Controlling Factors for $\mathrm{C}-\mathrm{H}$ Functionalization versus Cyclopropanation of Dihydronaphthalenes

Etienne Nadeau ${ }^{\dagger}$, Dominic L. Ventura ${ }^{\ddagger}$, Jonathan A. Brekan ${ }^{\ddagger}$ and Huw M. L. Davies ${ }^{*, \dagger}$
${ }^{\dagger}$ Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
${ }^{*}$ Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY
14260-3000, USA
hmdavie@emory.edu

Supporting Information

General Considerations S2
Experimental Procedures S3
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S26

General Considerations

All reactions were conducted in flame-dried glassware under an inert atmosphere of dry argon. All reagents were used as received from commercial suppliers unless otherwise stated. Acetonitrile, dichloromethane, pentane, tetrahydrofuran and toluene were obtained through drying columns. 2,2-Dimethylbutane (2,2-DMB) was distilled from sodium metal. All solvents used for $\mathrm{C}-\mathrm{H}$ functionalization reactions were degassed by bubbling argon through the solvent for 15 min prior to use. Flash chromatography was performed on silica gel (230-400 mesh) according to the method of W.C. Still. ${ }^{1}$ Thin layer chromatography (TLC) was performed on aluminium backed plates pre-coated with silica $\left(0.25 \mathrm{~mm}, 60 \mathrm{~F}_{254}\right)$ which were developed using standard visualizing agents: UV fluorescence (254 nm), phosphomolybdic acid / Δ or potassium permanganate $/ \Delta$. Melting points were determined using a melting point apparatus and are uncorrected. Optical rotations were measured on a polarimeter at $20^{\circ} \mathrm{C}(589 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Nuclear Magnetic Resonance spectrometer at 600,500 or 400 MHz . Residual protonated solvent served as internal standard $\left(\mathrm{CHCl}_{3} \delta=7.26, \mathrm{C}_{6} \mathrm{H}_{6} \delta=7.15\right)$ and data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=\operatorname{doublet,} \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad), and coupling constant in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 150,125 or 75 MHz . The solvent was used as internal standard $\left(\mathrm{CDCl}_{3} \delta=\right.$ $77.0, \mathrm{C}_{6} \mathrm{D}_{6} \delta=128.0$) and spectra were obtained with complete proton decoupling. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 375 MHz and CFCl_{3} was used as internal standard $(\delta=0)$. Infrared (IR) spectra were determined using a FTIR spectrometer and are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Diastereomeric ratios were determined by values derived from the ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixtures. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) using chiral analytical columns with 2-propanol in hexane as eluant. 2a and $\mathbf{1 2}$ were prepared according to literature procedures. ${ }^{2}$

[^0]
Experimental Procedures

Methyl 2-diazo-3-oxopentanoate: ${ }^{3} \mathrm{Et}_{3} \mathrm{~N}(11.7 \mathrm{~mL}, 84 \mathrm{mmol}, 1.2$ equiv. $)$ was slowly added to a solution at $0{ }^{\circ} \mathrm{C}$ of methyl propionylacetate ($8.8 \mathrm{~mL}, 70 \mathrm{mmol}, 1$ equiv.) and p acetamidobenzenesulfonyl azide (p-ABSA) ($18.5 \mathrm{~g}, 77 \mathrm{mmol}, 1.1$ equiv.) in 190 mL of acetonitrile. The cold bath was removed and the reaction was allowed to reach room temperature. The reaction was stopped after 2 h by filtering the mixture under vacuum. The white solid was washed with ethyl ether and the filtrate was concentrated under reduced pressure. The residue was triturated with hexanes and filtrated. The filtrate was concentrated under reduced pressure to give $8.99 \mathrm{~g}(82 \%)$ of the titled compound as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.83$ $(3 \mathrm{H}, \mathrm{s}), 2.86(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$. The crude material was used in the next step without further purification.

(Z)-Methyl 3-(tert-butyldimethylsilyloxy)-2-diazopent-3-enoate (2b): $\mathrm{Et}_{3} \mathrm{~N}$ ($2.3 \mathrm{~mL}, 16.3$ mmol, 1.4 equiv.) was added to a solution at $0^{\circ} \mathrm{C}$ of methyl 2-diazo-3-oxopentanoate (1.82 g , 11.7 mmol , 1 equiv.) in 20 mL of anhydrous dichloromethane. TBSOTf ($3.1 \mathrm{~mL}, 13.4 \mathrm{mmol}$, 1.15 equiv.) was then added over a 5 minutes period via syringe. The reaction was stopped after 1 h by adding 75 mL of hexanes. The organic layer was washed with 15 mL of sat. NaHCO_{3} and 15 mL of sat. NaCl , dried over MgSO_{4}, filtered and evaporated under reduced pressure to give an orange oil which was purified on silica gel (hexanes then hexanes/ethyl acetate 95:5) to give 2.55 $\mathrm{g}(81 \%)$ of $\mathbf{2 b}(Z / E=88: 12)$ as an orange oil. $R_{f}=0.65$ (hexane:ethyl acetate $80: 20$); IR (neat): v $=2954,2931,2860,2088,1712,1057,838,780 ;{ }^{1} \mathrm{H} \operatorname{NMR}(Z$ isomer $)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $5.26(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 0.98(9 \mathrm{H}, \mathrm{s}), 0.16(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$

[^1]NMR (100 MHz, CDCl_{3}): $\delta=165.2,132.7,107.8,51.6,25.4,18.0,11.6,-4.9$, missing carbon attributed to $\mathrm{C}=\mathrm{N}_{2}$; HRMS (APCI): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$271.1473, found 271.1473.

Double bond geometry was assigned based on NMR studies. Key irradiation is shown bellow.

2b
major isomer

6-Methoxy-1,2-dihydronaphthalene (11): ${ }^{4}{ }^{7}$-Methoxy-1-tetralone $(0.899 \mathrm{~g}, 5.1 \mathrm{mmol}, 1.0$ equiv) was dissolved in 40 mL of methanol and cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. Then sodium borohydride ($0.386 \mathrm{~g}, 10.2 \mathrm{mmol}, 2.0$ equiv) was added in one portion and the reaction was allowed to stir for 1 h . The reaction mixture was quenched with water and extracted with diethyl ether ($5 \times 20 \mathrm{~mL}$). The combined ether extracts were dried with MgSO_{4} and filtered. The solution was concentrated in vacuo to afford the crude alcohol. The latter was dissolved in 50 mL of dry toluene and p-toluenesulfonic acid ($97 \mathrm{mg}, 0.51 \mathrm{mmol}, 0.10$ equiv) was added. The solution was heated to $70{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The solution was then cooled to rt and quenched with saturated NaHCO_{3} and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined ether extracts were dried with MgSO_{4} and filtered. The resulting solution was concentrated in vacuo to give the crude residue. This residue was purified by flash chromatography on silica gel with pentane to give $737 \mathrm{mg}\left(90 \%\right.$ yield) of $\mathbf{1 1}$ as a colorless oil. $R_{f}=0.62$ (pentane); IR (neat): $v=1603,1572$, 1497, 1465, 1431, 1303, 1262, 1214, 1163, 1146, 1042, 878, 856, 816, 780, 694; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.01(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=2.5$ $\mathrm{Hz}), 6.42(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{dt}, J=9.5,4.0 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.73(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, 2.36-2.27 (2H, m); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.2,134.8,129.0,128.0,127.7,127.3$, 111.6, 111.5, 54.9, 26.4, 23.4; HRMS (EI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}\left(\mathrm{M}^{+}\right) 160.0883$, found 160.0878 .

[^2]

Methyl 4-(4-methoxyphenyl)-4-oxobutanoate: ${ }^{5}$ 3-(4-Methoxybenzoyl)propionic acid (25.0 g , $120 \mathrm{mmol}, 1.0$ equiv) was dissolved in 250 mL of methanol along with acetyl chloride (10.2 mL , $144 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was then allowed to stir overnight at rt . The reaction mixture was quenched with saturated NaHCO_{3} solution and then extracted with diethyl ether (4 x 20 mL). The combined organic extracts were washed with sat. NaCl and dried with MgSO_{4}. The resulting solution was filtered and concentrated in vacuo to give 22.70 g (85%) of the titled compound as a colorless oil. $R_{f}=0.30$ (pentane:ether $80: 20$); IR (neat): $v=1737,1678,1601$, 1252, 1221, 1165, 1025, 834; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$), 6.94 $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.28(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.75(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.5,173.5,163.6,130.3,129.7,113.7,55.5,51.8,33.0,28.1$; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$222.0887, found 222.0894.

Methyl 4-(4-methoxyphenyl)pentanoate: Methyl triphenylphosphonium bromide (9.89 g, 27.7 $\mathrm{mmol}, 1.2$ equiv) was dissolved in 60 mL of anhydrous THF and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then potassium t-butoxide ($2.85 \mathrm{~g}, 25.4 \mathrm{mmol}, 1.1$ equiv) was added in one portion and the reaction was stirred for 0.5 h . Methyl 4-(4-methoxyphenyl)-4-oxobutanoate ($5.13 \mathrm{~g}, 23.1$ mmol, 1 equiv) was then added. After stirring for 1 h , the reaction mixture was quenched with 50 mL of dist. water. The aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with 20 mL of dist. water and 15 mL of sat. NaCl , dried with MgSO_{4} and filtered. The solution was concentrated in vacuo, then triturated with hexanes. The mixture was filtered again and concentrated in vacuo to give the crude olefin. The latter was taken up in 100 mL of EtOAc and added to a 500 mL Parr hydrogenation bottle along with 5% $\mathrm{Pd} / \mathrm{C}(4.9 \mathrm{~g}, 246 \mathrm{mg}$ of $\mathrm{Pd}, 2.31 \mathrm{mmol})$. The bottle was purged with hydrogen gas at 40 psi and

[^3]allowed to shake for 6 h . The mixture was filtered through a plug of silica gel, then concentrated in vacuo to give $3.79 \mathrm{~g}(74 \%)$ of the titled compound as a colorless oil. IR (neat): $v=2958,1737$, $1510,1242,1175,1165,1036,827 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09(2 \mathrm{H}, \mathrm{d}, J=8,4 \mathrm{~Hz})$, $6.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.62(3 \mathrm{H}, \mathrm{s}), 2.62-2.71(1 \mathrm{H}, \mathrm{m}), 2.12-2.26(2 \mathrm{H}, \mathrm{m}), 1.78-$ $1.98(2 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=174.1,158.0,138.3$, 127.8, 113.8, 55.2, 51.4, 38.6, 33.4, 32.3, 22.3; HRMS (EI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$222.1250, found 222.1255.

4-(4-Methoxyphenyl)pentanoic acid: ${ }^{6}$ Methyl 4-(4-methoxyphenyl)pentanoate ($14.44 \mathrm{~g}, 65.0$ mmol, 1 equiv) was dissolved in 200 mL of $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ 2:1:1. Then lithium hydroxide monohydrate ($5.0 \mathrm{~g}, 122 \mathrm{mmol}, 1.8$ equiv) was added and the reaction mixture was heated to 50 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to rt and quenched with $10 \% \mathrm{HCl}$ solution until pH of 2 was reached. The mixture was extracted with diethyl ether ($4 \times 25 \mathrm{~mL}$) and the combined organic extracts were dried with MgSO_{4}. The solution was filtered and concentrated in vacuo to give 13.37 g (98%) of the titled compound as a yellow oil. $R_{f}=0.27$ (pentane:ether 80:20); IR (neat): $v=2962,2923,1702,1510,1242,1175,1032,834 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.09(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.64-2.76(1 \mathrm{H}, \mathrm{m}), 2.18-2.25$ $(2 \mathrm{H}, \mathrm{m}), 1.78-1.98(2 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.0$, 158.0, 138.1, 127.9, 113.9, 55.2, 38.5, 33.1, 32.1, 22.3; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 208.1094, found 208.1096.

7-Methoxy-4-methyltetralone: ${ }^{6}$ A flask containing $\sim 20 \mathrm{~g}$ of polyphosphoric acid was heated to $100{ }^{\circ} \mathrm{C}$. Then 4-(4-methoxyphenyl)pentanoic acid ($5.01 \mathrm{~g}, 24.0 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was allowed to stir for 2 h . The reaction mixture was quenched with ice-

[^4]water (100 mL) and allowed to stir for 1 h . The mixture was extracted with DCM (3 x 30 mL) and the combined DCM extracts were washed with sat. NaCl and dried with MgSO_{4}. The mixture was filtered and concentrated in vacuo to give $3.60 \mathrm{~g}(79 \%)$ of the titled compound as a yellow oil. IR (neat): $v=2961,2937,1681,1607,1492,1283,1234,1042,882,823 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.8$ $\mathrm{Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 2.98-3.08(1 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \operatorname{ddd}, J=17.4,8.4,4.6 \mathrm{~Hz}), 2.57(1 \mathrm{H}$, ddd, $J=$ $17.4,9.0,4.8 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=198.3,158.1,141.6,132.6,128.6,121.8,109.1,55.4,36.3,32.1,30.8,20.7$; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 190.0988$, found 190.0996.

6-methoxy-1-methyl-1,2-dihydronaphthalene (13): 7-Methoxy-4-methyltetralone (2.76 g, 14.5 mmol, 1 equiv) was dissolved in 100 mL of methanol and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. Then sodium borohydride ($1.10 \mathrm{~g}, 29.0 \mathrm{mmol}, 2$ equiv) was added portionwise over 20 min (4 equal portions). The reaction was allowed to stir for 1 h and was then quenched slowly with water and extracted with diethyl ether (5 x 20 mL). The combined organic extracts were dried with MgSO_{4} and filtered. The resulting solution was concentrated under reduced pressure. The crude alcohol was dissolved in 70 mL of toluene along with p-toluenesulfonic acid ($0.28 \mathrm{~g}, 1.5$ $\mathrm{mmol}, 0.10$ equiv). The reaction mixture was heated to $70^{\circ} \mathrm{C}$ in an oil bath for 2 h , then cooled to rt and quenched with saturated NaHCO_{3} solution. The mixture was extracted with diethyl ether (5 x 30 mL). The combined organic extracts were dried with MgSO_{4} and filtered. The solution was concentrated in vacuo and purified by flash chromatography using pentane to give 1.72 g (68%) of the titled compound as a colorless oil. $R_{f}=0.27$ (100% pentane); IR (neat): $v=3031,2951$, $2920,2829,1604,1570,1493,1259,1161,1039,701 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.42(1 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}), 5.99(1 \mathrm{H}, \mathrm{dt}, J=9.2,4.6 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.85-2.95(1 \mathrm{H}, \mathrm{m}), 2.42-2.50(1 \mathrm{H}, \mathrm{m}), 2.07-$ $2.15(1 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.2,134.4,132.7$, 128.0, 127.5, 126.8, 112.1, 111.8, 55.3, 31.6, 30.9, 20.3; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 174.1039, found 174.1045.

Procedures for reactions with (E)-methyl 2-diazopent-3-enoate (2a) and 1,2dihydronaphthalenes.

(R, E)-methyl 4-((S)-1,4-dihydronaphthalen-1-yl)pent-2-enoate (14a) and (1R,1aS,7bS)methyl 1-((E)-prop-1-enyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[a]naphthalene-1carboxylate (15a):
(Table 1, entry 1): 2a ($210 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv.) in 4.5 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene 10 ($65 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ ($19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02$ equiv.) in 5.5 mL of $2,2-\mathrm{DMB}$. After 0.5 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 98:2) to afford 14a and 15a ($59 \mathrm{mg}, 49 \%$ combined yield). Analytically pure products were obtained by purification on silica gel impregnated with $5 \% \mathrm{AgNO}_{3}{ }^{7}$ (hexane:ether).
(Table 1, entry 2): 2a ($140 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) in 4.5 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene $10\left(65 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\right.$ equiv.) and $\mathrm{Rh}_{2}(S-$ $\mathrm{PTAD}_{4}(16 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02$ equiv.) in 5.5 mL of 2,2-DMB. After 3 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 98:2) to afford 14a and 15a ($81 \mathrm{mg}, 67 \%$ combined yield). Analytically pure products were obtained by purification on silica gel impregnated with $5 \% \mathrm{AgNO}_{3}$ (hexane:ether).

14a: Colorless oil; $R_{f}=0.57$ (hexane:ethyl acetate 80:20); IR (neat): $v=3028,2966,2872,1720$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15-7.21(3 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=$ $15.9,6.9 \mathrm{~Hz}), 6.07-6.10(1 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 5.74-5.78(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.62$

[^5]($1 \mathrm{H}, \mathrm{ddd}, J=8.0,3.9,3.9 \mathrm{~Hz}$), $3.27-3.40(2 \mathrm{H}, \mathrm{m}), 2.77-2.84(1 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2,152.7,136.4,135.4,128.2,128.0,127.4,126.1(2 \mathrm{C})$, 125.4, 120.3, 51.5, 44.1, 43.8, 30.2, 13.2; HRMS (APCI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$243.1380, found 243.1379; $[\alpha]_{\mathrm{D}}{ }^{20}-172.7$ (c 0.7, CHCl_{3}) for 99% ee; HPLC analysis: 99% ee with $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}$ and -84% ee with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ (Chiralcel OD-H, $0.5 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}$, $\left.\lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=8.97 \mathrm{~min}, 10.63 \mathrm{~min}\right)$.

15a: White solid; $\mathrm{mp}=33-34^{\circ} \mathrm{C} ; R_{f}=0.57$ (hexane:ethyl acetate $80: 20$); IR (neat): $v=3021$, 2926, 1713, 1232; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.32(1 \mathrm{H}, \mathrm{m}), 7.10-7.18(2 \mathrm{H}, \mathrm{m}), 6.98-$ $7.02(1 \mathrm{H}, \mathrm{m}), 5.21-5.33(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{ddd}, J=16.6$, $7.0,4.1 \mathrm{~Hz}), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=16.6,9.8,7.3 \mathrm{~Hz}), 2.23(1 \mathrm{H}, \mathrm{ddd}, J=9.1,5.7,2.9 \mathrm{~Hz}), 1.92-2.08$ $(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3,135.7,133.1,132.2$, 130.2, 128.3, 126.3, 125.9, 121.7, 52.3, 35.6, 29.9, 27.8, 26.6, 18.4, 17.9; HRMS (APCI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right) 243.1380$, found 243.1380; $[\alpha]_{\mathrm{D}}{ }^{20}+3.2\left(\mathrm{c} 2.5, \mathrm{CHCl}_{3}\right)$ for -74% ee; HPLC analysis: 48% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and -74% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ ((S,S)-Whelk-O $1,0.5 \%$ $i-\mathrm{PrOH}$ in hexane, $\left.1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=13.24 \mathrm{~min}, 14.47 \mathrm{~min}\right)$.
(1R,1aS,3R,7bS)-Methyl 6-methoxy-3-(($R, E)$-1-methoxy-1-oxopent-3-en-2-yl)-1-((E)-prop-1-enyl)-1a,2,3,7b-tetrahydro- $1 H$-cyclopropa $[a]$ naphthalene-1-carboxylate (16):
(Scheme 3): 2a ($315 \mathrm{mg}, 2.25 \mathrm{mmol}, 3$ equiv.) in 7 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene $11(120 \mathrm{mg}, 0.75 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(R / S \text {-DOSP })_{4}(28 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.02$ equiv.) in 8 mL of $2,2-\mathrm{DMB}$. After 1 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 98:2-80:20). 16 was further purified by recrystallization from hexane to afford $76 \mathrm{mg}(26 \%)$ of 16.

16: White solid; $\mathrm{mp}=108-109^{\circ} \mathrm{C} ; R_{f}=0.36$ (hexane:ethyl acetate 80:20); IR (neat): $v=2949$, $1716,1193,1158 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.87(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=2.6$ $\mathrm{Hz}), 6.61(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{ddq}, J=15.2,9.5$, $1.6 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{dq}, J=15.9,6.6 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{dq}, J=15.9,1.7 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}$, s), $3.43(3 \mathrm{H} \mathrm{s}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}), 2.77-2.82(1 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$, $2.22(1 \mathrm{H}, \mathrm{ddd}, J=14.5,9.1,2.2 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{ddd}, J=9.1,9.1,6.4 \mathrm{~Hz}), 1.73(3 \mathrm{H}, \mathrm{dd}, J=6.4$, $1.6 \mathrm{~Hz}), 1.56-1.62(1 \mathrm{H}, \mathrm{m}), 1.55(3 \mathrm{H}, \mathrm{dd}, J=6.6,1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $174.5,174.1,158.4,133.7,132.8,131.8,129.7,129.2,127.8,121.9,115.5,112.6,55.8,55.1$, $52.3,51.3,40.6,35.8,28.6,23.2,21.6,18.8,17.9$; HRMS (APCI): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$ 385.2010, found 385.2012.

X-Ray crystal structure of $\mathbf{1 6}$

(R, E)-Methyl 4-(($1 S, 4 R$)-4-methyl-1,4-dihydronaphthalen-1-yl)pent-2-enoate (20a) and (1R,1aS,3S,7bS)-methyl 3-methyl-1-((E)-prop-1-enyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa-[a]naphthalene-1-carboxylate (21a):
(Table 3, entry 1): 2a ($210 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv.) in 4.5 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene 12 ($72 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02$ equiv.) in 5.5 mL of $2,2-\mathrm{DMB}$. After 2 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 98:2) to afford 20a and 21a ($92 \mathrm{mg}, 72 \%$ combined yield). Analytically pure products were obtained by purification on silica gel impregnated with $5 \% \mathrm{AgNO}_{3}$ (hexane:ether).
(Table 3, entry 2): 2a ($140 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) in 4.5 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene $12\left(72 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\right.$ equiv.) and $\mathrm{Rh}_{2}(S-$ $\mathrm{PTAD})_{4}(16 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02$ equiv.) in 5.5 mL of 2,2-DMB. After 15 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 98:2) to afford 20a and 21a ($54 \mathrm{mg}, 42 \%$ combined yield). Analytically pure products were obtained by purification on silica gel impregnated with $5 \% \mathrm{AgNO}_{3}$ (hexane:ether).

20a: Colorless oil; $R_{f}=0.63$ (hexane:ethyl acetate $80: 20$); IR (neat): $v=3024,2966,2872,1721$, 1271,$1173 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.31(1 \mathrm{H}, \mathrm{m}), 7.19-7.24(3 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}$, dd, $J=15.8,6.5 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{ddd}, J=10.2,2.6,1.3 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{dd}, J=15.8,1.6 \mathrm{~Hz}), 5.67$ $(1 \mathrm{H}, \mathrm{ddd}, 10.2,4.4,2.5 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.61-3.65(1 \mathrm{H}, \mathrm{m}), 3.36-3.44(1 \mathrm{H}, \mathrm{m}), 2.81-2.89(1 \mathrm{H}$, $\mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 0.78(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.4$, $153.2,140.8,136.1,134.4,127.7,127.2,126.5,126.3,123.7,120.5,51.7,43.9,43.5,32.8,23.1$, 13.0; HRMS (APCI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$257.1536, found 257.1540; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-189.2$ (c $0.3, \mathrm{CHCl}_{3}$) for 91% ee; HPLC analysis: 91% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and -40% ee with $\mathrm{Rh}_{2}(S$ -
PTAD_{4} (Chiralcel OD-H, $0.5 \% i$-PrOH in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=7.57 \mathrm{~min}, 8.37$ min).

21a: Major/minor $=80: 20$; colorless oil; $R_{f}=0.63$ (hexane:ethyl acetate $80: 20$); IR (neat): $v=$ 3021, 2954, 1715, 1233; major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.29(1 \mathrm{H}, \mathrm{m}), 7.09-7.19$ $(3 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{dq}, J=15.9,6.5 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{dq}, J=15.9,1.7 \mathrm{~Hz}), 3.71(3 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}$, d, $J=9.5 \mathrm{~Hz}), 2.58-2.67(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{ddd}, J=9.5,7.3,4.4 \mathrm{~Hz}), 1.95(1 \mathrm{H}, \mathrm{ddd}, J=14.4$, $5.8,4.4 \mathrm{~Hz}), 1.81(1 \mathrm{H}, \mathrm{ddd}, J=14.4,7.3,6.4 \mathrm{~Hz}), 1.50(3 \mathrm{H}, \mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,142.3,132.8,132.1,130.6,126.6,126.0,122.1$, 52.3, 35.6, 31.6, 29.4, 26.6, 25.3, 22.2, 18.6; HRMS (APCI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$ 257.1536, found 257.1539; HPLC analysis: major diastereomer 74% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and -34% ee with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}\left((\mathrm{~S}, \mathrm{~S})-\right.$ Whelk-O $1,100 \%$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=$ $13.55 \mathrm{~min}, 14.93 \mathrm{~min}$), minor diastereomer 50% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and -78% ee with $\mathrm{Rh}_{2}(S$ PTAD) 4_{4} (Chiralcel OD-H, $0.5 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=5.84 \mathrm{~min}, 6.58$ min).

Relative stereochemistry was assigned based on literature precedents ${ }^{2}$ and confirmed by NMR studies. Key irradiations are shown bellow.

(R, E)-methyl \quad-(($1 S, 4 R)$-7-methoxy-4-methyl-1,4-dihydronaphthalen-1-yl)pent-2-enoate (22a) and (1R,1aS,3S,7bS)-methyl 6-methoxy-3-methyl-1-((E)-prop-1-enyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[a]naphthalene-1-carboxylate (23a):

(Table 4, entry 1): 2a ($4.80 \mathrm{~g}, 34.4 \mathrm{mmol}, 2$ equiv.) in 20 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene 13 ($3.00 \mathrm{~g}, 17.2 \mathrm{mmol}, 1$ equiv.) and
$\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ ($650 \mathrm{mg}, 0.344 \mathrm{mmol}, 0.02$ equiv.) in 60 mL of 2,2-DMB. After 0.5 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ethyl acetate 90:10) to afford 22a, 23a and 24a (4.14 g, 84\% combined yield).
(Table 4, entry 2): 2a ($168 \mathrm{mg}, 1.2 \mathrm{mmol}$, 2 equiv.) in 5 mL of 2,2-DMB was added by syringe pump over 1 h to a solution of dihydronaphthalene $\mathbf{1 3}\left(105 \mathrm{mg}, 0.6 \mathrm{mmol}, 1\right.$ equiv.) and $\mathrm{Rh}_{2}(S$ PTAD $)_{4}$ ($19 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.02$ equiv.) in 7 mL of 2,2-DMB. After 1 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (hexane:ether 95:5-80:20) to afford 22a, 23a and epi-24a ($129 \mathrm{mg}, 75 \%$ combined yield). Analytically pure products were obtained by purification on silica gel impregnated with 5% AgNO_{3} (hexane:ether).

22a: Colorless oil; $R_{f}=0.53$ (hexane:ethyl acetate 80:20); IR (neat): $v=3024,2963,2871,2836$, $1720 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=15.7,6.5 \mathrm{~Hz})$, $6.80(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \operatorname{ddd}, J=10.2,2.7,1.1 \mathrm{~Hz})$, $5.85(1 \mathrm{H}, \mathrm{dd}, J=15.7,1.7 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \mathrm{ddd}, J=10.2,4.1,2.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s})$, $3.56-3.62(1 \mathrm{H}, \mathrm{m}), 3.30-3.38(1 \mathrm{H}, \mathrm{m}), 2.80-2.88(1 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 0.78(3 \mathrm{H}, \mathrm{d}$, $J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,158.0,153.1,137.4,134.7,133.2,128.2$, 123.3, 120.5, 112.6, 112.5, 55.4, 51.7, 44.3, 43.6, 32.2, 23.2, 12.9; HRMS (APCI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$287.1647, found 287.1643; HPLC analysis: -36% with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}((\mathrm{~S}, \mathrm{~S})-$ Whelk-O $1,0.5 \% i-\mathrm{PrOH}$ in hexane, $\left.1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=22.52 \mathrm{~min}, 26.51 \mathrm{~min}\right)$.

23a: Major/minor $=90: 10$; colorless oil; $R_{f}=0.53$ (hexane:ethyl acetate 80:20); IR (neat): $v=$ 3021, 2952, 1713, 1230; major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.03(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.83$ $(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.9 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{dq}, J=15.7,6.5 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{dq}$, 15.7, 1.6 Hz), $3.79(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 2.52-2.61(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}$,
ddd, $J=9.2,7.0,4.3 \mathrm{~Hz}), 1.94(1 \mathrm{H}$, ddd, $J=14.4,6.0,4.3 \mathrm{~Hz}), 1.78(1 \mathrm{H}, \operatorname{ddd}, J=14.4,7.0,7.0$ $\mathrm{Hz}), 1.51(3 \mathrm{H}, \mathrm{dd}, J=6.7,1.6 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $174.5,157.7,134.4,133.3,132.7,127.5,122.0,115.1,112.8,55.2,52.3,35.6,30.7,29.8,26.9$, 25.6, 22.3, 18.6; HRMS (APCI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$287.1642, found 287.1643.

(S)-4-((1R,4S)-7-Methoxy-4-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentan-1-ol: ${ }^{2}$ The purified mixture of 22a, 23a and 24a (4.14 g , from the $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$-catalyzed reaction, Table 4, entry 1) was taken up in 100 mL of ethyl acetate and transferred to a Parr hydrogenation bottle containing $5 \% \mathrm{Pd} / \mathrm{C}(1.80 \mathrm{~g}, 90 \mathrm{mg}$ of $\mathrm{Pd}, 0.85 \mathrm{mmol})$. The vessel was purged with H_{2}. The reaction was shaken under H_{2} atmosphere (35 psi) for 12 h at rt , then filtrated on a short plug of silica gel. The plug was washed with ethyl acetate and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (hexane:ethyl acetate 95:5) to yield $1.38 \mathrm{~g}(28 \%$ over 2 steps from 13$)$ of the $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement product. The latter ($200 \mathrm{mg}, 0.7 \mathrm{mmol}$) was dissolved in 5 mL of THF and cooled to $0^{\circ} \mathrm{C}$. The reaction vessel was purged with argon and $\mathrm{LiAlH}_{4}(50 \mathrm{mg}, 1.4 \mathrm{mmol})$ was added portionwise to the stirring solution against positive argon pressure. The reaction was stirred for 0.5 h , quenched slowly with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, followed by $10 \% \mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was extracted with ether (3×10 mL). The organic extracts were combined and dried with MgSO_{4}, filtered and evaporated under reduced pressure. The crude product was purified on silica gel (hexane:ethyl acetate $60: 40$) to give $160 \mathrm{mg}(87 \%)$ of the titled compound. Colorless oil; IR (neat): $v=2927,1607,1491,1279$, 1237, 1051, 804; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=2.5$ $\mathrm{Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.69(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 2.86-2.92(1 \mathrm{H}, \mathrm{m})$, $2.65-2.74(1 \mathrm{H}, \mathrm{m}), 2.08-2.16(1 \mathrm{H}, \mathrm{m}), 1.89-1.95(1 \mathrm{H}, \mathrm{m}), 1.78-1.84(1 \mathrm{H}, \mathrm{m}), 1.60-1.73(2 \mathrm{H}$, m), 1.44-1.58(3H, m), 1.28-1.41(2H, m), 1.26(3H, d, J=6.5 Hz), $0.66(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.5,141.2,135.9,127.5,112.9,110.8,63.3,55.2,42.1,37.3$, 32.5, 31.8, 31.2(2C), 21.9, 21.6, 14.5; HRMS (EI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 262.1927$, found
262.1937; $[\alpha]_{\mathrm{D}}{ }^{20}+76.7\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right.$); HPLC analysis: 81% ee (Chiralcel OJ, $0.5 \% i$-PrOH in hexane, $\left.0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=29.9 \mathrm{~min}, 47.9 \mathrm{~min}\right)$.
24a

27

Methyl 2-(6-methoxy-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoate (27):
Typical experimental procedure for hydrogenation of 24a epimers: In a Parr hydrogenation bottle was added epi-24a (Table 4, entry 2) ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), 30 mL of ethyl acetate and 5% $\mathrm{Pd} / \mathrm{C}(32 \mathrm{mg}, 1.6 \mathrm{mg}$ of $\mathrm{Pd}, 0.015 \mathrm{mmol})$. The vessel is purged with H_{2}. The reaction mixture was shaken under H_{2} atmosphere (40 psi) for 18 h , then filtrated on a short plug of silica gel. The plug was washed with ethyl acetate and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (hexane:ether 98:2-96:4) to yield 18 mg (62\%) of the titled compound.
epi-27 (Table 4, entry 2): 62% yield (18 mg); colorless oil; $R_{f}=0.58$ (hexane:ethyl acetate 80:20); IR (neat): $v=2956,2933,2871,1730 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 2.77$ $(1 \mathrm{H}, \mathrm{dd}, J=12.1,2.9 \mathrm{~Hz}), 2.62-2.74(2 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{ddd}, J=13.5,10.8,3.0 \mathrm{~Hz}), 1.88-1.96$ $(1 \mathrm{H}, \mathrm{m}), 1.62-1.77(2 \mathrm{H}, \mathrm{m}), 1.54-1.61(1 \mathrm{H}, \mathrm{m}), 1.43-1.52(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.14-1.30(2 \mathrm{H}$, m), $0.90(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.9,157.3,138.8,135.2,129.1$, $113.3,111.7,55.6,55.3,50.9,39.1,33.2,30.8,30.1,28.4,22.0,19.6,14.3$; HRMS (APCI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$291.1955, found 291.1956.

27 (Table 4, entry 1): 5\% yield (250 mg) (yield over 2 steps from 13); colorless oil; $R_{f}=0.57$ (hexane:ethyl acetate 80:20); IR (neat): $v=2957,2871,2837,1732,1501 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.13(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$, $3.77(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=11.8,2.3 \mathrm{~Hz}), 2.65-2.76(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{ddd}, J=$ $13.6,10.9,2.9 \mathrm{~Hz}), 1.80-1.87(1 \mathrm{H}, \mathrm{m}), 1.64-1.74(2 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{ddd}, J=13.6,6.6,2.6 \mathrm{~Hz})$, $1.28(3 \mathrm{H}, \mathrm{s}), 1.15-1.24(1 \mathrm{H}, \mathrm{m}), 1.04-1.14(1 \mathrm{H}, \mathrm{m}), 0.93-1.02(1 \mathrm{H}, \mathrm{m}), 0.79(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.7,157.1,138.9,135.1,127.3,113.3,112.3,55.7,55.0$, 51.0, 39.2, 32.3, 30.9, 30.1, 29.3, 21.6, 19.5, 13.8; HRMS (EI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 290.1876, found 290.1880; $[\alpha]_{D}{ }^{20}-14.8$ (c 3.09, CHCl_{3}); HPLC analysis: 98% ee (Chiralcel OJ, $0.4 \% i-\mathrm{PrOH}$ in hexane, $\left.0.4 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=15.10 \mathrm{~min}, 17.12 \mathrm{~min}\right)$.

Procedures for reactions with (Z)-methyl 3-(tert-butyldimethylsilyloxy)-2-diazopent-3enoate (2b) and 1,2-dihydronaphthalenes.

(S,Z)-Methyl 3-(tert-butyldimethylsilyloxy)-4-((S)-1,4-dihydronaphthalen-1-yl)pent-2-enoate (14b) and (1R,1aS,7bS)-methyl 1-((Z)-1-(tert-butyldimethylsilyloxy)prop-1-enyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[a]naphthalene-1-carboxylate (15b):
(Table 1, entry 3): $\mathbf{2 b}$ ($270 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 5 mL of 2,2-DMB was added by syringe pump over 2 h to a solution of dihydronaphthalene $\mathbf{1 0}$ ($390 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}$ ($19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB. After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 99.5:0.5) to afford 14b and 15b ($272 \mathrm{mg}, 73 \%$ combined yield).
(Table 1, entry 4): $\mathbf{2 b}$ ($270 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 5 mL of 2,2-DMB:toluene (5:1) was added by syringe pump over 2 h to a solution of dihydronaphthalene $\mathbf{1 0}$ ($390 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(16 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB:toluene ($5: 1$). After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 99.5:0.5) to afford 14b and $\mathbf{1 5 b}$ ($291 \mathrm{mg}, 78 \%$ combined yield).

14b: Colorless oil; $R_{f}=0.56$ (pentane:ether 80:20); IR (neat): $v=1723,1626,1201,1161,1080$, $839,825,782,747 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.31(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.5$
$\mathrm{Hz}), 7.04(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.80(2 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{s}), 4.12-4.18(1 \mathrm{H}$, m), $3.44(3 \mathrm{H}, \mathrm{s}), 2.98-3.13(2 \mathrm{H}, \mathrm{m}), 2.71-2.73(1 \mathrm{H}, \mathrm{m}), 1.08(9 \mathrm{H}, \mathrm{s}), 0.64(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$, $0.45(3 \mathrm{H}, \mathrm{s}), 0.30(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=169.1,164.9,136.8,135.0,128.0$, $126.8,126.7,125.9,125.6,124.1,98.3,49.4,48.4,40.6,29.5,25.5,18.3,10.8,-4.2,-4.4$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 373.2193$, found 373.2196; $[\alpha]_{\mathrm{D}}{ }^{20}-92.1$ (c 1.12, CHCl_{3}) for 88% ee; HPLC analysis: 88% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 45% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD-H, $0.2 \% i$ - PrOH in hexane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=10.3 \mathrm{~min}$ (major), 12.2 min (minor)).

15b: Colorless oil; $R_{f}=0.52$ (pentane:ether 80:20); IR (neat): $v=1721,1675,1494,1472,1462$, 1435, 1334, 1305, 1239, 1203, 1160, 1076, 874, 837, 799, 779, 753; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.21-7.23(1 \mathrm{H}, \mathrm{m}), 7.07-7.12(2 \mathrm{H}, \mathrm{m}), 6.95-6.97(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{br}$ s), $3.70(3 \mathrm{H}$, s), $2.78(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 2.57-2.64(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{dd}, J=16.5,7.0 \mathrm{~Hz}), 2.25-2.31(2 \mathrm{H}$, m), 1.88-1.95 (1H, m), $1.25(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{br} \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,143.1,136.4,133.1,129.9,128.0,126.2,125.6,110.7,52.0$, $38.9,33.4,28.3,25.8,25.6,18.5,18.4,11.1,-4.3,-4.8$; HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right)$ 372.2115, found 372.2113; $[\alpha]_{\mathrm{D}}{ }^{20}-22.6$ (c $0.72, \mathrm{CHCl}_{3}$) for 93% ee; HPLC analysis: 40% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 93% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD-H, 100% hexane, 0.8 $\mathrm{mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, t_{\mathrm{R}}=11.8 \mathrm{~min}($ major $), 14.3 \mathrm{~min}($ minor $)$).
(S,Z)-Methyl 3-(tert-butyldimethylsilyloxy)-4-((S)-7-methoxy-1,4-dihydronaphthalen-1-yl)pent-2-enoate (17), (1R,1aS,7bS)-methyl 1-((Z)-1-(tert-butyldimethylsilyloxy)prop-1-enyl)-6-methoxy-1a,2,3,7b-tetrahydro- $1 H$ cyclopropa $[a]$ naphthalene-1-carboxylate (18) and (Z)-methyl 3-(tert-butyldimethylsilyloxy)-2-(6-methoxy-1,2-dihydronaphthalen-1-yl)pent-3enoate (19):
(Table 2, entry 1): $\mathbf{2 b}$ ($270 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 5 mL of 2,2-DMB was added by syringe pump over 2 h to a solution of dihydronaphthalene $11\left(480 \mathrm{mg}, 3 \mathrm{mmol}, 3\right.$ equiv.) and $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}(19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB. After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 98:2) to afford $\mathbf{1 7}, \mathbf{1 8}$ and $\mathbf{1 9}$ ($362 \mathrm{mg}, 90 \%$ combined yield).
(Table 2, entry 2): 2b ($270 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 5 mL of 2,2-DMB:toluene (5:1) was added by syringe pump over 2 h to a solution of dihydronaphthalene $\mathbf{1 1}(480 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ ($16 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB:toluene ($5: 1$). After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 98:2) to afford $\mathbf{1 7}$, 18 and 19 ($330 \mathrm{mg}, 82 \%$ combined yield).

17: Colorless oil; $R_{f}=0.57$ (pentane:ether 80:20); IR (neat): $v=1722,1624,1503,1464,1434$, $1370,1277,1254,1239,1201,1160,1081,1042,968,895,837,810,782 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.03(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.74-6.76(2 \mathrm{H}, \mathrm{m}), 6.07-6.09(1 \mathrm{H}, \mathrm{m}), 5.70-5.72(1 \mathrm{H}, \mathrm{m})$, $5.11(1 \mathrm{H}, \mathrm{s}), 3.92-3.96(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.23-3.34(2 \mathrm{H}, \mathrm{m}), 2.64-2.70(1 \mathrm{H}$, m), $1.05(9 \mathrm{H}, \mathrm{s}), 0.72(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.32(3 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.6,166.0,158.0,138.1,129.2,127.6,127.5,124.0,112.6,111.6,98.7,55.1,50.5,48.8$, 41.1, 29.3, 26.0, 18.7, 11.4, -3.8, -4.0; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right) 402.2221$, found 402.2219; $[\alpha]_{\mathrm{D}}{ }^{20}-53.2\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right)$ for 33% ee; HPLC analysis: 90% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 33% ee with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ (Chiralcel OD-H, $0.4 \% i$-PrOH in hexane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, t_{\mathrm{R}}=10.6 \mathrm{~min}$ (major), 12.1 min (minor)).

18: Colorless oil; $R_{f}=0.51$ (pentane:ether $80: 20$); IR (neat): $v=1720,1676,1610,1505,1463$, 1435, 1334, 1304, 1238, 1193, 1167, 1113, 1076, 1040, 866, 837, 779; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.87(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.5 \mathrm{~Hz})$, $4.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.72(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 2.40-2.55(2 \mathrm{H}, \mathrm{m}), 2.24-2.30$ $(2 \mathrm{H}, \mathrm{m}), 1.85-1.92(1 \mathrm{H}, \mathrm{m}), 1.26\left(3 \mathrm{H}, \mathrm{br}\right.$ s), $0.91(9 \mathrm{H}, \mathrm{br}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,157.5,143.1,134.1,128.8,128.6,115.0,112.2,110.4,55.2,52.0$, 38.9, 33.6, 28.3, 25.7, 24.7, 18.8, 18.5, 11.1, -4.3, -4.7; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$ 402.2221, found 402.2228; $[\alpha]_{\mathrm{D}}{ }^{20}+26.0\left(\mathrm{c} 0.64, \mathrm{CHCl}_{3}\right)$ for 95% ee; HPLC analysis: 95% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD-H, $0.2 \% i-\mathrm{PrOH}$ in hexane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, t_{\mathrm{R}}=$
18.6 min (major), 21.2 min (minor)).

19: Colorless oil; $R_{f}=0.56$ (pentane:ether 80:20); IR (neat): $v=1738,1668,1603,1572,1496$, 1432, 1344, 1261, 1204, 1186, 1146, 1091, 1048, 880, 837, 778, 704; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.05(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.59-6.64(2 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}), 5.93(1 \mathrm{H}$, ddd, $J=9.3,6.4,2.5 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{q}, ~ J=6.7 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.14-3.19(2 \mathrm{H}, \mathrm{m})$, $2.52(1 \mathrm{H}, \mathrm{dd}, J=16.9,6.4 \mathrm{~Hz}), 2.35-2.41(1 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.13$ $(3 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,158.7,147.4,134.4,129.6,128.3$, $127.6,127.3,111.74,111.71,104.6,55.2,54.6,51.4,38.8,26.2,25.9,18.3,11.1,-3.9,-4.2$; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiNa}\left(\mathrm{MNa}^{+}\right) 425.2119$, found 425.2122; $[\alpha]_{\mathrm{D}}{ }^{20}+16.9$ (c 0.10 , CHCl_{3}) for 90% ee; HPLC analysis: 90% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 45% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD-H, $0.1 \% i-\mathrm{PrOH}$ in hexane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=48.4 \mathrm{~min}$ (major), 65.6 $\min ($ minor $)$).

(S,Z)-Methyl 3-(tert-butyldimethylsilyloxy)-4-((1S,4R)-4-methyl-1,4-dihydronaphthalen-1-yl)pent-2-enoate (20b) and (1R,1aS,3S,7bS)-methyl 1-((Z)-1-(tert-butyldimethylsilyloxy)-prop-1-enyl)-3-methyl-1a,2,3,7b-tetrahydro-1H-cyclopropa[a]naphthalene-1-carboxylate (21b):

(Table 3, entry 3): $\mathbf{2 b}$ ($540 \mathrm{mg}, 2 \mathrm{mmol}, 4$ equiv.) in 5 mL of $2,2-\mathrm{DMB}$ was added by syringe pump over 2 h to a solution of dihydronaphthalene 12 ($73 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}(9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB. After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 99.5:0.5) to afford 20b and 21b ($112 \mathrm{mg}, 58 \%$ combined yield).
(Table 3, entry 4): 2b ($540 \mathrm{mg}, 2 \mathrm{mmol}, 4$ equiv.) in 5 mL of 2,2-DMB:toluene (5:1) was added by syringe pump over 2 h to a solution of dihydronaphthalene $\mathbf{1 2}$ ($73 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(8 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB:toluene ($5: 1$). After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 99.5:0.5) to afford 20b and 21b ($174 \mathrm{mg}, 90 \%$ combined yield).

20b: Colorless oil; $R_{f}=0.67$ (pentane:ether 80:20); IR (neat): $v=1721,1624,1250,1202,838$, $778 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.31(1 \mathrm{H}, \mathrm{m}), 7.18-7.24(3 \mathrm{H}, \mathrm{m}) 5.91(1 \mathrm{H}$, ddd, $J=$ $10.2,2.9,1.6 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{ddd}, J=10.2,4.0,2.4 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{s}), 3.95-3.99(1 \mathrm{H}, \mathrm{m}), 3.68$ $(3 \mathrm{H}, \mathrm{s}), 3.37-3.45(1 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{dq}, J=7.0,4.1 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.04(9 \mathrm{H}, \mathrm{s})$, $0.66(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.31(3 \mathrm{H}, \mathrm{s}), 0.29(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, $166.0,140.8,136.4,133.8,127.3,126.7,126.3,126.2,122.7,98.9,50.6,48.2,40.2,32.7,26.0$, 23.2, 18.7, 11.4, -3.7, -3.8; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right) 386.2272$, found 386.2283; $[\alpha]_{\mathrm{D}}{ }^{20}+70.8\left(\mathrm{c} 0.68, \mathrm{CHCl}_{3}\right)$ for 88% ee; HPLC analysis: 86% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 88% ee with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ (Chiralcel OD-H, 100% hexane, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=27.7 \mathrm{~min}$ (major), $33.0 \min (m i n o r)$).

21b: White solid; $\mathrm{mp}=100-102^{\circ} \mathrm{C} ; R_{f}=0.63$ (pentane:ether 80:20); IR (neat): $v=1721,1675$, $1462,1434,1332,1305,1239,1165,1124,1076,837,777,755 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.23(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.10-7.19(3 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{d}, J=9.1$ Hz), 2.64-2.72 (1H, m), 2.24-2.28 (2H, m), 1.66 (1H, ddd, $J=14.6,10.4,4.6 \mathrm{~Hz}), 1.26$ (3H, d, J $=6.7 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=174.0,143.1,141.3,132.8,130.2,126.5,125.5,125.3,110.8,52.0,39.2,33.8,28.7$, 28.2, 27.3, 25.7, 20.1, 18.4, 11.0, -4.3, -4.7; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}^{\left(\mathrm{M}^{+}\right)} 386.2272$, found $386.2266 ;[\alpha]_{\mathrm{D}}{ }^{20}-12.1$ (c $0.32, \mathrm{CHCl}_{3}$) for 96% ee; HPLC analysis: 53% ee with $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}$ and 96% ee with $\mathrm{Rh}_{2}(S \text {-PTAD) })_{4}$ (Chiralcel OD-H, 100% hexane, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, t_{\mathrm{R}}=39.5 \mathrm{~min}($ major), $44.0 \mathrm{~min}($ minor $)$).

(S,Z)-Methyl
3-(tert-butyldimethylsilyloxy)-4-((1S,4R)-7-methoxy-4-methyl-1,4-dihydronaphthalen-1-yl)pent-2-enoate (22b) and (1R,1aS,6S,7aS,Z)-methyl 1-(1-(tert-butyldimethylsilyloxy)prop-1-enyl)-3-methoxy-6-methyl-1a,6,7,7a-tetrahydro-1H cyclopropa[a]naphthalene-1-carboxylate (23b):
(Table 4, entry 3): $\mathbf{2 b}$ ($811 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) in 5 mL of 2,2-DMB was added by syringe pump over 2 h to a solution of dihydronaphthalene 13 ($174 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S-$ DOSP $)_{4}$ ($19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB. After 16 h of additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 98:2) to afford 22b and 23b ($229 \mathrm{mg}, 55 \%$ combined yield).
(Table 4, entry 4): $\mathbf{2 b}$ ($811 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) in 5 mL of 2,2-DMB:toluene (5:1) was added by syringe pump over 2 h to a solution of dihydronaphthalene $\mathbf{1 3}$ ($174 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(16 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.) in 5 mL of 2,2-DMB:toluene (5:1). After 16 h of
additional stirring, the solvent was removed under vacuum and the remaining residue was purified on silica gel (pentane:ether 98:2) to afford 22b and 23b ($375 \mathrm{mg}, 90 \%$ combined yield).

22b: Colorless oil; $R_{f}=0.61$ (pentane:ether 80:20); IR (neat): $v=1723,1625,1253,1202,1163$, 826, 781; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5$ $\mathrm{Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.65-5.63(1 \mathrm{H}, \mathrm{m}), 5.11(1 \mathrm{H}, \mathrm{s}), 3.92-$ $3.94(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.30-3.40(1 \mathrm{H}, \mathrm{m}), 2.68-2.72(1 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.67(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.32(3 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=169.8,165.6,158.6,137.9,134.5,133.2,128.6,122.7,113.1,111.7,99.0,54.7,50.2$, $48.9,41.2,32.5,26.3,23.5,19.0,11.4,-3.4,-3.9$; HRMS (EI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$ 416.2377, found 416.2379; $[\alpha]_{\mathrm{D}}{ }^{20}-18.0\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$ for 88% ee; HPLC analysis: 85% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 88% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD-H, $0.2 \% i$-PrOH in hexane, 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=11.7 \mathrm{~min}($ major), $16.5 \mathrm{~min}($ minor $)$).

23b: Colorless oil; $R_{f}=0.47$ (pentane:ether 80:20); IR (neat): $v=1720,1500,1464,1434,1332$, $1306,1237,1218,1168,1070,1048,860,837,800 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(1 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.79(3 \mathrm{H}$, s), $3.72(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 2.60-2.67(1 \mathrm{H}, \mathrm{m}), 2.24-2.30(2 \mathrm{H}, \mathrm{m}), 1.63(1 \mathrm{H}, \mathrm{ddd}, J$ $=14.2,10.7,5.2 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}$, s), $0.10(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,157.2,143.0,134.0,133.4,126.1,115.1$, $112.1,110.5,55.0,51.9,39.1,34.0,28.5,27.8,27.5,25.6,20.1,18.3,11.0,-4.3,-4.8$; HRMS (EI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right) 416.2377$, found 416.2382; $[\alpha]_{\mathrm{D}}{ }^{20}+22.8$ (c 1.3, CHCl_{3}) for 96% ee; HPLC analysis: 59% ee with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and 96% ee with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (Chiralcel OD$\mathrm{H}, 0.1 \% i-\mathrm{PrOH}$ in hexane, $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=235 \mathrm{~nm}, t_{\mathrm{R}}=24.1 \mathrm{~min}$ (minor), 34.8 min (major)).

(S,Z)-Methyl 4-((1S,4R)-4-methyl-1,4-dihydronaphthalen-1-yl)-3-(trifluoromethylsulfonyl-oxy)pent-2-enoate (25): ${ }^{8}$ Diazo compound 2b ($1.08 \mathrm{~g}, 4 \mathrm{mmol}, 4$ equiv) in 10 mL of 2,2-DMB was added dropwise by syringe pump over 2 h to a solution of 1-methyl-1,2-dihydronaphthalene $12\left(0.144 \mathrm{~g}, 1 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(0.038 \mathrm{~g}, 0.02 \mathrm{mmol}, 0.02$ equiv) in 10 mL of 2,2-DMB. The reaction mixture was stirred for an additional 14 h , then concentrated in vacuo. The crude was quickly purified by flash chromatography (hexane:ether 99:1 to 98:2) to yield 217 mg of a mixture of $\mathbf{2 0 b}$ and $\mathbf{2 1 b}$. This mixture was dissolved in 10 mL of THF and cooled to 0 ${ }^{\circ} \mathrm{C}$. TBAF ($211 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.2$ equiv.) was added to the solution in one portion. After 0.7 h , the reaction was diluted with 30 mL of ether and 10 mL of distilled water. The aqueous layer was extracted with ether ($3 \times 30 \mathrm{~mL}$). The organic extracts were combined and washed with 10 mL of distilled water and 10 mL of saturted aqueous NaCl , dried over MgSO_{4}, filtered and concentrated under vacuum. The crude was quickly purified by flash chromatography (hexane:ether $95: 5$ to 93:7) to yield 88 mg of a mixture of $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement product and cyclopropane. The mixture was dissolved in 3 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(23 \mathrm{mg}$, 0.96 mmol) was added to the solution, followed 5 minutes later by PhNTf_{2} ($229 \mathrm{mg}, 0.64 \mathrm{mmol}$). After 1 h , the cold bath was removed and the reaction allowed to reach rt . After 6 h , the reaction was diluted with 30 mL of ether and 10 mL of distilled water. The aqueous layer was extracted with ether $(2 \times 30 \mathrm{~mL})$. The organic extracts were combined and washed with 5 mL of distilled water and 5 mL of saturted aqueous NaCl , dried over MgSO_{4}, filtered and concentrated under vaccum. The crude was purified by flash chromatography (hexane:ether $95: 5$ to $90: 10$) to yield $25 \mathrm{mg}(12 \%$, theorical yield from $R \mathbf{- 1 2})$ of vinyl triflate 25.

White solid; $\mathrm{mp}=83-85^{\circ} \mathrm{C} ; R_{f}=0.60$ (hexane:ethyl acetate 80:20); IR (neat): $v=3027,2977$, 2959, 2932, 1739, 1430, 1207; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.32(1 \mathrm{H}, \mathrm{m}), 7.20-7.25$ $(2 \mathrm{H}, \mathrm{m}), 7.14-7.17(1 \mathrm{H}, \mathrm{m}), 6.00(1 \mathrm{H}, \mathrm{ddd}, J=10.3,2.9,1.4 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 5.57$

[^6]$(1 \mathrm{H}, \mathrm{ddd}, J=10.3,4.1,2.4 \mathrm{~Hz}), 3.94-3.98(1 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.38-3.46(1 \mathrm{H}, \mathrm{m}), 3.02-3.08$ $(1 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 0.75(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $163.0,161.3,140.5,135.5,134.5,127.4,126.8,126.7(2 \mathrm{C}), 120.8,118.5$ ($\mathrm{q}, ~ J=320 \mathrm{~Hz}$), 111.6, $52.1,45.7,39.6,32.6,23.1,11.2 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.6$; HRMS (APCI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 405.0978$, found 405.0979.

Double bond geometry was assigned based on NMR studies. Key irradiation is shown bellow.

25

(R)-Methyl 4-((1S,4R)-4-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoate (26): ${ }^{8}$

From vinyl triflate 25: In a Parr hydrogenation bottle was added vinyl triflate 25 ($7 \mathrm{mg}, 0.017$ $\mathrm{mmol}), 20 \mathrm{~mL}$ of $\mathrm{MeOH}, \mathrm{PtO}_{2}(1.2 \mathrm{mg}, 0.0051 \mathrm{mmol})$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mg}, 0.034 \mathrm{mmol})$. The vessel was purged with H_{2}. The mixture was shaken under H_{2} atmosphere (30 psi) for 14 h at rt , then diluted with 40 mL of ether and 20 mL of distilled water. The aqueous layer was extracted with ether ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with 10 mL of distilled water and 10 mL saturated aqueous NaCl , dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (hexane:ether 99:1) to yield $4 \mathrm{mg}(90 \%)$ of $\mathbf{2 6}$.

From 20a: ${ }^{8}$ In a Parr hydrogenation bottle was added 20a ($14 \mathrm{mg}, 0.055 \mathrm{mmol}$), 30 mL of ethyl acetate, and $5 \% \mathrm{Pd} / \mathrm{C}(24 \mathrm{mg}, 1.2 \mathrm{mg}$ of $\mathrm{Pd}, 0.011 \mathrm{mmol})$. The vessel was purged with H_{2}. The mixture was shaken under H_{2} atmosphere (30 psi) for 13 h at rt , then filtrated on a short plug of
silica gel. The plug was washed with ethyl acetate and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (hexane:ether 99:1) to yield $12.5 \mathrm{mg}(89 \%)$ of $\mathbf{2 6}$.
Colorless oil; $R_{f}=0.62$ (hexane:ethyl acetate 80:20); IR (neat): $v=3022,2954,2930,2869$, 1738,$1168 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.26(1 \mathrm{H}, \mathrm{m}), 7.17-7.21(1 \mathrm{H}, \mathrm{m}), 7.11-7.15$ $(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.90-2.94(1 \mathrm{H}, \mathrm{m}), 2.74-2.81(1 \mathrm{H}, \mathrm{m}), 2.34-2.46(2 \mathrm{H}, \mathrm{m}), 2.10-2.18(1 \mathrm{H}$, m), 1.92-1.98 ($1 \mathrm{H}, \mathrm{m}$), $1.75-1.87(2 \mathrm{H}, \mathrm{m}), 1.62-1.69(1 \mathrm{H}, \mathrm{m}), 1.52-1.59(1 \mathrm{H}, \mathrm{m}), 1.32-1.39$ $(1 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.66(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 174.4, 143.3, 139.4, 127.4, 126.7, 125.5, 125.3, 51.6, 41.6, 36.9, 33.1, 32.6, 31.4, 30.2, 21.8, 21.5, 14.2; HRMS (APCI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$261.1849, found 261.1849; $[\alpha]_{\mathrm{D}}{ }^{20}-36.5$ (c $0.97, \mathrm{CHCl}_{3}$); HPLC analysis: 93% ee ((S,S)-Whelk-O $1,0.5 \% i-\mathrm{PrOH}$ in hexane, $1 \mathrm{~mL} / \mathrm{min}, \lambda$ $\left.=254 \mathrm{~nm}, t_{\mathrm{R}}=11.04 \mathrm{~min}, 12.56 \mathrm{~min}\right)$.

[
N

12jb023.H2.retro.c13

$$
\begin{aligned}
& \text { DLV-1484c13 } \\
& \text { Pulse Sequence: s2pul } \\
& \text { Solvent: Benzene } \\
& \text { Anbient temperature } \\
& \text { GEMINI-300 "roesy.chem.buffalo.edu" } \\
& \\
& \text { Relax. delay } 5.000 \mathrm{sec} \\
& \text { Pulse } 30.0 \text { degrees } \\
& \text { Acg. time } 1.706 \mathrm{sec} \\
& \text { Vidth } 18761.7 \mathrm{~Hz} \\
& 372 \text { repetitions } \\
& \text { oBSERVE C13, } 75.4536263 \mathrm{MHz} \\
& \text { DECOUPLE H1, } 300.0754701 \mathrm{MHz} \\
& \text { Power } 1023 \text { dB } \\
& \text { Continuous } 1 \mathrm{y} \text { on } \\
& \text { WALTZ-16 modulated } \\
& \text { DATA PR0CESSING } \\
& \text { Line broadening } 1.0 \mathrm{~Hz} \\
& \text { FT size } 65536 \\
& \text { Total time } 0 \text { min, } 0 \mathrm{sec}
\end{aligned}
$$

[^0]: ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
 ${ }^{2}$ Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44, 1733-1735.

[^1]: ${ }^{3}$ (a) Bagley, M. C.; Buck, R. T.; Hind, S. L.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1998, 591-600. (b) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709-1716.

[^2]: ${ }^{4}$ Trost, B. M.; Vladuchick, W. C.; Bridges, A. J. J. Am. Chem. Soc. 1980, 102, 3554-3572.

[^3]: ${ }^{5}$ Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 10510-10511.

[^4]: ${ }^{6}$ Tanaka, J.; Miyake, T.; Iwasaki, N.; Adachi, K. Bull. Chem. Soc. Jpn. 1992, 65, 2851-2853.

[^5]: ${ }^{7}$ Li, T.-S.; Li, J.-T.; Li, H.-Z. J. Chromatogr., A 1995, 715, 372-375.

[^6]: ${ }^{8}$ (a) Jigajinni, V. B.; Wightman, R. H. Tetrahedron Lett. 1982, 23, 117-120. (b) Martínez, A. G.; Alvarez, R. M.; Casado, M. M.; Subramanian, L. R.; Hanack, M. Tetrahedron 1987, 43, 275-279. (c) Comins, D. L.; Benjelloun, N. R. Tetrahedron Lett. 1994, 35, 829-832.

