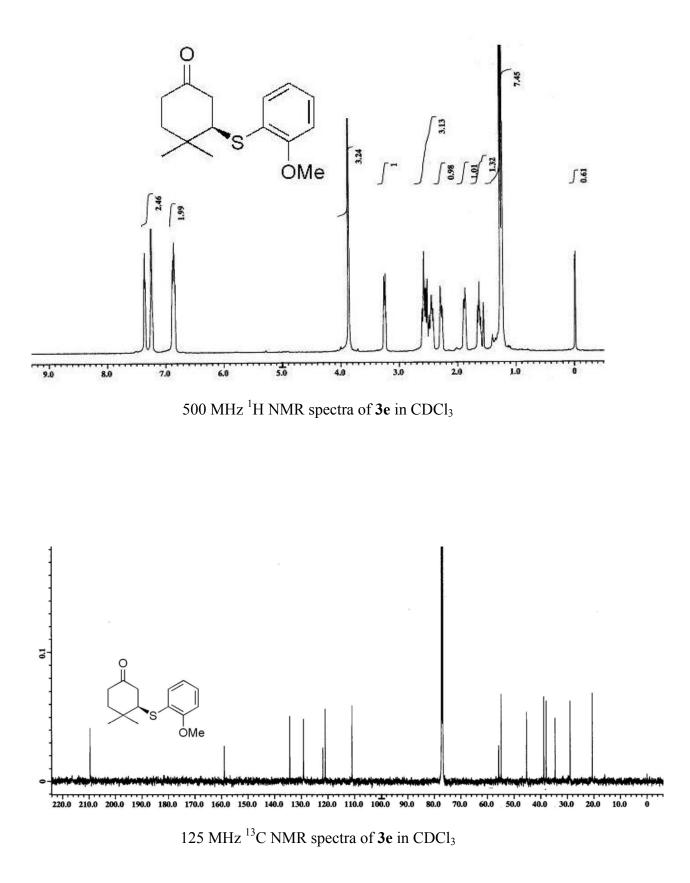


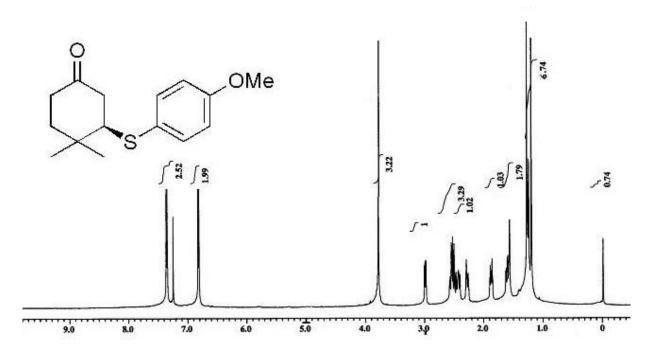



500 MHz ¹H NMR spectra of **3b** in CDCl₃

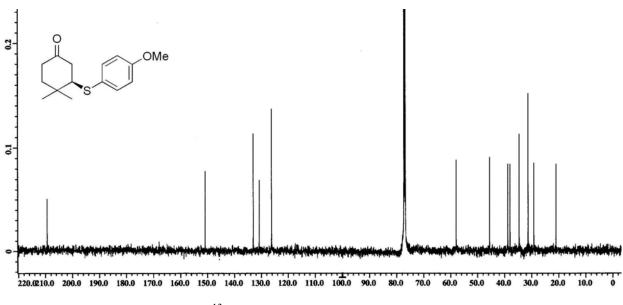

125 MHz 13 C NMR spectra of **3b** in CDCl₃


500 MHz ¹H NMR spectra of 3c in CDCl₃

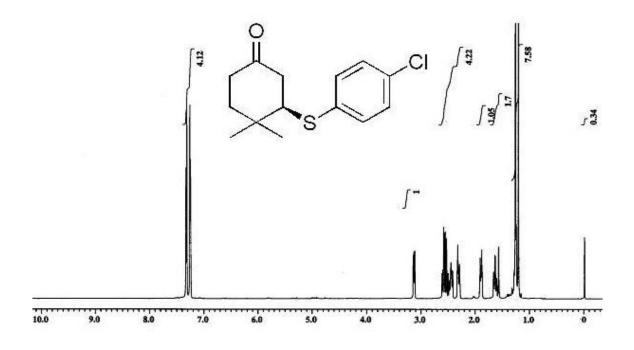

125 MHz ¹³C NMR spectra of **3c** in CDCl₃

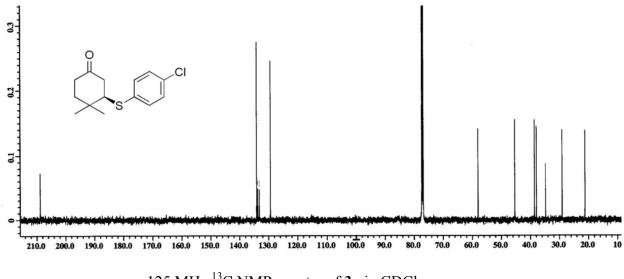


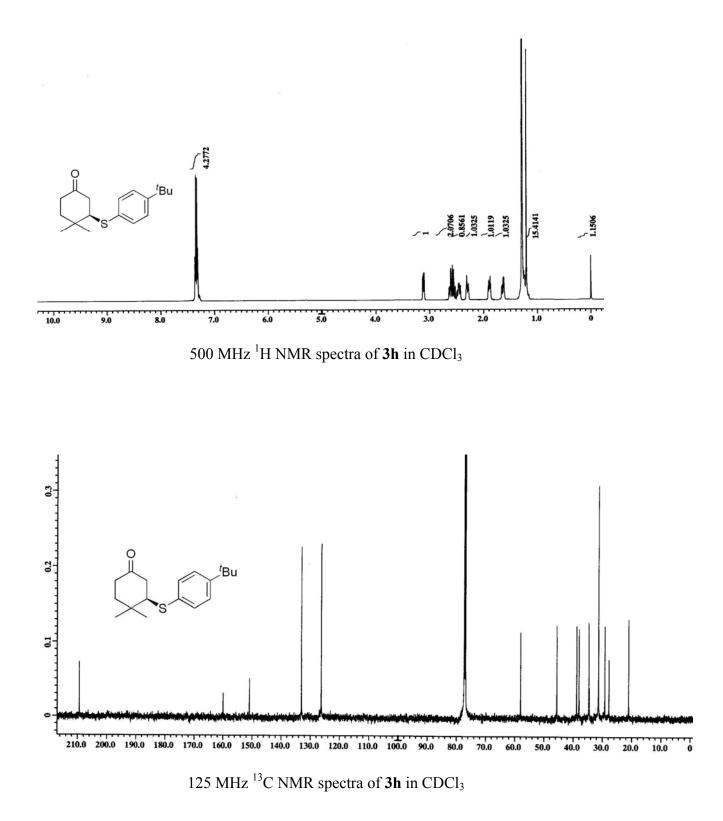
500 MHz ¹H NMR spectra of **3d** in CDCl₃

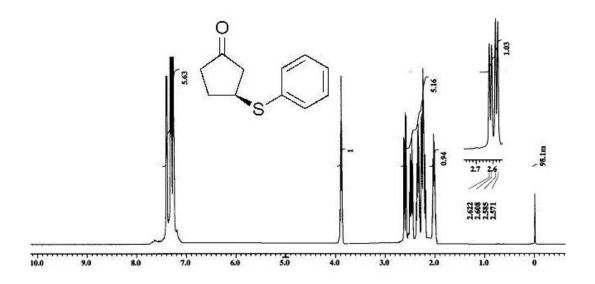


125 MHz 13 C NMR spectra of **3d** in CDCl₃

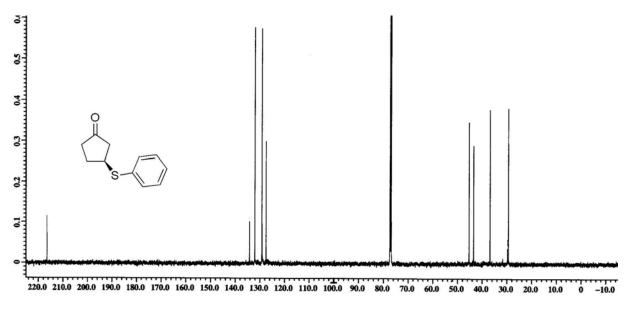



500 MHz 1 H NMR spectra of **3f** in CDCl₃

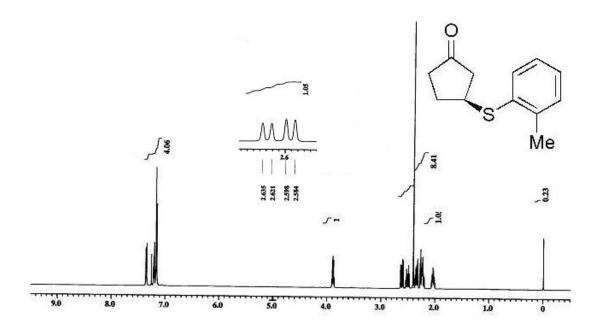

125 MHz ¹³C NMR spectra of **3f** in CDCl₃

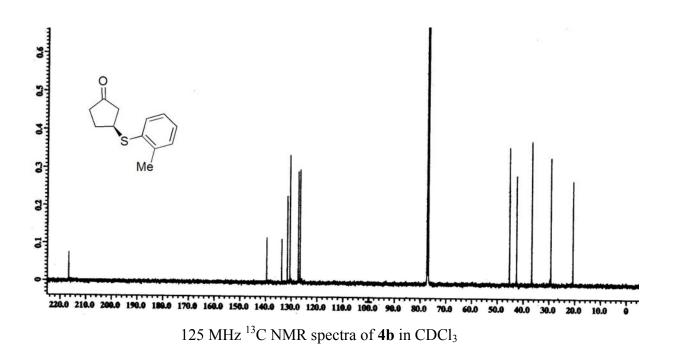


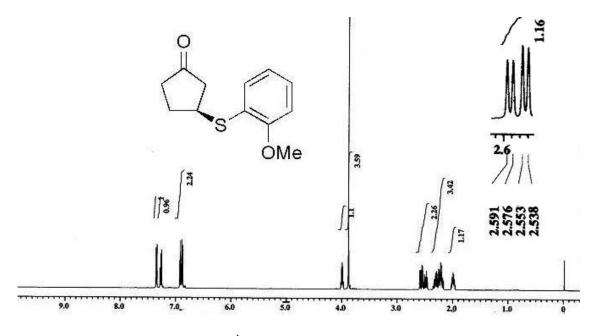
500 MHz 1 H NMR spectra of 3g in CDCl₃



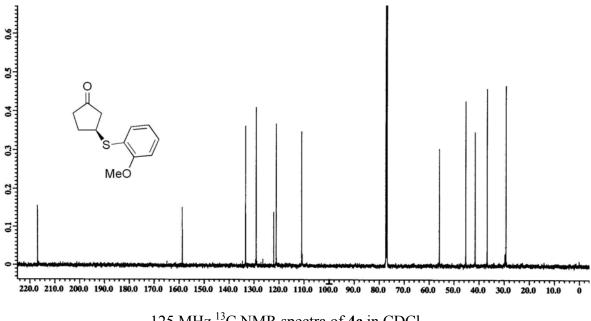
125 MHz ¹³C NMR spectra of **3g** in CDCl₃



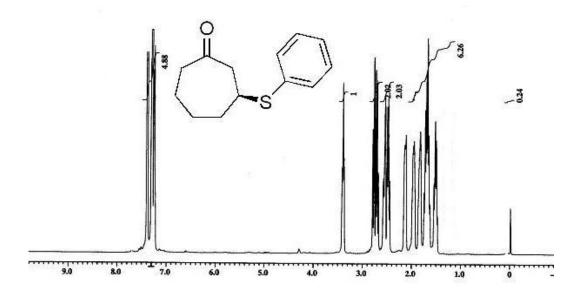

500 MHz ¹H NMR spectra of 4a in CDCl₃

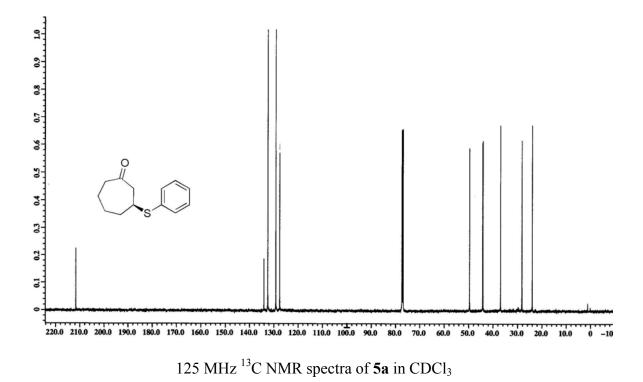


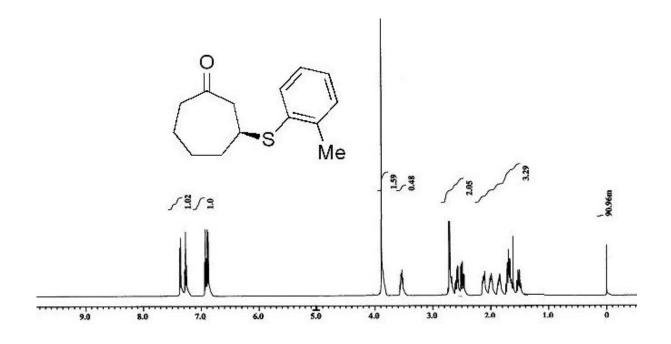
125 MHz ¹³C NMR spectra of **4a** in CDCl₃



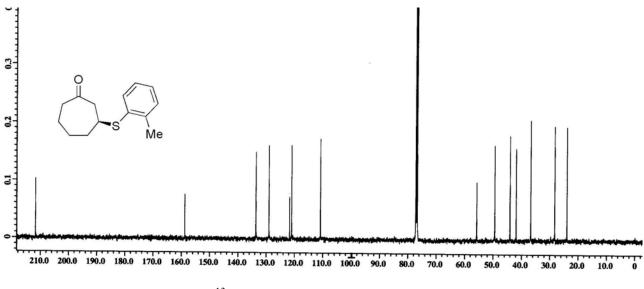
500 MHz 1 H NMR spectra of **4b** in CDCl₃



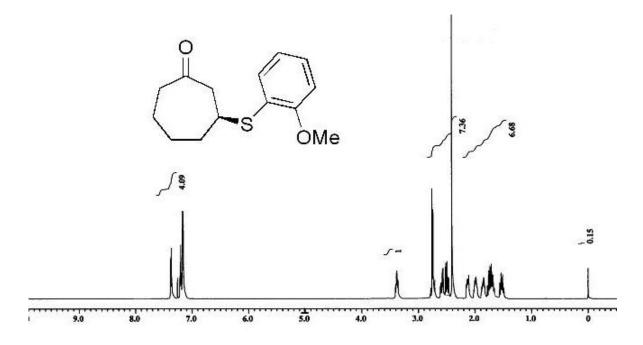

500 MHz ¹H NMR spectra of 4c in CDCl₃

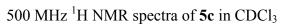


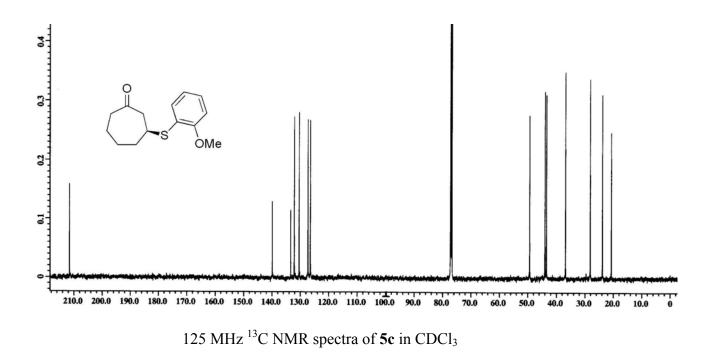
125 MHz ^{13}C NMR spectra of 4c in CDCl_3

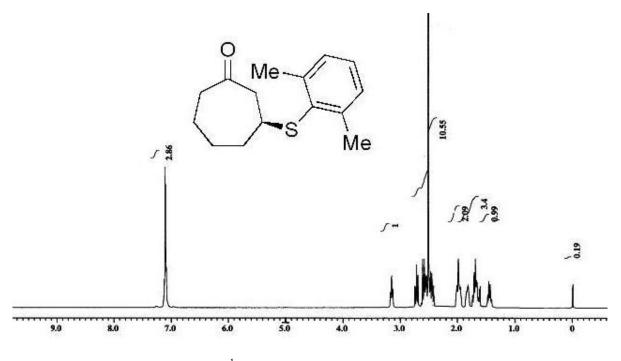


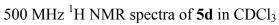
500 MHz ¹H NMR spectra of **5a** in CDCl₃

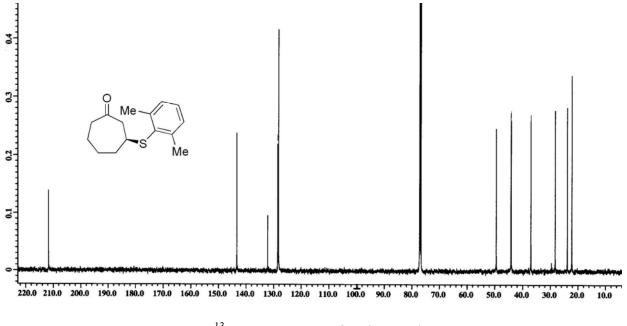


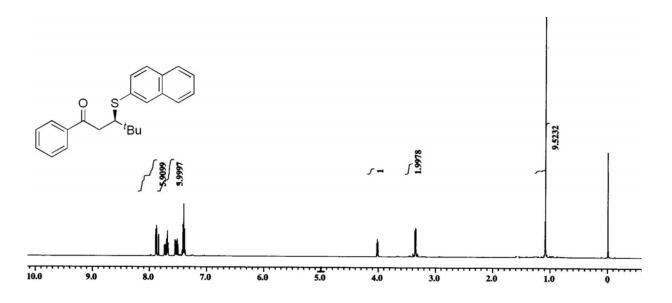


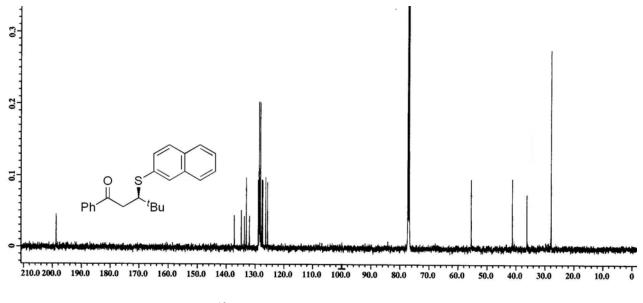

500 MHz 1 H NMR spectra of **5b** in CDCl₃

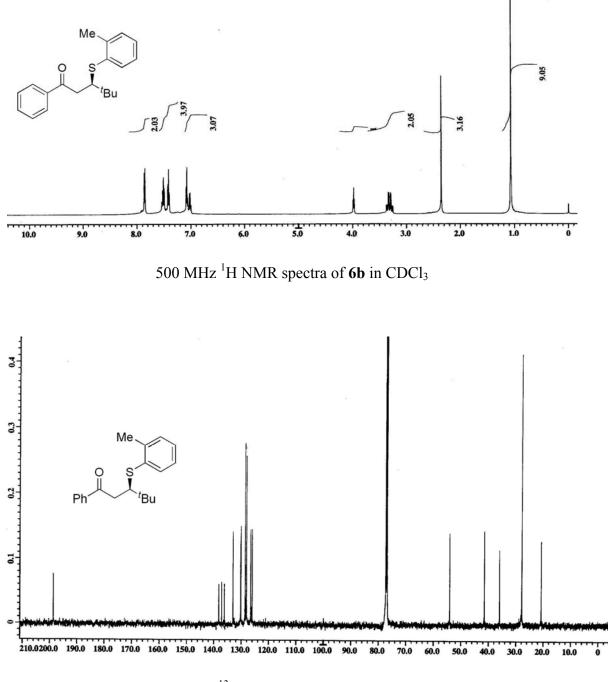


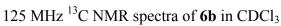

125 MHz 13 C NMR spectra of **5b** in CDCl₃

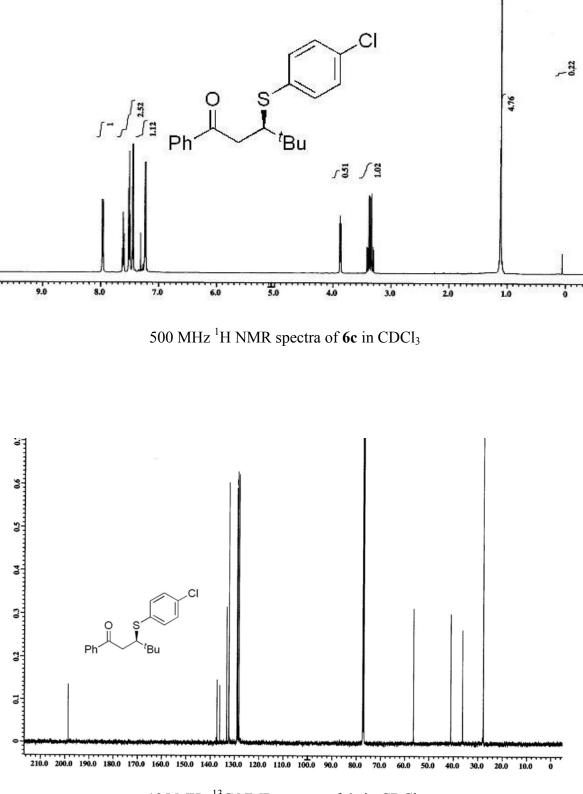


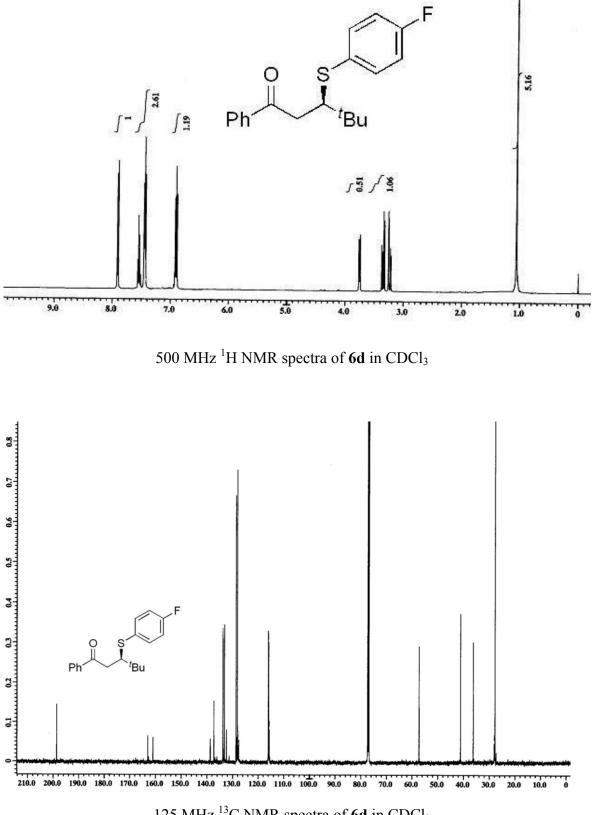


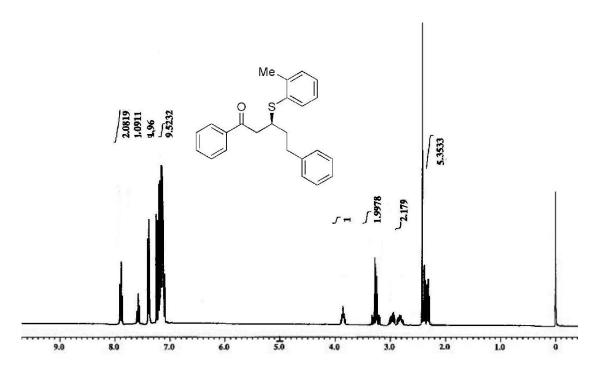


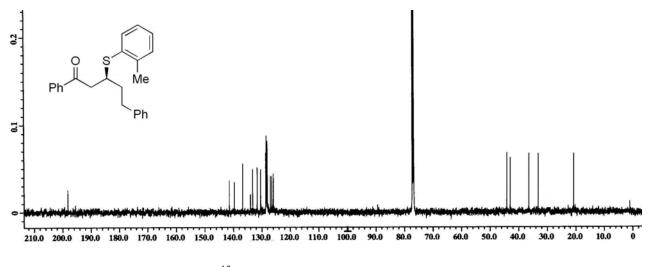

125 MHz ¹³C NMR spectra of **5d** in CDCl₃

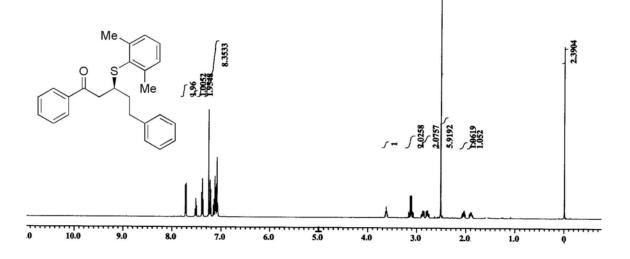


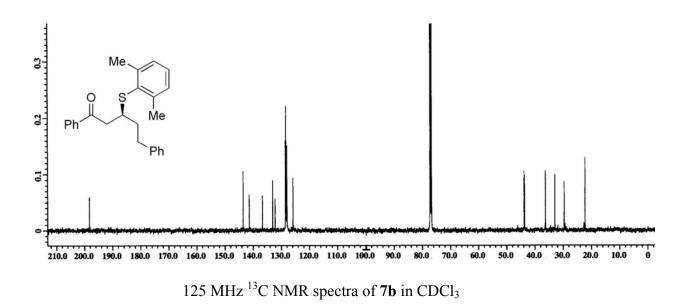

500 MHz 1 H NMR spectra of **6a** in CDCl₃

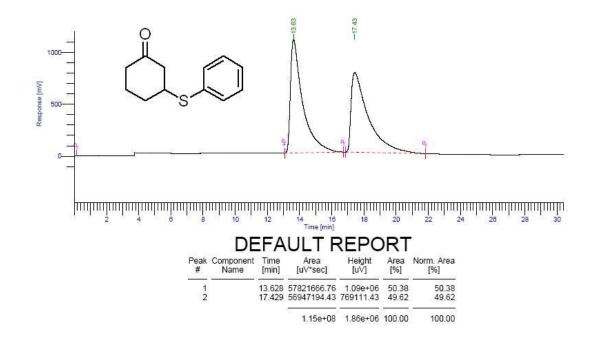

125 MHz 13 C NMR spectra of **6a** in CDCl₃



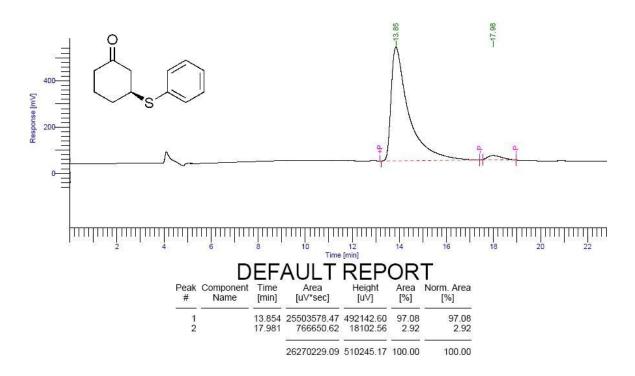

125 MHz ^{13}C NMR spectra of 6c in CDCl_3


125 MHz 13 C NMR spectra of **6d** in CDCl₃

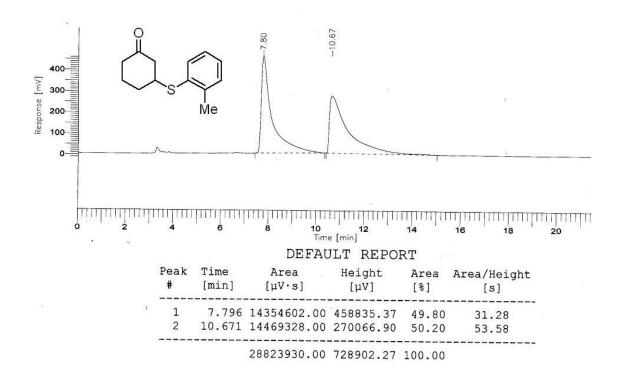

500 MHz ¹H NMR spectra of **7a** in CDCl₃

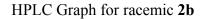


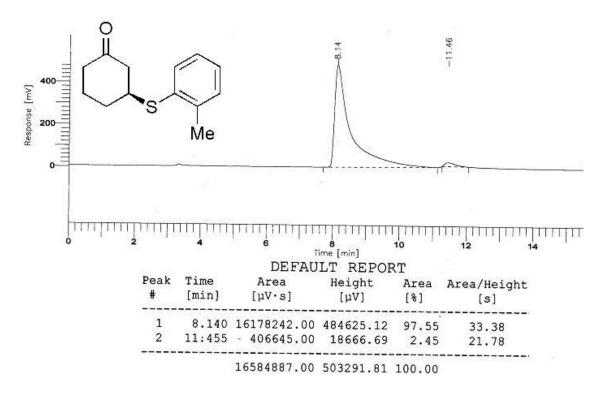
125 MHz 13 C NMR spectra of **7a** in CDCl₃

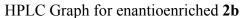


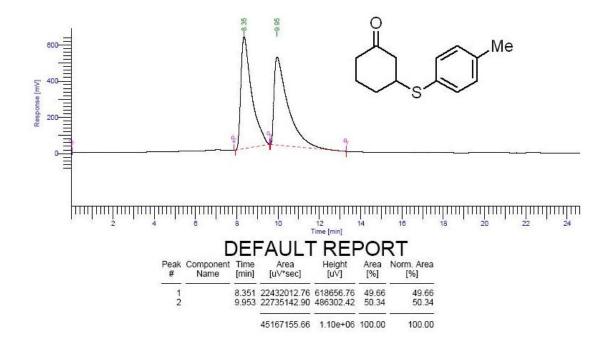
500 MHz $^1\!\mathrm{H}$ NMR spectra of 7b in CDCl_3

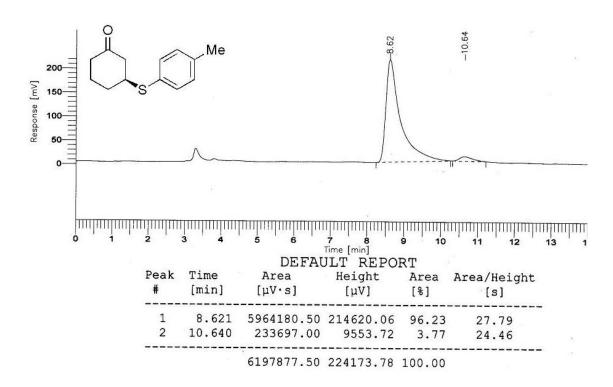


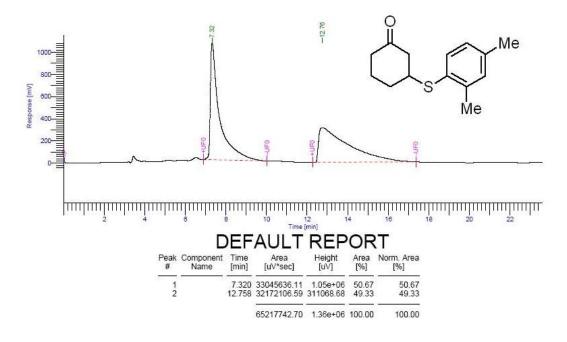


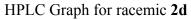

HPLC Graph for racemic 2a

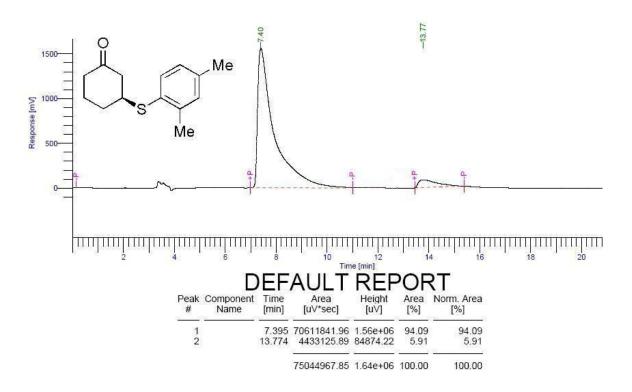


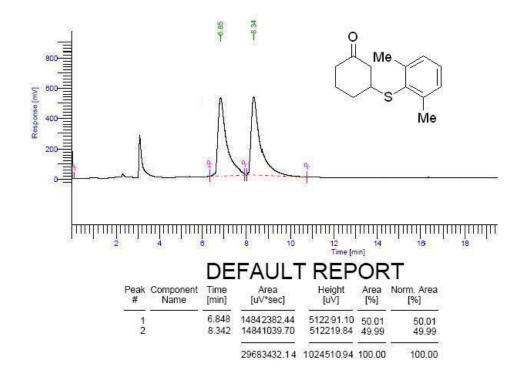

HPLC Graph for enantioenriched 2a

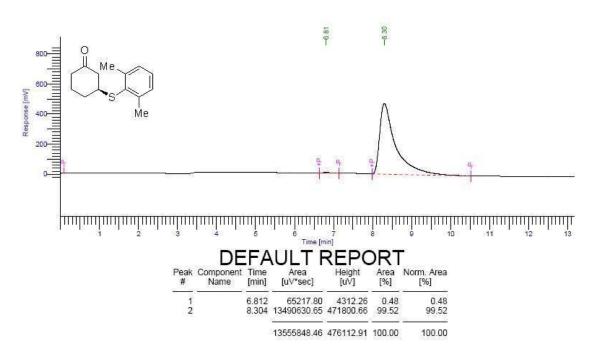


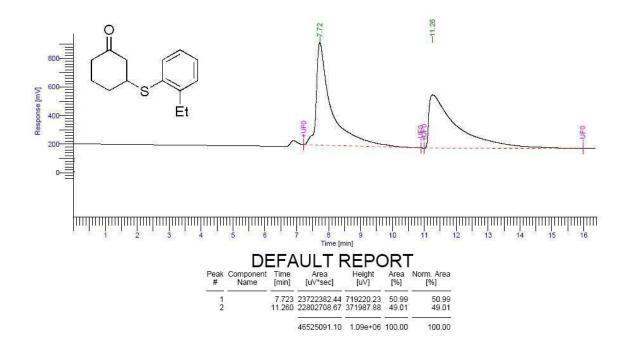


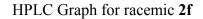


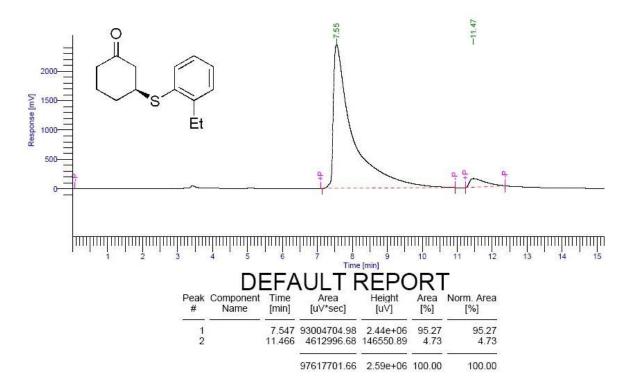

HPLC Graph for racemic 2c

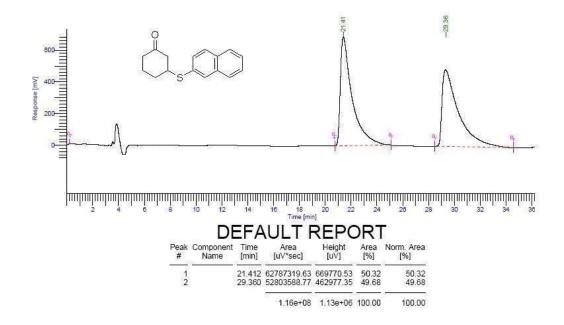

HPLC Graph for enantioenriched 2c

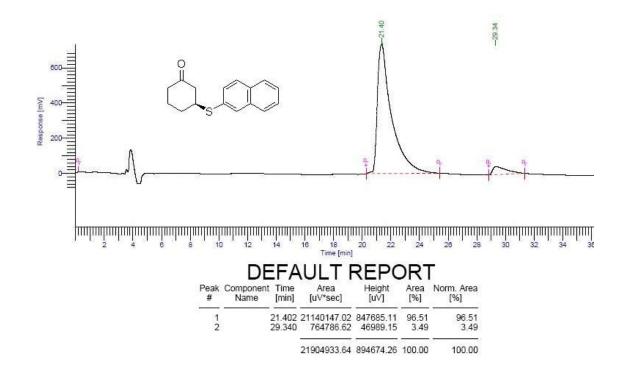


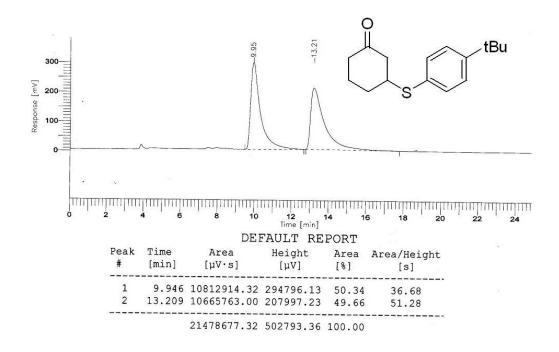

HPLC Graph for enantioenriched 2d

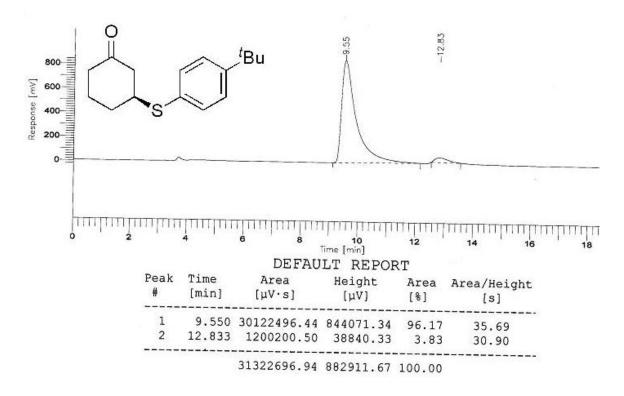


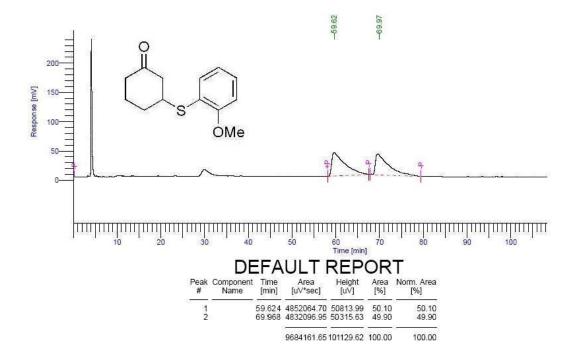

HPLC Graph for racemic 2e

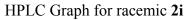

HPLC Graph for enantioenriched 2e

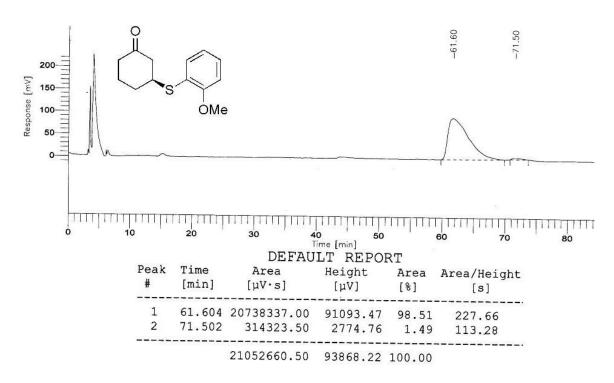


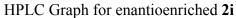

HPLC Graph for enantioenriched 2f

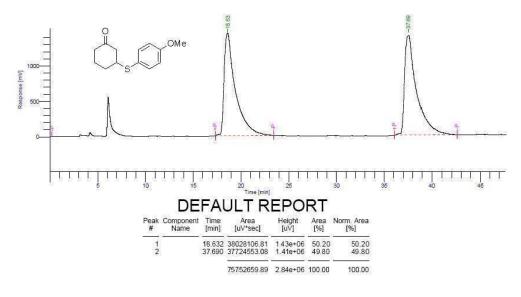

HPLC Graph for racemic 2g

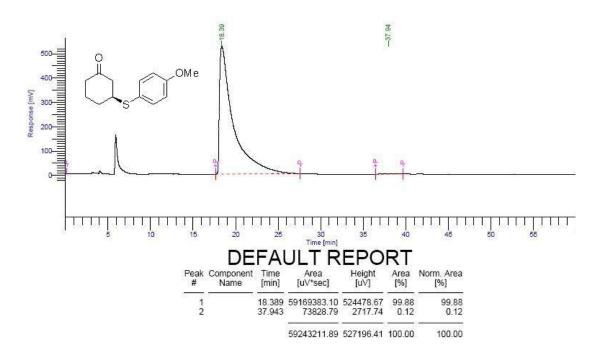

HPLC Graph for enantioenriched 2g

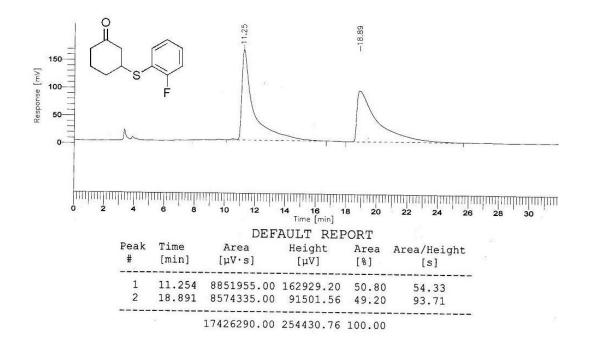


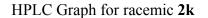

HPLC Graph for racemic 2h

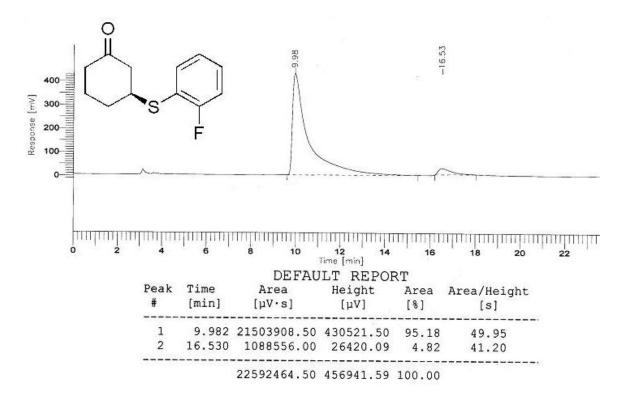


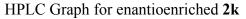

HPLC Graph for enantioenriched 2h

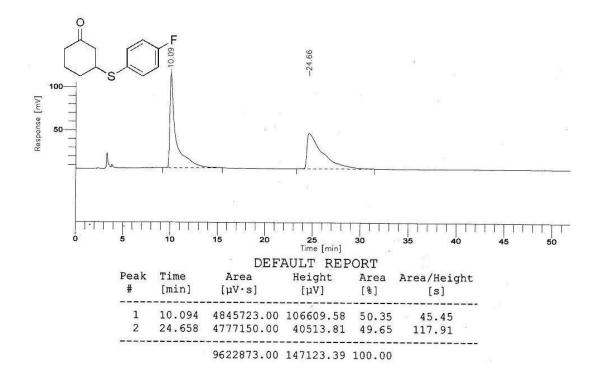


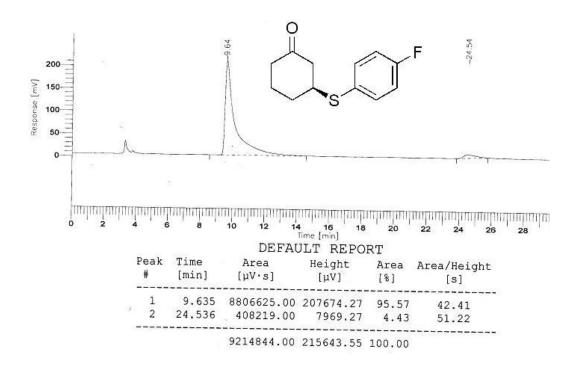


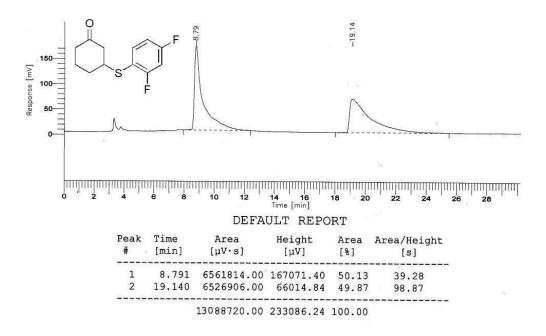


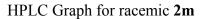

HPLC Graph for racemic 2j

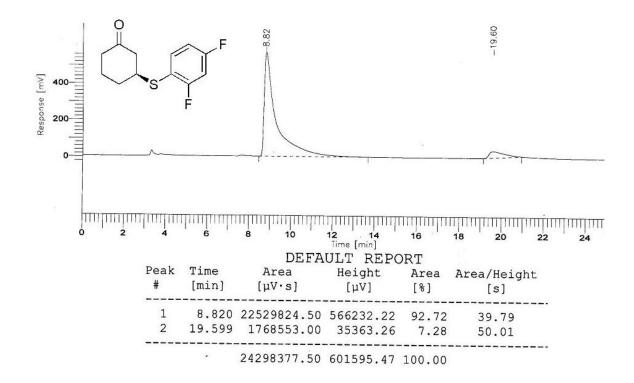


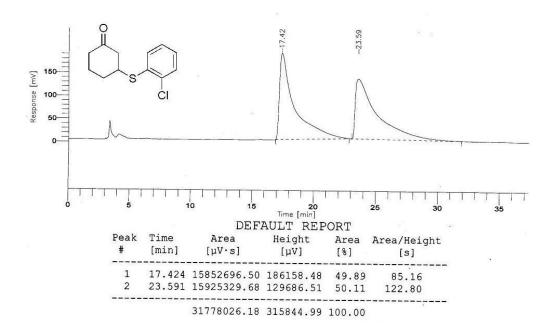

HPLC Graph for enantioenriched 2j

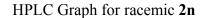


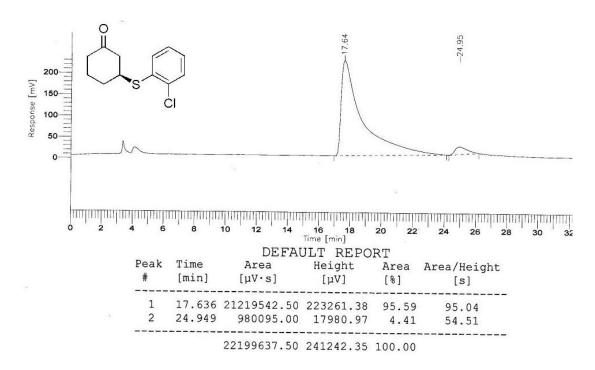


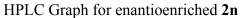


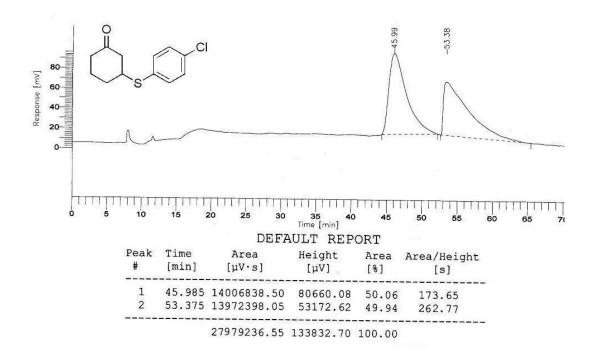

HPLC Graph for racemic 21

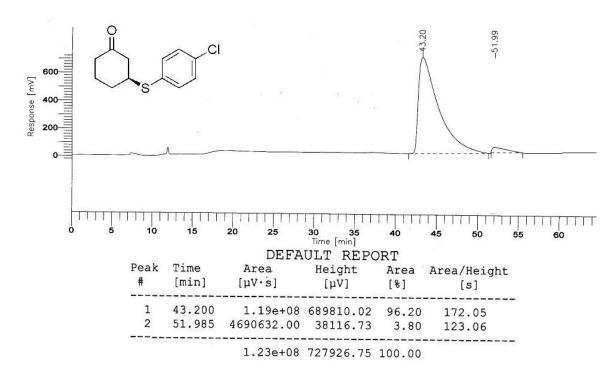

HPLC Graph for enantioenriched 21

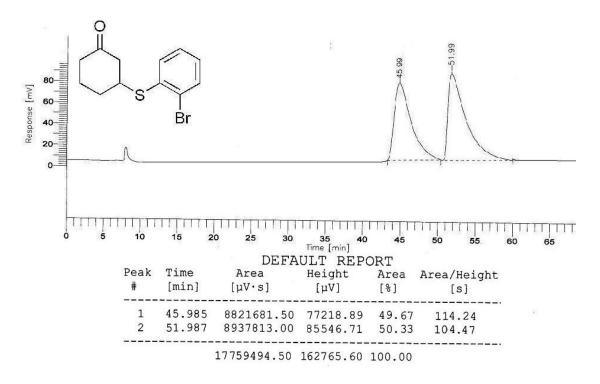


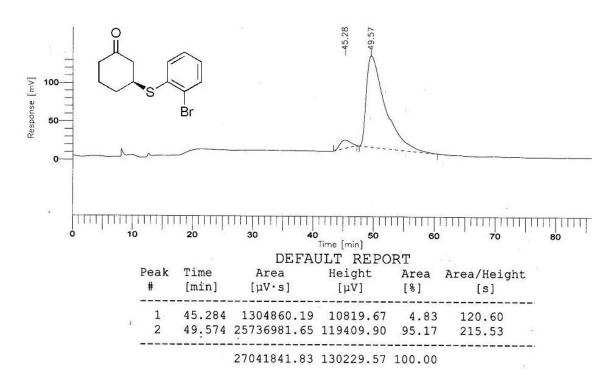


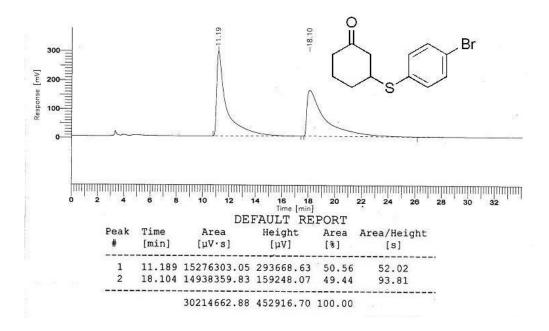


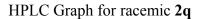

HPLC Graph for enantioenriched 2m

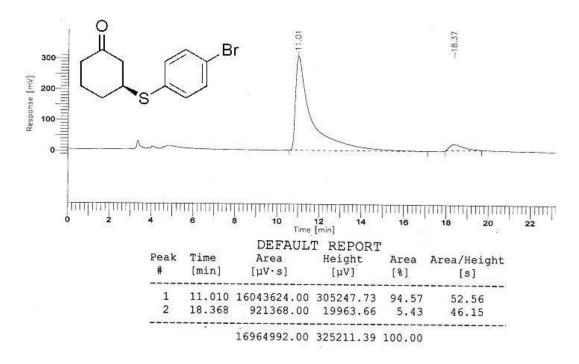


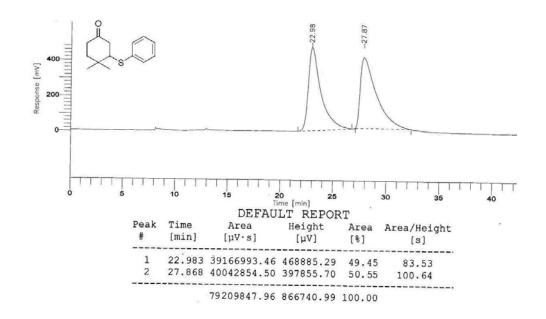


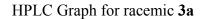

HPLC Graph for racemic 20

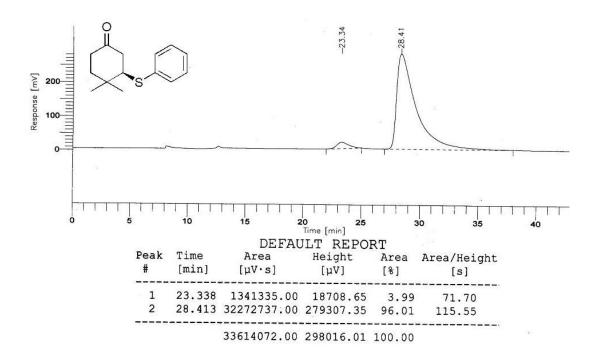

HPLC Graph for enantioenriched 20

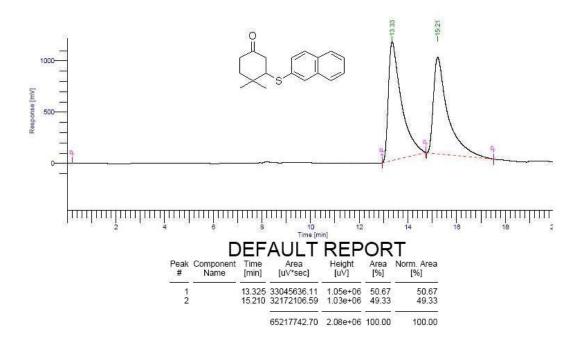


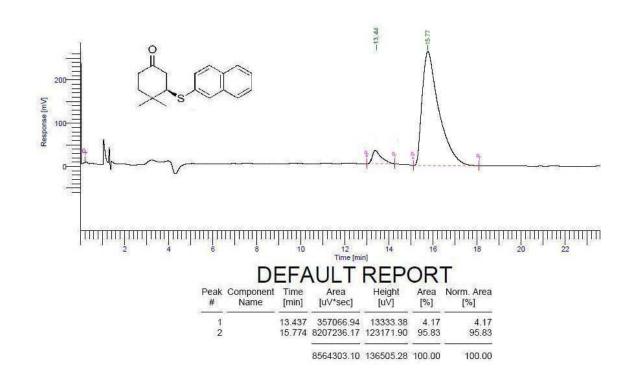

HPLC Graph for racemic **2p**

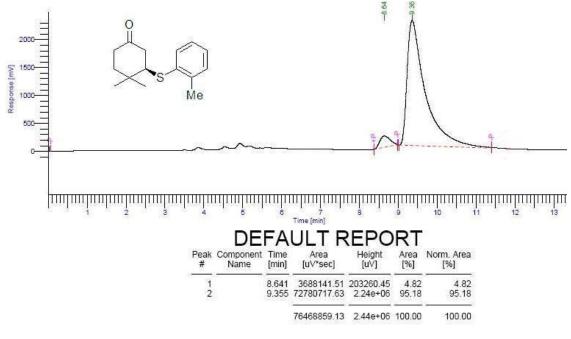

HPLC Graph for enantioenriched **2p**



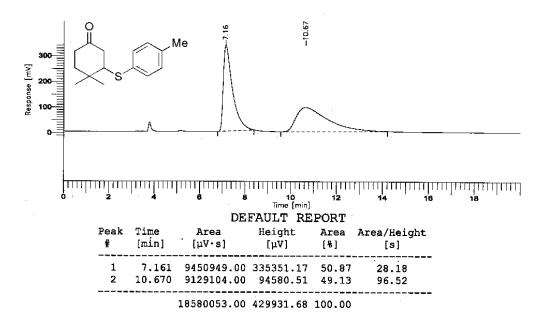


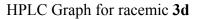

HPLC Graph for enantioenriched 2q

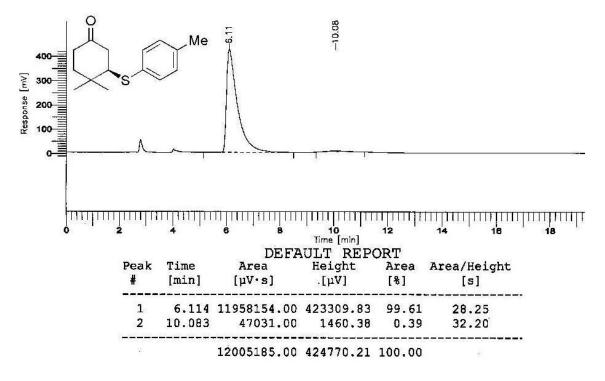


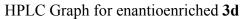

HPLC Graph for enantioenriched 3a

HPLC Graph for racemic 3b

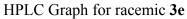

HPLC Graph for enantioenriched 3b

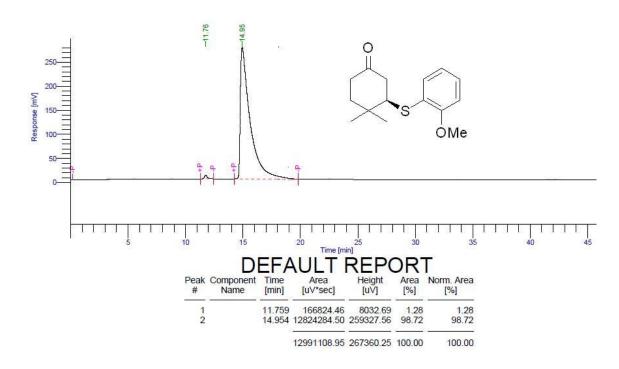


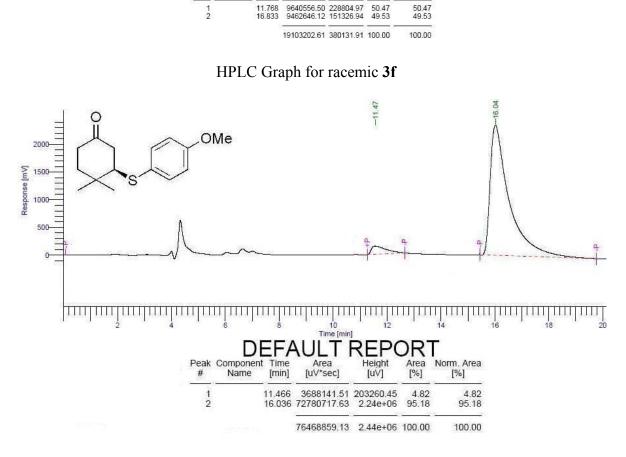

HPLC Graph for racemic 3c


HPLC Graph for enantioenriched 3c


Response [mV 400-Me 200-0-REPORT DEFA LT Peak Component # Name Norm. Area [%] Time Height Area [%] Area [min] [uV*sec] [uV] 49.66 50.34 8.186 22432012.76 718656.76 9.214 22735142.90 626302.42 49.66 50.34 12 45167155.66 1.44e+06 100.00 100.00







HPLC Graph for enantioenriched 3e

0

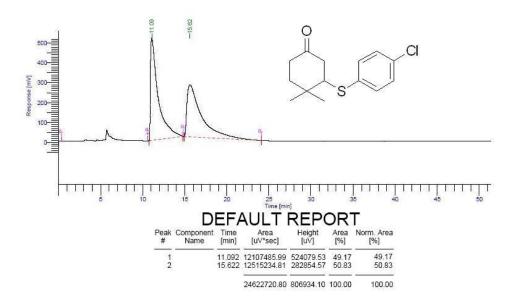
podontuntuntuntuntun

150

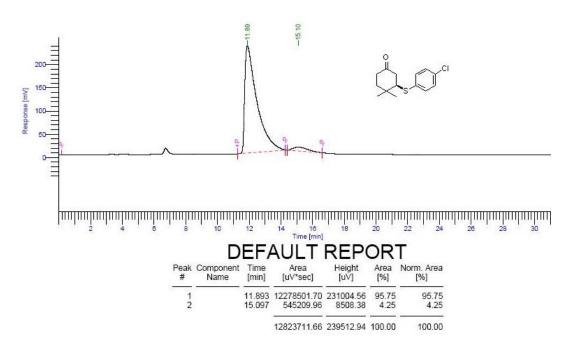
0

Am 100

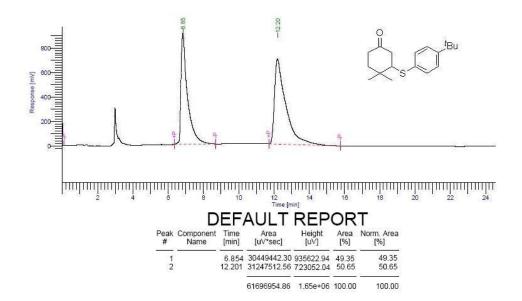
OMe


1.121

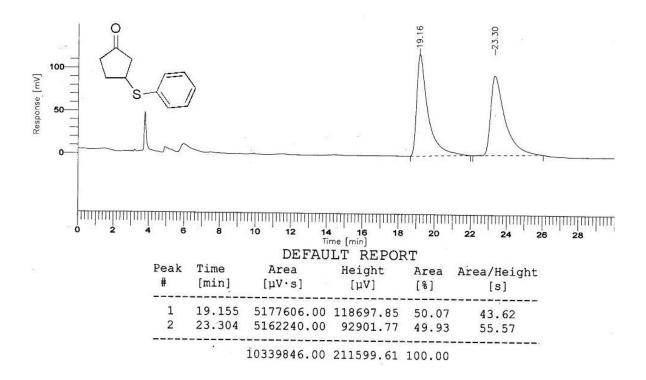
-16.83

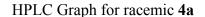

 10
 12
 14
 16
 18
 20
 22

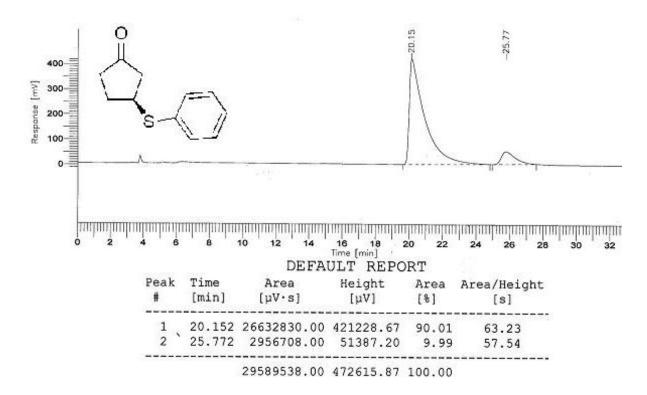
 Time [min]
 10
 12
 14
 16
 18
 20
 22

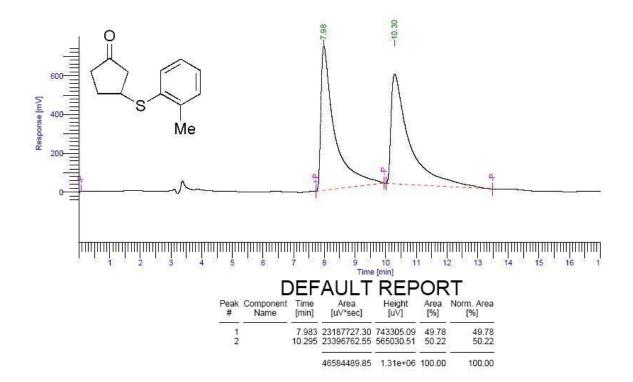

HPLC Graph for enantioenriched 3f

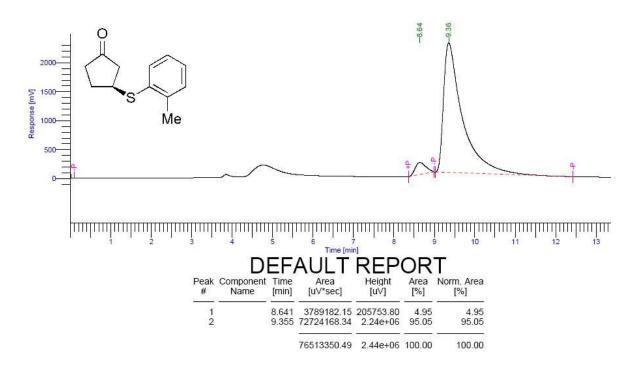
HPLC Graph for racemic 3g

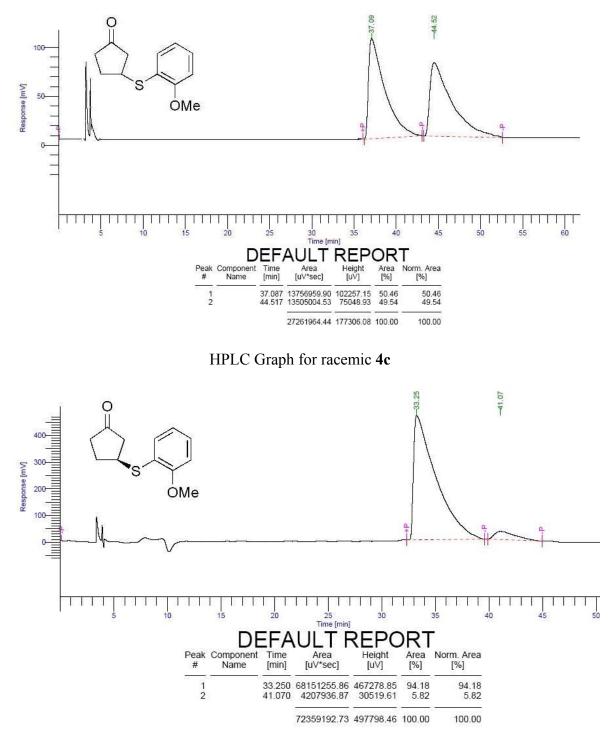

HPLC Graph for enantioenriched 3g

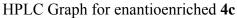


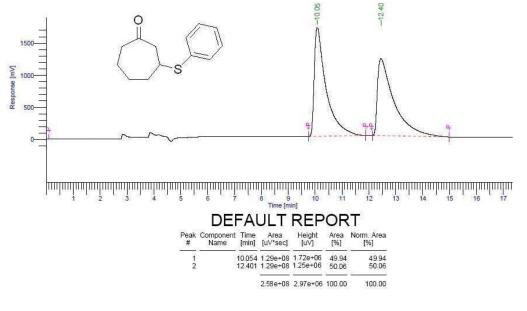

HPLC Graph for racemic 3h

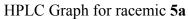

HPLC Graph for enantioenriched 3h

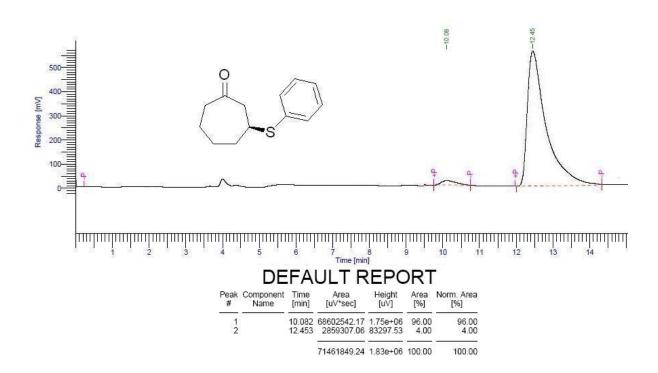


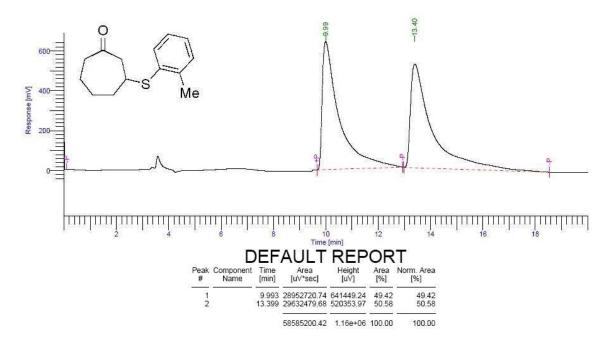

HPLC Graph for enantioenriched 4a

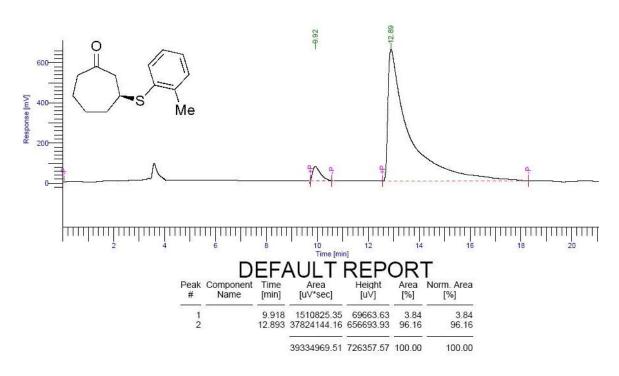


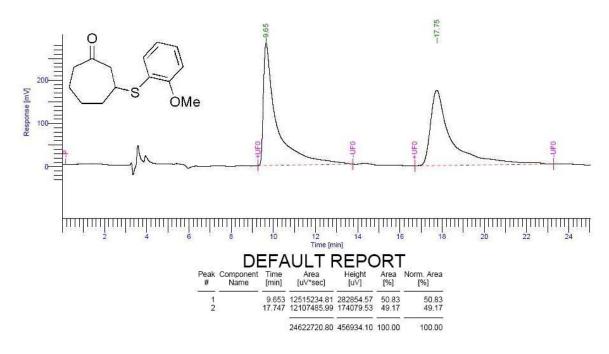

HPLC Graph for racemic 4b

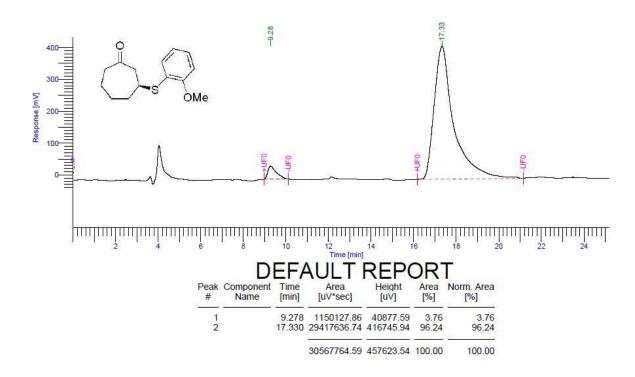


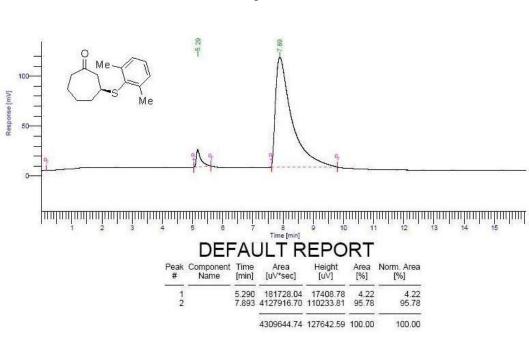

HPLC Graph for enantioenriched 4b



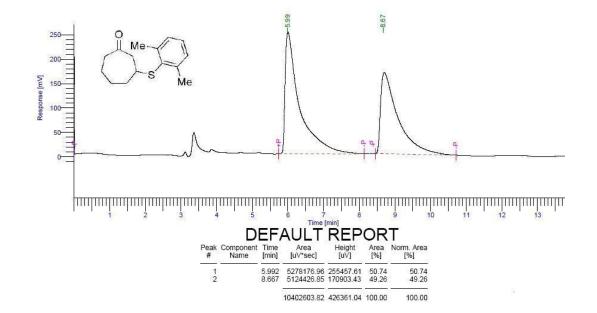


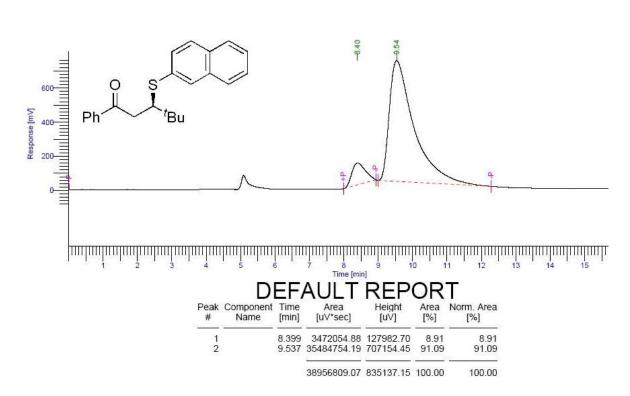

HPLC Graph for enantioenriched 5a


HPLC Graph for racemic 5b

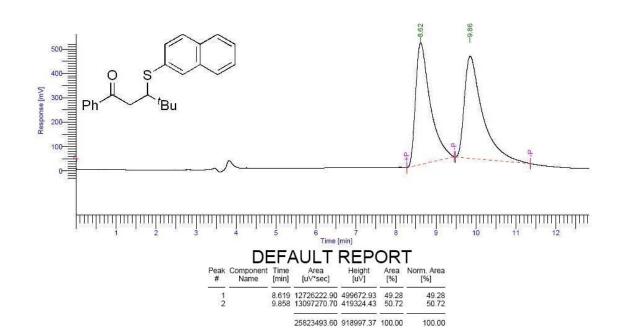

HPLC Graph for enantioenriched 5b

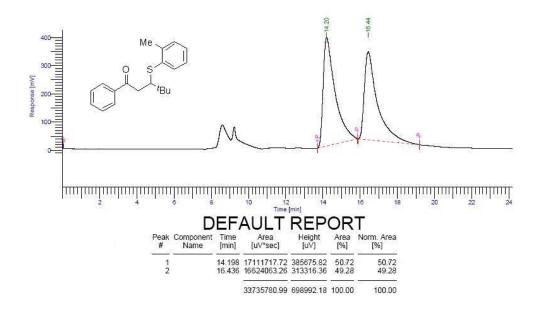
HPLC Graph for racemic 5c

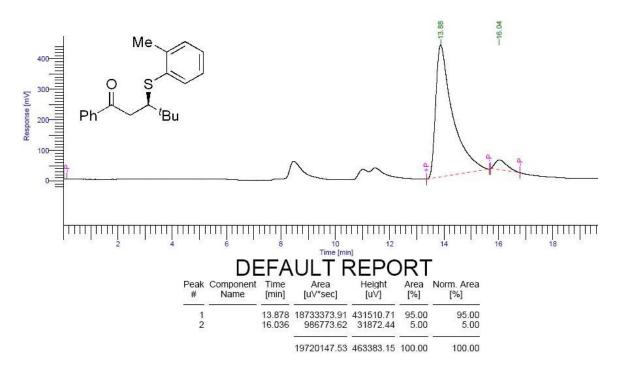



HPLC Graph for enantioenriched 5c

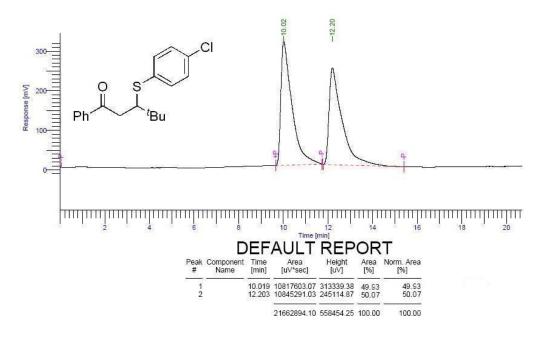
HPLC Graph for enantioenriched 5d

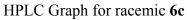

HPLC Graph for racemic 5d

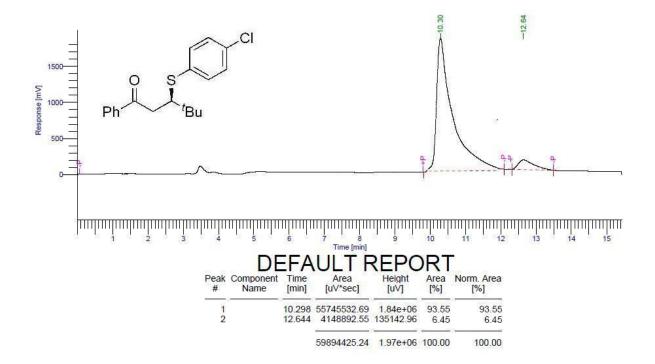


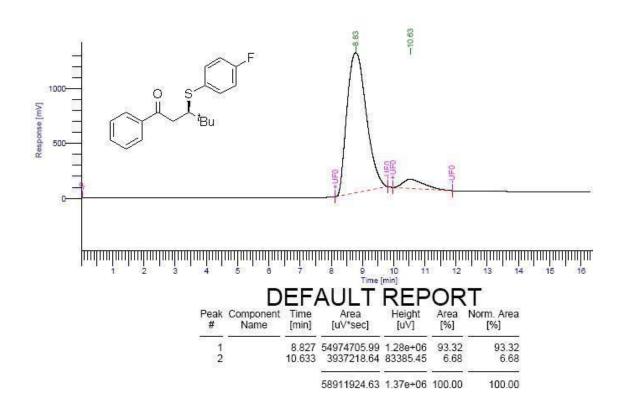

HPLC Graph for enantioenriched 6a

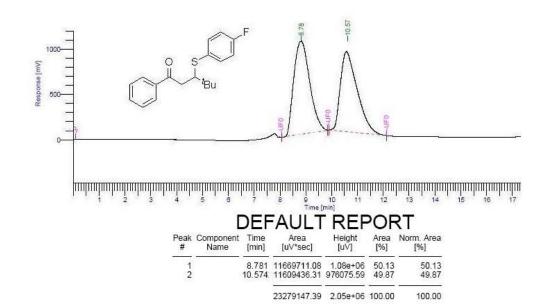
HPLC Graph for racemic 6a

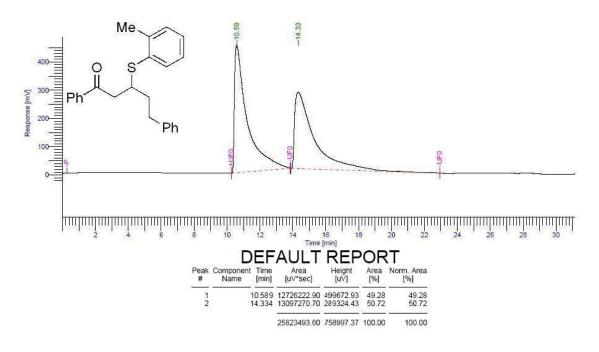




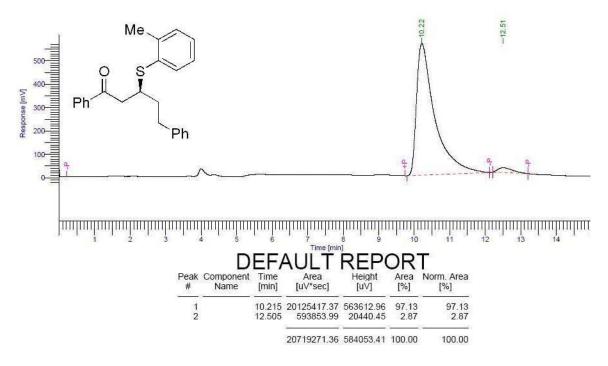

HPLC Graph for racemic 6b


HPLC Graph for enantioenriched 6b

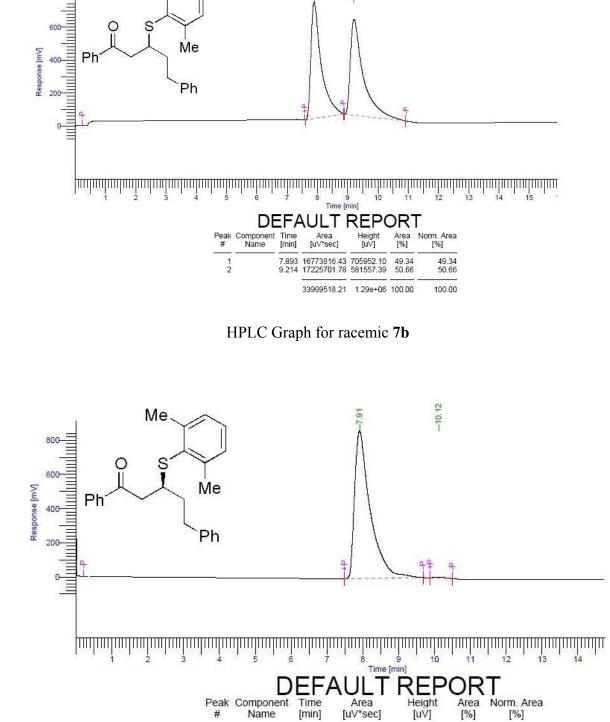




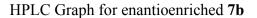
HPLC Graph for enantioenriched 6c



HPLC Graph for racemic 6d



HPLC Graph for racemic 7a



HPLC Graph for enantioenriched 7a

-9.21

Me

10.115

7.911 26214583.30 863774.11

116620.33

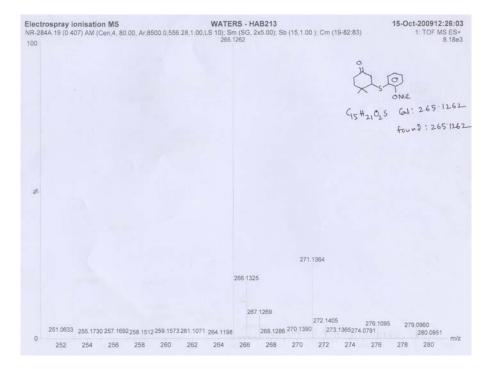
99.56

0.44

5384.01

26331203.63 869158.11 100.00

99.56


100.00

0.44

1 2

Electrospray ionisation MS NR-335A 20 (0.425) AM (Cen.4, 80.00, 100	WATERS - HAB213 Ar,8500.0,556.28.0.60,LS 10); Sm (SG, 2x5.00); Sb (15,1.00); Cm (2 349.1626	20-43:54) 16-Oct-200911:17:27 1: TOF MS ES+ 1.11e3
	PL A	s-2Nap Kion
C23+25 05. 62: 349.1626		349.1626
	-fz.v	m 329.1626
<i>≵</i> 229.0904	422.2540	
237.12	350 1672 39 719 3021	0
279.	423 2509	.3039 .3054
0 77.6954 ^{161.6120} ^{221.1008} 100 200	452.1124 045.0506 053.4493 300 400 500 600 700	781.2634 887.1191 937.1725 800 900 1000

Scan copy of HRMS for compound 6a

Scan copy of HRMS for compound 3e

References

- (1) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967-1969.
- (2) Liu, T, -Y.; Long, J.; Li, B. –J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L. –S.; Chen, Y. –C. Org. Biomol. Chem. 2006, 4, 2097-2099.
- (3) Lubkoll, J.; Wennemers, H. Angew. Chem. Int. Ed. 2007, 46, 6841-6844.
- (4) Luo, J.; Xu, L. -W.; Hay, R. A. S.; Lu. Y. Org. Lett. 2009, 11, 437-440.
- (5) Brunner, H.; Baur, M. A. Eur. J. Org. Chem. 2003, 2854-2862.
- (6) Isleyen, A.; Dogan, Ö. Tetrahedron: Asymmetry 2007, 18, 679-684.
- (7) Lattanzi, A. Adv. Synth. Catal. 2006, 348, 339-346.
- (8) Saito, M.; Nakajima, M.; Hashimoto, S. Tetrahedron 2000, 56, 9589-9594.
- (9) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem. Int. Ed. 2002, 41, 338-340.
- (10) Li, B. -J.; Jaing, L.; Liu, M.; Chen, Y. -C.; Ding, L. -S.; Wu, Y. Synlett 2005, 4, 603-606.