Supporting Information for:

Are sp lithiated carbons more nucleophilic than sp² or sp³ ones? A comparative DFT study of the condensation of propynyllithium aggregates on formaldehyde.

Catherine Fressigné^{†,‡} and Jacques Maddaluno^{‡,*}

[†] Laboratoire de Chimie Théorique, CNRS UMR 7616, Université P. & M. Curie, Case Courrier 137, 4, place Jussieu, 75252 Paris Cedex 05 (France)

[‡] Institut de Recherche en Chimie Organique Fine, CNRS UMR 6014 & FR 3038, Université de Rouen, 76821 - Mont St Aignan Cedex (France)

Table of content

Z-matrix for the propynyllithium-HCHO system	3
Table S1 : Values of energy for the propynyllithium-formaldehyde system atvarious levels of calculation.	4
Figure S1 : Absolute energy of the C_{2v} and C_2 propynyllithium dimer.	5
Figure S2: Absolute energies of the heterogeneous trimers involving propynyllithium.	5
Figure S3 : Condensation pathways of homogeneous and heterogeneous propynyllithium trimer on formaldehyde.	5
Table S2. Main geometrical parameters used to describe the monomeric and dimeric complexes between methyllithium or vinyllithium and HCHO at the steady and the transition states.	6
Table S3. Docking of HCHO on T_d and S_4 homogeneous tetramers of propynyllithium.	7
Table S4. Various cubic conformers of the heterogeneous tetramer [(MeCH=CLi) ₃ (Me ₂ NLi)].	7
Table S5. Docking of HCHO on the various lithium cations of the more stable cubic conformer of the heterogeneous tetramer [(MeCH=CLi) ₃ (Me ₂ NLi)].	8
Table S6. Docking of HCHO on various lithium cations of the hexagonal conformer of the homogeneous and heterogeneous hexamers (MeCH=CLi) ₆ and $[(MeCH=CLi)_5(Me_2NLi)]$.	9

Propynyllithium + H₂CO (-238.81961481456 a. u.)

Jaguar 4.1 B3P86 6-31G** uncorrected (X = fictious atom)

H1

- C2 H1 1.0970650255
- C3 C2 1.4583796085 H1 111.8955461678

X4	C3 1.000000000	C2 90.000000000	H1 179.9999985212
X5	X4 1.1815620000	C3 91.9256060000	C2 176.7657620000
C6	X5 1.0257097955	X4 90.7850600488	C3 5.0931438840
Li7	C6 1.9362998360	X5 96.1161020006	X4 -179.2254659973
O10	Li7 1.9477218751	C6 113.1933783480	X5 124.4123775745
C11	O10 1.2219043328	Li7 109.5010978098	C61341470324
H30	C11 1.1038560088	O10 119.6678626776	Li7 179.7167784617
H29	C11 1.1060674931	O10 119.9474497593	H30 -179.9565455008
H32	C2 1.0970624052	H1 107.2009694582	C3 -122.9704961807
H33	C2 1.0967483536	H1 107.0717870255	C3 122.3884645948

4

Table S1. Values of energy for the propynyllithium-formaldehyde system at various levels of calculation (the basis set is 6-31G**).

	Uncorrected structures		and and	to a
1	Internal energy	-238.819615 a.u.	TS: -238.815844 a.u. (+2.3 kcal.mol ⁻¹)	Cond.: -238.856968 a.u. (-25.8 kcal.mol ⁻¹)
2	ZPE correction	ZPE = 52.292 kcal.mol ⁻¹ $E_{corr.}$ = -238.736282 a.u.	ZPE = 52.338 kcal.mol ⁻¹ $E_{corr.}$ = -238.732438 a.u. (+2.4 kcal.mol ⁻¹)	ZPE = 56.560 kcal.mol ⁻¹ $E_{corr.} = -238.766834 a.u.$ (-21.6 kcal.mol ⁻¹)
3	Thermal corrections	T= 298.15 K $S_{T} = 81.9228 \text{ cal.mol}^{-1}\text{K}^{-1}$ $H_{T} = 4.8614 \text{ kcal.mol}^{-1}$ $G_{T} = -19.5639 \text{ kcal.mol}^{-1}$ G = -238.767459 a.u.	T= 298.15 K $S_{T} = 81.2066 \text{ cal.mol}^{-1}\text{K}^{-1}$ $H_{T} = 4.8318 \text{ kcal.mol}^{-1}$ $G_{T} = -19.3800 \text{ kcal.mol}^{-1}$ G = -238.763322 a.u. $(+2.6 \text{ kcal.mol}^{-1})$	T= 298.15 K $S_{T} = 74.2662 \text{ cal.mol}^{-1}\text{K}^{-1}$ $H_{T} = 3.9560 \text{ kcal.mol}^{-1}$ $G_{T} = -18.1865 \text{ kcal.mol}^{-1}$ G = -238.795816 a.u. $(-20.4 \text{ kcal.mol}^{-1})$
4	MP2	MP2 EUMP2= -237.364278 a.u.	MP2 EUMP2= -237.357562 a.u. (+4.2 kcal.mol ⁻¹)	MP2 EUMP2= -237.394604 a.u. $(-23.2 \text{ kcal.mol}^{-1})$
5	CCSD(T) ^a	Single point MP2 E $_{CCSD(T)}$ = -237.428938 a.u. E(corr)= -237.400316 a.u.	Single point MP2 $E_{CCSD(T)}$ = -237.421910 a.u. (+4.4 kcal.mol ⁻¹) E(corr)= -237.392981 a.u. (+4.6 kcal.mol ⁻¹)	Single point MP2 $E_{CCSD(T)} = -237.455573 \text{ a.u.}$ $(-21.1 \text{ kcal.mol}^{-1})$ E(corr) = -237.427310 a.u. $(-21.5 \text{ kcal.mol}^{-1})$

^a The CCSD energy is labeled $E_{(corr)}$, and the energy including the non-iterative triples contribution is labeled $E_{CCSD(T)}$

Figure S1. Absolute energy of the $C_{2\nu}$ and C_2 propynyllithium dimer.

Figure S3. Condensation pathways of homogeneous propynyllithium trimer on formaldehyde.

and heterogeneous

Table S2. Main geometrical parameters used to describe the monomeric and dimeric complexes between methyllithium or vinyllithium and HCHO at the steady and the transition states. The angles α , β and γ as well as the distance d are displayed on Figure 2. These values have been measured on optimized complexes published before (see footnotes). In the mixed aggregates, the atom written bold and italic is the nucleophilic one.

Entry	Nucleophile		Complex TS		TS				
		α	β	γ	d	α	β	γ	d
1	MeLi ^a	108.1	0.0	0.0	1.97	99.8	40.9	2.3	1.23
2	LiCH=CH ₂ ^b	110.6	0.9	7.1	1.22	107.7	43.6	18.9	1.23
3	(MeLi) ₂ ^a	121.1	0.2	0.9	1.22	127.5	97.3	0.2	1.84
4	(LiCH=CH ₂) ₂ ^b	118.5	0.9	15.3	1.99	104.4	60.2	18.3	1.99
5	<i>Me</i> Li-LiNMe ₂ ^a	121.9	0.3	0.7	2.00	103.4	59.3	20.3	1.99
6	CH ₂ =CHLi-LiNMe ₂ ^b	117.6	1.3	16.6	2.00	103.4	58.8	14.8	2.00
7	MeLi-LiNMe ₂ ^a	111.6	0.0	0.0	2.00	122.7	22.5	26.4	1.97
8	CH ₂ =CHLi-LiNMe ₂ ^b	112.2	0.3	4.2	2.00	101.5	51.0	5.6	1.98

^a measured on complexes described in J. Org. Chem. 2000, 65, 8899-8907 (Ref. 8)

^b measured on complexes described in J. Org. Chem. 2005, 70, 7816-7828 (Ref. 9)

Table S3. Docking of HCHO on T_d (top) and S_4 (bottom) homogeneous tetramers of propynyllithium. The absolute energy values are given in a.u. while the docking, transition barrier and condensation energies are given in kcal.mol⁻¹.

Table S4. Various cubic conformers of the heterogeneous tetramer $[(MeCH=CLi)_3(Me_2NLi)]$. The energy values are given in a.u.

Table S5. Docking of HCHO on the various lithium cations of the more stable cubic conformer of the heterogeneous tetramer [(MeCH=CLi)₃(Me₂NLi)]. The absolute energy values are given in a.u. while the docking, transition barrier and condensation energies (between parentheses) are given in kcal.mol⁻¹.

Heterogeneous	Docking complex	TS	Product
tetramer	(docking energy)	(activation barrier)	(condensation energy)
J-J-K	La contraction of the second s	A THE	A Part
-514.849724	-629.651705 (-12.6)	-629.646476 (+3.3)	-629.711114 (-40.6)
	to the second se	X	AH.
	-629.651764 (-12.6)	-629.647777 (+2.5)	-629.711327 (-39.9)
	THIS		J J J J J J
	-629.651531 (-12.5)	-629.646797 (+3.0)	-629.710486 (-40.0)
	A A	× ×	y
	-629.650161 (-11.6)	-629.646048 (+2.6)	-629.727349 (-51.02)

Table S6. Docking of HCHO on various lithium cations of the hexagonal conformer of the homogeneous and heterogeneous hexamers $(MeCH=CLi)_6$ and $[(MeCH=CLi)_5(Me_2NLi)]$. The absolute energy values are given in a.u. while the docking, transition barrier and condensation energies (between parentheses) are given in kcal.mol⁻¹.

