RECOGNITION OF ACHIRAL AND CHIRAL AMMONIUM SALTS BY NEUTRAL DITOPIC RECEPTORS BASED ON CHIRAL SALEN-UO₂ MACROCYCLES

Maria E. Amato, Francesco P. Ballistreri, Salvatore Gentile,

Andrea Pappalardo, Gaetano A. Tomaselli* and Rosa M. Toscano

Dipartimento Scienze Chimiche, University of Catania, viale A. Doria 6, 95125 Catania, Italy

gtomaselli@unict.it

Supporting Information

page	Contents
2	Determination of Stoichiometry
2	¹ H NMR Complexation Experiments
3	Scheme S1, Synthesis of proline enantiomers
4	Figure S1 ¹ H NMR titration curve and Job plot of TBACI with receptor M20
5	Figure S2 ¹ H NMR titration curve and Job plot of TMACI with receptor M20
6	Figure S3 ¹ H NMR titration curve and Job plot of TEACI with receptor M20
7	Figure S4 ¹ H NMR titration curve and Job plot of TMeACl with receptor M20
8	Figure S5 ¹ H NMR titration curve and Job plot of AChCl with receptor M20
9	Figure S6 ¹ H NMR titration curve and Job plot of TBACl with receptor M40
10	Figure S7 ¹ H NMR titration curve and Job plot of TBABr with receptor M40
11	Figure S8 ¹ H NMR titration curve and Job plot of TBAI with receptor M40
12	Figure S9 ¹ H NMR titration a curve and Job plot of TMACl with receptor M40
13	Figure S10 ¹ H NMR titration curves and Job plot of TEACl with receptor M40
14	Figure S11 ¹ H NMR titration curves and Job plot of AChCl with receptor M40
15	Figure S12 ¹ H NMR titration curve and Job plot of BnTriMACI with receptor M40
16	Figure S13 ¹ H NMR titration curve and Job plot of R-TMBI with receptor M40
17	Figure S14 ¹ H NMR titration curve and Job plot of S-TMBI with receptor M40
18	Figure S15 ¹ H NMR titration curve and Job plot of S,S-2 with receptor M40
19	Figure S16 ¹ H NMR titration curve and Job plot of R ,S-2 with receptor M40
20	Figure S17 ¹ H NMR titration curve and Job plot of R,R-2 with receptor M40
21	Figure S18 Selected ¹ H NMR spectra from the titration experiments of AChCl with receptor M40
22	Figure S19 Selected ¹ H NMR spectra from the titration experiments of TEACI with receptor M40
23-30	1D- and 2D-NMR spectra of compounds 2-R,R-2.
31	Selected portion of 2D-NMR NOESY spectra of compounds S,S-2 and R,S-2 to assign absolute
	configuration

Determination of Stoichiometry. Complexes stoichiometry was determined by the Job plot method^[6] using spectrophotometric measurements. The samples were prepared by mixing appropriate host and guest equimolar stock solutions (2 x 10^{-4} M) to cover the whole range of molar fractions keeping constant the total concentration. The UV absorbance was recorded at 341 nm and the changes in absorbance, compared to uncomplexed host species (ΔA), were calculated and reported versus the host mole fraction. These plots show invariably a maximum at 0.5 mol fraction of host indicating the formation of 1:1 complexes with guests.

¹H NMR Complexation Experiments. Typically, solutions with host/guest molar ratios in the 0.2/1- 10/1 range were prepared (the final concentration of the guest solution was 1.00×10^{-3} M). The following stock solutions were used: [M40] = [M20] = 20 mM in CDCl₃; [guest] = 2 mM in CDCl₃. However, in the case of **S,S-2** and **R,R-2** guests, because their poor solubility in CDCl₃, stock solutions were prepared in water. Then, the pertinent aliquots containing the appropriate amounts of the **S,S-2** and **R,R-2** guest were frozen dry. The subsequent treatment of the white solid obtained with appropriate volume of host stock solution in CDCl₃ gave complete solubilization due to host/guest complexation.

Titration data points were fitted by eq. 1, which is a standard binding isotherm for the case of 1:1 association.

$$\Delta \delta = \frac{\Delta \delta_{\infty} \cdot K \cdot [H]}{1 + K \cdot [H]}$$
(eq. 1)

The upfield shift of the guest fully saturated by the host $(-\Delta \delta_{\infty})$ and the binding constants values (K) were obtained as best fit parameters in a nonlinear least square fitting procedure.^[7]

SCHEME S1. Synthesis of *S*-2-Anilinomethyl-*S*-1-ethylmethylpyrrolidinium iodide and *S*-2-Anilinomethyl-*R*-1-ethylmethylpyrrolidinium iodide

The same experimental procedure reported above was followed to synthesize the R-2-Anilinomethyl-R-1-ethylmethylpyrrolidinium iodide and R-2-Anilinomethyl-S-1-ethylmethylpyrrolidinium iodide. Only the R,R stereoisomer (**R**,**R**-2) was obtained as pure compound.

R,R-2

Figure S1. (a) ¹H NMR titration curve of 1 mM **TBACI** with receptor **M20** (Host concentrations in the titration experiments are in the range 0.2-3.5 mM) in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TBACI** monitoring N-*CH*₃ protons; (b) Job plot of **M20** and **TBACI** in CHCl₃ at 27 °C ([**M20**] + [**TBACI**])= 0.1mM

Figure S2. (a) ¹H NMR titration curve of 1 mM **TMACl** with receptor **M20** (Host concentrations in the titration experiments are in the range 0.4-7.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TMACl** monitoring N-*CH*₃ protons; (b) Job plot of **M20** and **TMACl** in CHCl₃ at 27 °C ([**M20**] + [**TMACl**])= 0.1 mM)

(b)

Figure S3. (a) ¹H NMR titration curve of 1 mM **TEACI** with receptor (Host concentrations in the titration experiments are in the range 0.2-3.0 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TEACI** monitoring N-*CH*₂ protons; (b) Job plot of **M20** and **TEACI** in CHCl₃ at 27 °C ([**M20**] + [**TEACI**])=0.1 mM).

M20/TMeACl

Figure S4. (a) ¹H NMR titration curve of 1 mM **TMeACl** with receptor **M20** (Host concentrations in the titration experiments are in the range 0.1-2.0 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TMeACl** monitoring N-*CH*₃ protons; (b) Job plot of **M20** and **TMeACl** in CHCl₃ at 27 °C ([**M20**] + [**TMeACl**])=1 mM).

Figure S5. (a) ¹H NMR titration curve of 1 mM **AChCl** with receptor **M20** (Host concentrations in the titration experiments are in the range 0.4-7.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **AChCl** monitoring N-*CH*₃ protons; (b) Job plot of **M20** and **AChCl** in CHCl₃ at 27 °C ([**M20**] + [**AChCl**])=0.1 mM)

M40/TBACl

(b)

Figure S6. (a) ¹H NMR titration curve of 1 mM **TBACI** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.1-5.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TBACI** monitoring N-*CH*₃ protons ; (b) Job plot of **M40** and **TBACI** in CHCl₃ at 27 °C ([**M40**] + [**TBACI**])=0.1 mM).

Figure S7. (a) ¹H NMR titration curve of 1 mM **TBABr** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.2-2.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TBABr** monitoring N-*CH*₃ protons; (b) Job plot of **M40** and **TBABr** in CHCl₃ at 27 °C ([**M40**] + [**TBABr**])= 0.1 mM)

(b)

Figure S8. (a) ¹H NMR titration curve of 1 mM **TBAI** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.2-2.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TBAI** monitoring N-*CH*₃ protons; (b) Job plot of **TBAI** and **M40** in CHCl₃ at 27 °C ([**M40**] + [**TBAI**])=0.1 mM)

Figure S9. (a) ¹H NMR titration curve of 1 mM **TMACl** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.1-1.0 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TMACl** monitoring N-*CH*₃ protons; (b) Job plot of **M40** and **TMACl** in CHCl₃ at 27 °C ([**M40**] + [**TMACl**])=0.1 mM)

Figure S10. (a) ¹H NMR titration of 1 mM **TEACI** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.1-1.0 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TEACI** monitoring N-*CH*₂ and CH₂-*CH*₃ protons; (b) Job plot of **M40** and **TEACI** in CHCl₃ at 27 °C ([**M40**] + [**TEACI**])=0.1 mM)

(b)

Figure S11. (a) ¹H NMR titration of 1 mM **AChCl** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.2-1.0 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **TEACl** monitoring N-*CH*₃, N-*CH*₂, NCH₂-*CH*₂, CH₂-O-CO-*CH*₃ protons; (b) Job plot of **M40** and **AChCl** in CHCl₃ at 27 °C ([**M40**] + [**AChCl**])=0.1 mM).

Figure S12. (a) ¹H NMR titration curve of 1 mM **BnTriMACI** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.5-10 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **BnTriMACI** monitoring N-*CH*₃ protons ; (b) Job plot of **M40** and **BTMACI** in CHCl₃ at 27 °C ([**M40**] + [**BnTriMACI**])=0.1 mM)

Figure S13. (a) ¹H NMR titration of 1 mM of **R-1** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.5-3.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **R-1** monitoring N-*CH*₃ protons; (b) Job plot of **M40** and **R-1** in CHCl₃ at 27 °C ([**M40**] + [**R-1**])=0.1 mM)

Figure S14. (a) ¹H NMR titration of 1 mM of **S-1** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.5-4.0 mM), in CDCl₃ at 27 °C, , $\Delta\delta$ is the chemical shift difference in ppm of **S-1** monitoring N-*CH*₃ protons ; (b) Job plot of **M40** and **S-1** in CHCl₃ at 27 °C ([**M40**] + [**S-1**])=0.1 mM)

Figure S15. (a) ¹H NMR titration of 1 mM of **S,S-2** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.2-3.0 mM), in CDCl₃ at 27 °C, , $\Delta\delta$ is the chemical shift difference in ppm of **S,S-2** monitoring N-*CH*₃ protons ; (b) Job plot of **M40** and **S,S-2** in CHCl₃ at 27 °C ([**M40**] + [**S,S-2**])=0.1 mM)

(b)

Figure S16. (a) ¹H NMR titration of 1 mM of **R,S-2** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.3-3.0 mM), in CDCl₃ at 27 °C, , $\Delta\delta$ is the chemical shift difference in ppm of **R,S-2** monitoring N-*CH*₃ protons ; (b) Job plot of **M40** and **R,S-2** in CHCl₃ at 27 °C ([**M40**] + [**R,S-2**])=0.1 mM).

Figure S17. (a) ¹H NMR titration of 1 mM of **R,R-2** with receptor **M40** (Host concentrations in the titration experiments are in the range 0.2-2.5 mM), in CDCl₃ at 27 °C, $\Delta\delta$ is the chemical shift difference in ppm of **R,R-2** monitoring N-*CH*₃ protons; (b) Job plot of **M40** and **R,R-2** in CHCl₃ at 27 °C ([**M40**] + [**R,R-2**])=0.1 mM).

Figure S18. Portion of ¹H NMR titration spectra of M40/AChCl (500 MHz; CDCl₃ at 27 °C)

Figure S19. ¹H NMR titration spectra of **M40/TEACI** (500 MHz; CDCl₃ at 27 °C)

¹H NMR and ¹³C NMR spectra of compound **2** (500 MHz, CDCl₃)

¹H NMR and 2D NMR gCOSY spectra of compound **3** (500 MHz, CDCl₃)

¹H NMR and 2D NMR gCOSY spectra of compound **4** (500 MHz, CDCl₃)

 1 H NMR and 2D NMR gCOSY spectra of compound **S,S-2**(500 MHz, CDCl₃)

2D NMR NOESY spectrum of compound **S,S-2** (500 MHz, CDCl₃)

¹H NMR and 2D NMR gCOSY spectra of compound **R,S-2** (500 MHz, CDCl₃)

2D NMR NOESY spectrum of compound **R,S-2**(500 MHz, CDCl₃)

¹H NMR spectrum of compound **R,R-2** (500 MHz, CDCl₃)

Selected portion of 2D-NMR NOESY spectra of compounds **S,S-2** and **R,S-2** to assign absolute configuration.