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Figure captions 

 

Supporting Figure 1S. Change of the X-ray diffraction pattern of water confined in C/MCM-41 

slightly below complete filling upon cooling and subsequent heating. 

 

Supporting Figure 2S. Change of the X-ray diffraction pattern of water confined in C/SBA-15 

slightly below complete filling upon cooling and subsequent heating. 

 

Supporting Figure 3S. Change of the X-ray diffraction pattern of water confined in C/KIT-6 slightly 

below complete filling upon cooling and subsequent heating. 

 

Supporting Figure 4S. Change of the X-ray diffraction pattern of water confined in C/SBA-16 

slightly below complete filling upon cooling and subsequent heating. 

 

Supporting Figure 5S. Position and width of the main diffraction peak as a function of temperature 

for water confined slightly below complete filling in C/MCM-41. Open and closed symbols denote 

cooling and heating processes, respectively. 

 

Supporting Figure 6S. Melting point depression of ice confined in the mesopores against the S/V 

ratio of the mesopores for the ordered mesoporous materials with several different pore geometries. 

Open circles, triangles, and squares denote the melting point depression of ice confined in the 

cylindrical, interconnected cylindrical, and interconnected spherical pores, respectively. Closed 

symbols denote the melting point depression of ice confined in the open pores of the ordered 

mesoporous carbons with their inverse replica structures.  
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Figure 1S. Morishige, Yasunaga, and Matsutani 
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Figure 2S. Morishige, Yasunaga, and Matsutani 
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Figure 3S. Morishige, Yasunaga, and Matsutani 
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Figure 4S. Morishige, Yasunaga, and Matsutani 
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Figure 5S. Morishige, Yasunaga, and Matsutani 
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Figure 6S. Morishige, Yasunaga, and Matsutani 


