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Derivation of the AXD formalism 

 

The residence probability in the phase space volume ΔΓ (see Scheme I of this 

article) may be obtained using classical MD, Langevin dynamics, or a Monte-Carlo 

random walk as 
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)( ΔΓ∈ρP is also defined as 
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where )( ΔΓ∈=ΔΓ ρττ  is the time that the system spends within the ΔΓ region, and 

totalτ  is the total MD simulation time.  If the dynamics is statistical, then )( ΔΓ∈ρP  

corresponds to the ratio of two phase volumes (or classical partition functions)  
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where Гtot is the total phase volume.  For the canonical case of a thermal ensemble 

averaged over all energies, E(p,q), the terms in AI.3 may be rewritten as  

 

Γtot ∝ e
−

E(p,q )
kT dpdq∫∫

ΔΓ∝ e
−

E(p,q )
kT dpdq

ρ∈ΔΓ
∫∫

     (AI.4) 

 

For the microcanonical case, where the ensemble has a fixed energy, the terms are 
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Γtot = δ(E(p,q))− E) dpdq∫∫
ΔΓ = δ(E(p,q))− E) dpdq

ρ∈ΔΓ
∫∫    (AI.5) 

 

For large molecules, the results for )( ΔΓ∈ρP  calculated for canonical or 

microcanonical ensembles are indistinguishable if the microcanonical energy is equal 

to the canonical average energy – i.e., when E(p,q) = < E(p,q)>.    

It is often difficult to converge both P(ρ) and p(ρ) over the full phase space 

volume because the probability of finding the system at high free energy regions of 

the phase space is very small.  Following on from the ideas in refs 27 and 28, and 

using the definitions in Scheme I, we may accelerate the convergence by rewriting Eq 

(AI.3) as follows:  

 

P(ρ ∈ ΔΓ) = ΔΓ
Γ1 + ΔΓ

×
Γ1 + ΔΓ
Γtot

= PAXD × PCORR   (AI.6) 

 

where Γ1 is bounded by ρlock, and therefore adjacent to ΔΓ.  In Eq (AI.6), 

)( ΔΓ∈ρP is a product of two factors.  The first, PAXD, is an accelerated integrated 

probability  

 

P AXD =
ΔΓ

Γ1 + ΔΓ
        (AI.7) 

 

and the second, PCORR, is a correction factor for the accelerated probability  

 

PCORR =
Γ1 + ΔΓ
Γtot

       (AI.8) 

 

PCORR may be obtained by running MD and using Eq (AI.2) with τΔΓ replaced by τlock 

where τlock is the time the trajectory spends in Γ1 + ΔΓ, and PAXD may be obtained 

using Eq (AI.2) with τtotal replaced by τlock – i.e., the MD constrained so that it only 

occurs in the phase space region Γ1 + ΔΓ, bounded by ρlock.  The rare event 

acceleration of these equations derives from the fact that it is less expensive to 
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converge PAXD  and PCORR  separately than their small product in Eq (AI.6) using 

brute force MD.    

Similar arguments can be also applied to the calculation of rate coefficients 

because a TST thermal rate coefficient, k(T), is inversely proportional to Гreact – i.e., 

 

k(T)∝ 1
Γ react

        (AI.9) 

 

where Γreact = Γ1 + Γ2  is the total reactant phase volume.  Therefore, k(T) may also be 

written in an analogous fashion as )( ΔΓ∈ρP   in Eq. (AI.6): 

 

k(T) = k AXD Γ1

Γ1 + Γ2

= kAXDPCORR      (AI.10) 

 

where kAXD is the accelerated rate coefficient obtained from the dynamics restricted 

within Γ1, restricted by ρlock, and PCORR is slightly different from that given in AI.8 

when correcting probabilities – i.e.,  

 

 PCORR =
Γ1

Γ1 + Γ2

       (AI.11) 

As has been discussed in Ref. 27, kAXD may account for some non-statistical effects 

such as direct trajectories or fast recrossing, and therefore may differ from the TST 

rate coefficient.  Strictly speaking, kAXD should contain a transmission coefficient that 

accounts for these effects; however, we note that irrespective of such corrections, k(T) 

remains inversely proportional to Гreact as written in Eq (AI.9).  Thus, the transmission 

coefficient is simply folded into kAXD, and the definition of PCORR remains unchanged 

– i.e., it may be calculated statistically.  For the sake of simplicity, the equations 

written above do not include transmission factor corrections. 
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Details of the velocity inversion procedure 

 

Below, we describe the procedure we have used for inverting velocities at a 

box boundary in a fashion that conserves momentum and angular momentum. 

Inverting the velocities is a simple procedure that may be applied to other reaction 

coordinates involving an arbitrary number of atoms.  In general, if the reaction 

coordinate is a function of a number of system coordinates and/or momenta, then the 

inversion is undertaken as follows: 

(1) Transform atomic velocities from the Cartesian frame to the center-of-

mass (CM) frame 

(2) Calculate the unit vector along the gradient of the reaction coordinate ρ as  

  
r n = ∇ρ ∇ρ        (AII.1) 

(3) Calculate the parallel projections of the center of mass atomic velocities on 

the reaction coordinate unit vector, and then invert these velocities 

(4) Transform back to the Cartesian frame 

 

Below, we illustrate the velocity inversion procedure for the peptide extension 

reaction coordinate discussed in the article.  If the trajectory crossed the boundary at 

the t+1 timestep, then we go back to the positions, r, and velocities, v, at the t 

timestep, and invert the velocities in the centre of mass frame to yield v’.  For the 

peptide extension, we start with the positions and velocities of the peptide C terminus 

( ) and N terminus ( ), and work out the velocity of their CM 11, vr rr
22 , vr rr

21

2211

mm
vmvmvcm +

+
=

rr
r        (AII.2) 

Their velocities in the CM frame are  

cmcmcmcm vvvvvv rrrrrr
−=−= 2211 ,      (AII.3) 

The peptide extension reaction coordinate is the distance between atoms 1 and 2 – i.e., 

ρ = rx
2 + ry

2 + rz
2  where rx, ry, and rz are elements of the vector   

r r 2 −
r r 1 .  The unit 

vector along the reaction coordinate,  
r n 12, is defined using eq. (AII.1) as: 

  

r n 12 =
∇ρ
∇ρ

= ∇ρ =
r r 2 −

r r 1r r 2 −
r r 1

      (AII.4) 

The projection of the vector  onto cmv1
r

12nr  is defined as 
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)( 12112
||

1 nvnv cmcm
rrrr

=       (AII.5) 

Inverting the velocity simply means inverting the sign of the  ||
1cmvr  contribution to the 

vector , which means replacing ||
111 cmcmcm vvv rrr

+= ⊥
cmv1

r  by  '1cmvr   where 

||
11

||
111 2' cmcmcmcmcm vvvvv rrrrr

−=−= ⊥      (AII.6) 

Now we go back to the original laboratory frame and replace 1vr   by   '1vr

cmcm vvv rrr
+= '' 11        (AII.7) 

We undertake the same procedure for atom 2: 2vr  is replaced by 2v 'r , where the latter is 

calculated as follows: 

  )( 12212
||

2 nvnv cmcm
rrrr

=       (AII.8.1) 

       (AII.8.2) ||
222 2' cmcmcm vvv rrr

−=

 cmcm vvv rrr
+= '' 22        (AII.8.3) 

The rest of the velocities remain unchanged.  So long as the numerical integration 

algorithm calculates velocities and positions at the same time, the velocity inversion 

procedure described above conserves both the linear and angular momentum of the 

system, and thus conserves energy perfectly for in vacuo peptide simulations using a 

microcanonical NVE ensemble.  The requirement that both velocities and positions 

are calculated at the same time means that this inversion procedure does not conserve 

energy for in vacuo simulations using integrators such as Leapfrog Verlet.  In the case 

of Langevin dynamics, where energy is not conserved, then the procedure described 

above may be implemented within the Leapfrog Verlet algorithm, and the numerical 

integration is stable. 
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