A Copper-Catalyzed Synthesis of 2-Unsubstituted NSubstituted Benzimidazoles

Keiichi Hirano, Akkattu T. Biju, Frank Glorius*
Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstraße 40, 48149
Münster, Germany

Supporting Information

1. General Informations 2
2. Synthesis and Characterization of Formamidines 3
3. Synthesis and Characterization of 2-Unsubstituted, N-Substituted Benzimidazoles 15
4. Synthesis and Characterization of Benzimidazolium Salts 27
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 30

1. General information

All reactions were carried out in flame-dried reaction vessels. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel. All new compounds were fully characterized. The commercially available chemicals were used without further purification.

NMR-spectra were recorded on a Bruker ARX-300, AV-300, or AV-400 MHz. Chemical shifts (δ) are quoted in ppm downfield of tetramethylsilane. Coupling constants (J) are quoted in Hz .

Infrared spectra were recorded on a Varian Associated FT-IR 3100 Excalibur with ATR unit. The wave numbers (n) of recorded IR-signals are quoted in cm^{-1}. ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Elemental analyses were recorded on Vario EL III of Fa. Elementar Analysensysteme GmbH, Hanau.

GC-MS Spectra were recorded on an Agilent Technologies 7890A GC-system with Agilent 5975C VL MSD or 5975 inert Mass Selective Detector (EI) and a HP-5MS column ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$, Film: $0.25 \mu \mathrm{~m}$). For control of the conversion and characterization of the products, two methods were used (Table 1). The method used starts with the injection temperature T_{0}, after holding this temperature for 3 min , the column is heated to the temperature T_{1} (ramp) and holds the final temperature for the indicated time.

Table 1: GC-MS methods.

method	$\mathrm{T}_{0}\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{ramp} / \mathrm{K} \cdot \mathrm{min}^{-1}$	$\mathrm{~T}_{1}\left[{ }^{\circ} \mathrm{C}\right] /$ holding time $[\mathrm{min}]$
\mathbf{A}	$\mathbf{5 0}$	$\mathbf{4 0}$	$\mathbf{2 9 0} / \mathbf{3}$
\mathbf{B}	$\mathbf{5 0}$	$\mathbf{2 0}$	$\mathbf{3 2 0} / \mathbf{8}$

2. Synthesis and Characterization of Formamidines

The formamidines were synthesized following the reported procedure by Grubbs et al., which was not further optimized. ${ }^{1}$
N, N^{\prime}-Bis-(2-bromophenyl)-formamidine (1a)

2-Bromoaniline ($3.44 \mathrm{~g}, 2.18 \mathrm{~mL}, 20 \mathrm{mmol}, 2.0$ eq.) and glacial acetic acid ($30 \mathrm{mg}, 29 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were mixed with triethylorthoformate ($1.48 \mathrm{~g}, 1.67 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ eq.). The mixture was stirred for 10 h at $140^{\circ} \mathrm{C}$ and allowed to cool to rt . The resulting viscous oil solidified on standing. The solid was washed with n-pentane ($2 \times 10 \mathrm{~mL}$) and recrystallized from EtOH to afford 1a as a white solid ($2.67 \mathrm{~g}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.14(\mathrm{~m}$, 5H), 7.00-6.89 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 147.3$ (br), 142.9 (br), 132.9, 128.4, 124.5, 119.0 (br), 115.2 (br); IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=2989,2918,2855,1653,1580$, 1498, 1468, 1448, 1435, 1379, 1307, 1281, 1260, 1226, 1206, 1122, 1028, 1001, 937, 909, 855, 820, 745, 681, 659, 626, 610, 543; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.78; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.56 min ; MS (GC-MS): $m / z(\%)=351$ (6), 273 (52), 198 (1), 182 (12), 171 (100), 155 (23), 91 (13), 77 (10); EM (ESI): $m / z\left[M+\mathrm{Na}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{NaN}_{2}$: 374.9103, found: 374.9114.
N, N^{\prime}-Bis-(2-bromo-5-trifluoromethylphenyl)-formamidine (1b)

The mixture of 2-bromo-5-(trifluoromethyl)aniline (1.0 $\mathrm{g}, 4.17 \mathrm{mmol}, 2.0$ eq.), triethylorthoformate (378 mg , $415 \mu \mathrm{~L}, 2.52 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and glacial acetic acid (6.3$ $\mathrm{mg}, 6.0 \mu \mathrm{~L}, 0.104 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) were stirred for 24 \mathrm{~h}$ at $150{ }^{\circ} \mathrm{C}$. The resulting viscous oil solidified during cooling to rt. The brown solid was triturated in cold n-pentane (2 mL) and the supernatant was removed by decantation. This operation was repeated three times and dried under reduced pressure. The product $\mathbf{1 b}$ was obtained as a white solid ($726.2 \mathrm{mg}, 71 \%$). The exact assignment was not possible due to the complexity of the NMR spectra.

[^0]${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.78-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl $_{3}$): $\delta 147.1,133.6,131.2(\mathrm{q}, J=33 \mathrm{~Hz}), 123.7(\mathrm{q}, J=272 \mathrm{~Hz})$, 121.5 (m), 116.5 (m); ${ }^{19}$ F NMR (282 MHz, $\mathbf{C D C l}_{3}$): $\delta-62.7$; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3378$, 3073, 1647, 1588, 1575, 1540, 1426, 1379, 1324, 1276, 1259, 1203, 1170, 1121, 1078, 1027, 959, 903, 882, 818, 746, 727, 682, 612, 586; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): $0.81 ; \boldsymbol{t}_{\mathbf{R}}$ (50_40): 9.77 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=488$ (4), 469 (1), 421 (1), 409 (41), 331 (1), 250 (18), 239 (100), 223 (18), 170 (3), 160 (12), 144 (37), 80 (1), 75 (10), 69 (5); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2}: 490.9011$, found: 490.9001 .

2-Bromo-3,5-dimethylphenylamine ${ }^{2}$

Following the procedure by Futagawa, ${ }^{2}$ 3,5-dimethylaniline ($6.38 \mathrm{~g}, 52.7$ mmol, 1.0 eq.) was dissolved in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. NBS $(9.38 \mathrm{~g}, 52.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was added portionwise to the vigorously$ stirred solution at $0{ }^{\circ} \mathrm{C}$ and the residual NBS was rinsed with a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the reaction. The resulting brown suspenstion was stirred for 2.5 h at $0^{\circ} \mathrm{C}$ and quenched by addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatiles were removed under removed pressure. The brown residue was purified by column chromatography ($\varnothing 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 16.5 \mathrm{~cm}$, n-pentane/EtOAc 19:1) to yield the product as a greenish solid ($1.78 \mathrm{~g}, 17 \%$). As a byproducts 2,4 -dibromo-3,5dimethylphenylamine $(1.99 \mathrm{~g}, 14 \%$, an off-white solid) and 2,4,6-tribromo-3,5dimethylphenylamine ($696.7 \mathrm{mg}, 4 \%$, colorless needles) were obtained additionally and used for the synthesis of the symmetrically substituted formamidines. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 6.48-6.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), ~ 6.45-6.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 143.9,138.3$, 137.3, 121.4, 113.8, 108.9, 23.4, 20.8; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3398,3300,3194,3018$, 2979, 2952, 2919, 2858, 2734, 1617, 1587, 1469, 1439, 1416, 1375, 1333, 1295, 1257, 1174, 1117, 1018, 965, 872, 836, 722, 693, 570; \mathbf{R}_{f} (\boldsymbol{n}-pentane/EtOAc 19:1): 0.27 ; $\boldsymbol{t}_{\mathrm{R}}$ (50_40): 7.45 min ; MS (GC-MS): m/z (\%) = 201 (100), 184 (10), 120 (59), 105 (4), 91

[^1](24), 79 (3), 77 (16); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrN}$: 200.0069, found: 200.0077 .

2,4-Dibromo-3,5-dimethylphenylamine ${ }^{2}$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, DMSO-d6): $\delta 6.67$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.36 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 2.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO-d6): δ 146.0, 137.7, 137.0, 115.5, 113.1, 108.9, 25.5, 24.6; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=$ $3390,3293,3191,3053,2987,2948,2918,2847,1618,1567,1454,1426$, 1394, 1376, 1331, 1280, 1219, 1134, 1041, 973, 859, 846, 718, 691, 642, 605, 589, 560; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 19:1): 0.20; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 8.51 min ; MS (GC-MS): $m / z(\%)=279$ (100), 198 (22), 118 (28), 104 (5), 91 (19), 77 (4); EM (ESI): $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}: 277.9175$, found: 277.9165 .

2,4,6-Tribromo-3,5-dimethylphenylamine ${ }^{2}$

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.68$ (br s, 2H, NH2), 2.59 (s, 6 H ,

$2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 141.2,136.6,114.6,108.6$, 25.6; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3416,3294,3191,2921,1604,1547,1432$, 1394, 1373, 1264, 1101, 1026, 971, 711, 653; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 19:1): 0.58 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 9.15 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=357$ (100), 342 (1), 278 (29), 197 (18), 184 (1), 168 (1), 91 (11), 90 (12), 78 (4), 77 (3); EM (ESI): m/z [M + H $\left.{ }^{+}\right]$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{~N}: 355.8280$, found: 355.8281 .

N, N^{\prime}-Bis-(2-bromo-3,5-dimethylphenyl)-formamidine (1c)

2-Bromo-3,5-dimethylphenylamine ($1.5 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$
 eq.) and glacial acetic acid ($11.3 \mathrm{mg}, 10.7 \mu \mathrm{~L}, 0.189 \mathrm{mmol}$, 0.025 eq.) were mixed with triethylorthoformate $(680.0 \mathrm{mg}$, $747.2 \mu \mathrm{~L}, 5.7 \mathrm{mmol}, 0.75 \mathrm{eq}$.$) . The mixture was stirred for 4$ h at $150^{\circ} \mathrm{C}$ and allowed to cool to rt . The resulting brown viscous oil was scratched in n pentane (2 mL) to afford the solid. The supernatant was removed by a pipette and this procedure was repeated five times using n-pentane (5 mL). The product was obtained as an off-white solid ($1.10 \mathrm{~g}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.07-6.65(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}$, 6H); ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 147.4,138.8,137.5,126.4,116.9$ (br), 23.6, 21.0; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3027,2977,2950,2918,2857,2733,1651,1629,1571,1458,1435$, 1402, 1376, 1327, 1280, 1262, 1246, 1202, 1170, 1027, 999, 950, 845, 837, 729, 704, 639, 600, 583, 575, 568, 533; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.84 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.34 min ; MS (GC-MS): m/z (\%) = 357 (100), 342 (1), 278 (29), 197 (18), 184 (1), 168 (1), 91 (11), 90 (12), 78 (4), 77 (3); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2}$: 408.9910, found: 408.9899 .

N, N^{\prime}-Bis-(2,4-dibromo-3,5-dimethylphenyl)-formamidine (1d)

2,4-Dibromo-3,5-dimethylphenylamine $(1.67 \mathrm{~g}, \quad 6.0$ mmol, 1.0 eq.), glacial acetic acid ($9.0 \mathrm{mg}, 8.6 \mu \mathrm{~L}, 0.15$ mmol, 0.025 eq.$)$ and triethylorthoformate $(544.0 \mathrm{mg}$, $597.8 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 0.75 \mathrm{eq}$.$) were suspended in para-$ xylene (4 mL) and the mixture was stirred for 11 h at $150{ }^{\circ} \mathrm{C}$. After cooling to rt the resulting brown viscous oil was scratched in n-pentane (2 mL) to afford the solid. The supernatant was removed by a pipette and this procedure was repeated five times using n pentane (5 mL). The product was obtained as a white solid ($1.02 \mathrm{~g}, 60 \%$). The measurement of ${ }^{13} \mathrm{C}$ NMR was not successful.
${ }^{1}$ H NMR (400 MHz, DMSO-d6): $\delta 9.06$ ($\mathrm{s}, 1 \mathrm{H}$), 8.31 (s, 1H), 7.95 ($\mathrm{s}, 1 \mathrm{H}$), 2.60 ($\mathrm{s}, 6 \mathrm{H}$, CH_{3}), 2.34 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$); IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3377,2920,1636,1577,1554,1487,1449$, 1397, 1375, 1357, 1317, 1267, 1244, 1203, 1032, 984, 955, 849, 824, 760, 717, 698, 661, 627, 600, 575, 557, 519; $\mathbf{R}_{\mathbf{f}}$ ($\boldsymbol{n}-\mathbf{p e n t a n e} / \mathbf{E t O A c} \mathbf{1 : 1}$): 0.79 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320_8ISO): 21.90 min ; MS (GC-MS): m/z (\%) = 568 (8), 487 (78), 406 (1), 327 (4), 279 (100), 198 (12), 119 (12), 118 (14), 117 (8), 103 (22), 91 (13), 77 (12); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Br}_{4} \mathrm{~N}_{2}$: 564.8120, found: 564.8106.
N, N^{\prime}-Bis-(2-bromo-4,6-dimethylphenyl)-formamidine (1e)
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.24$ ($\mathrm{s}, 2 \mathrm{H}$), $6.95(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.31$ (br s, 6H), 2.25 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13}$ C-NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 130.8$ (br), 130.6 (br), 20.5, 19.3 (br); IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}$ $=3143,3011,2976,2948,2918,2844,2732,1644,1600,1556,1470,1438,1371,1315$, 1264, 1216, 1170, 1122, 1110, 991, 846, 824, 810, 651; \mathbf{R}_{f} (n-Pentan/EtOAc 1:1): 0.76; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 12.13 min ; MS (GC-MS): $m / z(\%)=408$ (2), 329 (18), 211 (2), 210 (5), 199 (100), 198 (11), 132 (3), 131 (25), 120 (25), 119 (5), 104 (18), 103 (15), 91 (10), 79 (2), 77 (16); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2}: 408.9910$, found: 408.9910 .

N-(2-Bromophenyl)- N^{\prime}-(2,4,6-trimethylphenyl)-formamidine (1f)

The mixture of 2,4,6-trimethylaniline $(13.52 \mathrm{~g}, 14.08 \mathrm{~mL}$, $100 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , triethylorthoformate (14.82 \mathrm{~g}, 16.65 \mathrm{~mL}$, $100 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and glacial acetic acid (300.3 \mathrm{mg}, 287 \mu \mathrm{~L}$, $5 \mathrm{mmol}, 0.05$ eq.) were stirred for 2.5 h at $120^{\circ} \mathrm{C}$, then cooled to rt. ortho-bromoaniline $(17.20 \mathrm{~g}, 10.89 \mathrm{~mL}, 100 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was added to the reaction and the resulting$ mixture was stirred for 1.5 h at $140^{\circ} \mathrm{C}$, then for 14 h at $160^{\circ} \mathrm{C}$. After cooling to rt , the solidified crude product was triturated in n-pentane (10 mL) and the supernatant was removed by a pipette. The residue was recrystallized from acetone to yield the first fraction of the pure product. The mother liquor was concentrated and recrystallized fractionally from EtOAc to afford several pure fractions. The rest was purified by column chromatography ($\varnothing 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 13 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The product $\mathbf{1 f}$ was obtained as a white solid (6.84 g in total, 22%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.91-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}$, 2H), 6.96-6.68 (m, 3H), 2.32-2.07 (m, 9H); ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 133.0$ (br), 129.0, 128.4 (br), 123.7 (br), 20.8, 18.6 (br); IR (ATR): $v / \mathrm{cm}^{-1}=3187,2974,2914$, 2854, 2733, 1624, 1608, 1579, 1547, 1467, 1433, 1367, 1321, 1256, 1216, 1179, 1156, 1117, 1044, 1024, 993, 918, 843, 751, 728, 696, 648, 583; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.67 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): $10.31 \mathrm{~min} ; \mathbf{M S}(\mathbf{G C}-\mathbf{M S}): ~ m / z(\%)=316(24), 237(17), 170(100), 154$ (4), 146 (80), 135 (20), 131 (24), 120 (23), 118 (7), 103 (11), 92 (8), 91 (39), 77 (22); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{2}: 317.0648$, found: 317.0641.
N-(2-Bromo-4,6-dimethylphenyl)- N^{\prime}-(2,4,6-trimethylphenyl)-formamidine (1g)

2,4,6-Trimethylaniline ($2.45 \mathrm{~g}, 2.55 \mathrm{~mL}, 18.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and glacial acetic acid $(54.3 \mathrm{mg}, 52 \mu \mathrm{~L}, 0.905 \mathrm{mmol}, 0.05$ eq.) were mixed with triethylorthoformate $(2.68 \mathrm{~g}, 3.01 \mathrm{~mL}$, $18.1 \mathrm{mmol}, 1.0$ eq.) and the mixture was stirred for 1.5 h at $120{ }^{\circ} \mathrm{C}$. The reaction vessel was removed from the oil bath and 2-bromo-4,6-dimethylaniline ($3.62 \mathrm{~g}, 18.1 \mathrm{mmol}$, 1.0 eq.) was added. The resulting mixture was stirred for 20 h at $140^{\circ} \mathrm{C}$ and cooled to rt. The obtained brown viscose oil solidified and the solid was triturated in n-pentane $(10 \mathrm{~mL})$, then the supernatant was removed with a pipette. The crude product was washed twice in the same fashion and recrystallized from EtOH . The further purification was performed by column chromatography ($\emptyset 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 32 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ $4: 1 \rightarrow 2: 3 \rightarrow 1: 4)$ to deliver the product 1 g as a white solid ($1.02 \mathrm{~g}, 16 \%$). The symmetrical formamidine from 2-bromo-4,6-dimethylaniline, N, N '-bis-(2-bromo-4,6-dimethylphenyl)-formamidine $\mathbf{1 e}$, was obtained additionally as a white solid (465.6 mg , 6%) and used for the corresponding benzimidazole synthesis.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 7.46-7.09 (m, 2H), 7.05-6.79 (m, 3H), $6.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.37-2.14 (m, 15H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 148.1$ (br), 134.0 (br), 130.7, 130.4, 129.0 (br), 20.8, 20.4, 19.2 (br), 18.6 (br); IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3143,2971,2917,2852$, 1638, 1601, 1551, 1469, 1370, 1320, 1258, 1214, 1176, 1113, 847, 813; $\mathbf{R}_{\mathbf{f}}(\mathbf{n}-$ pentane/EtOAc 1:1): 0.68; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.06 min ; MS (GC-MS): m/z (\%) = 344 (11), 265 (17), 199 (86), 146 (55), 145 (17), 135 (100), 134 (26), 132 (3), 120 (47), 119 (12), 118 (6), 104 (16), 91 (25), 79 (6), 77 (21); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{2}$: 345.0961, found: 345.0959 .
N-(2,4,6-Tribromophenyl)- N^{\prime}-(2,4,6-trimethylphenyl)-formamidine (1h)

2,4,6-Tribromoaniline ($3.30 \mathrm{~g}, 10 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and triethylorthoformate ($741.0 \mathrm{mg}, 832.6 \mu \mathrm{~L}, 5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were dissolved in para-xylene (4 mL) and glacial acetic acid ($15.0 \mathrm{mg}, 14.3 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 0.05 \mathrm{eq}$.) was added. The reaction was stirred for 2.5 h at $150{ }^{\circ} \mathrm{C}$ and cooled to $\mathrm{rt} .2,4,6$-Trimethylaniline ($676.1 \mathrm{mg}, 704.2 \mu \mathrm{~L}, 5 \mathrm{mmol}, 1$ eq.) was added to the mixture and it was stirred for 17.5 h at $140^{\circ} \mathrm{C}$. The mixture was diluted
with n-pentane (4 mL) after being cooled to rt . The obtained solid was filtered and washed with n-pentane $(3 \times 4 \mathrm{~mL})$. The crude product was pre-adsorbed on silica gel and purified by column chromatography ($\varnothing 4 \mathrm{~cm}, \mathrm{SiO}_{2}: 14 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the product $\mathbf{1 h}$ as a light violet solid ($413.0 \mathrm{mg}, 17 \%$).
${ }^{1}$ H NMR (300 MHz , DMSO-d6): δ 9.24-6.66 (m, 6H), 2.36-2.17 (m, 9H); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO-d6): δ 153.2, 136.4 (br), 134.6 (br), 129.2, 21.5, 19.3; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=2956,2918,2854,1639,1606,1549,1525,1482,1434,1412,1366,1323,1296$, $1241,1216,1178,1128,1106,1059,1033,1013,995,920,850,798,757,734,712,617$; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.82; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320): $17.45 \mathrm{~min} ; \mathbf{M S}$ (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=$ 472 (1), 457 (1), 393 (5), 327 (5), 315 (3), 311 (1), 237 (2), 170 (1), 146 (100), 135 (19), 134 (16), 120 (22), 119 (6), 105 (2), 91 (13), 79 (4), 77 (8); EM (ESI): m/z [M + H $\left.{ }^{+}\right]$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{~N}_{2}$: 472.8858, found: 472.8877.
N-(2-Bromophenyl)- N^{\prime}-(2,6-diisopropylphenyl)-formamidine (1i)

The mixture of 2,6-diisopropylamine ($8.87 \mathrm{~g}, 9.43 \mathrm{~mL}, 50 \mathrm{mmol}$, 1.0 eq.), triethylorthoformate ($7.41 \mathrm{~g}, 8.33 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and glacial acetic acid ($150.1 \mathrm{mg}, 143,2 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were stirred for 3 h at $120^{\circ} \mathrm{C}$. The reaction vessel was removed from the oil bath, ortho-bromoaniline ($8.60 \mathrm{~g}, 5.44 \mathrm{~mL}, 50 \mathrm{mmol}, 1 \mathrm{eq}$.) was added and the resulting mixture was stirred for 3 h at $140{ }^{\circ} \mathrm{C}$. The reaction was cooled to rt and diluted with n-pentane (15 mL). The brown solution was cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 10 min to afford an off-white solid. The solid was filtered and washed with n-pentane (3×5 mL) and recrystallized from acetone subsequently. Two pure batches of the product $\mathbf{1 i}$ were obtained as a white solid (3.98 g in total, 22%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.04-6.66$ (m, 9H), 3.32-2.96 (m, 2H), 1.27-1.15 (m, 12H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 148.1$ (br), 142.1, 141.9, 141.2 (br), 138.5, 136.9, 133.2, 133.0 (br), 128.7, 128.5 (br), 124.7 (br), 124.3, 123.7, 123.5, 123.4, 123.2 (br), 117.3 (br), 115.1, 112.0, 28.0, 28.0 (br), 23.7 (br), 23.6, 23.5; IR (ATR): $v / \mathrm{cm}^{-1}=3191$, 2165, 2970, 2960, 2937, 2869, 1632, 1579, 1557, 1463, 1438, 1375, 1361, 1340, 1252, 1204, 1150, 1115, 1043, 1025, 995, 939, 850, 797, 768, 748, 717, 707, 651; $\mathbf{R}_{\mathrm{f}}(\mathbf{n}-$ pentane/EtOAc 1:1): 0.76; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.31 min ; MS (GC-MS): m/z (\%) = 358 (7),

315 (6), 279 (1), 273 (1), 189 (15), 188 (100), 182 (2), 171 (32), 147 (12), 146 (98), 132 (5), 119 (2), 91 (10), 79 (2), 77 (7); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrN}_{2}$: 359.1117, found: 359.1124 .
N-Anthracen-9-yl- N^{\prime}-(2-bromophenyl)-formamidine (1j)

Anthracen-9-ylamine ($3.87 \mathrm{~g}, 20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and glacial acetic acid ($60.1 \mathrm{mg}, 55.3 \mu \mathrm{~L}, 1 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were mixed with triethylorthoformate ($2.96 \mathrm{~g}, 3.33 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) .$ The reaction was stirred for 1.5 h at $120{ }^{\circ} \mathrm{C}$ and the reaction vessel was removed from the oil bath. 2-Bromoaniline ($3.44 \mathrm{~g}, 2.18 \mathrm{~mL}, 20 \mathrm{mmol}$, 1.0 eq.) was added and the resulting mixture was stirred for 11 h at $140^{\circ} \mathrm{C}$. After cooling to rt the solid n-pentane (10 mL) was added to the mixture, the solid was triturated and the supernatant was removed by decantation. The crude mixture was washed twice in the same fashion and pre-adsorbed on silica gel. The first purification by column chromatography ($\emptyset 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 37 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane 3:2 $\rightarrow 4: 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 4: 1$) did not afford the pure product. Therefore the fractions containing the product were collected and concentrated. The residue was suspended in hot EtOH (10 mL) and cooled to rt. The yellow supernatant was decanted off and the solid was washed twice in the same manner. The still contaminated product was pre-adsorbed on silica gel and purified by column chromatography ($\varnothing 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 32 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-Pentan 9:1). The obtained slightly contaminated product was recrystallized from EtOAc and subsequently purified by another column chromatography ($\varnothing 5 \mathrm{~cm}, \mathrm{SiO}_{2}: 15 \mathrm{~cm}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-Pentan 4:1) to afford the product $\mathbf{2 j}$ ($792 \mathrm{mg}, 11 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.27-8.17(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.05-7.97(\mathrm{~m}, 2 \mathrm{H})$, 7.63 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.2$ (br), 137.9 (br), 133.1, 131.9, 128.6, 128.3, 125.4, 125.1, 124.4, $124.2,123.9,122.3,117.7$ (br), 112.9; IR (ATR): $v / \mathrm{cm}^{-1}=1652,1577$, $1533,1474,1436,1409,1352,1306,1265,1214,1174,1045,1025,1002,957,934,886$, 845, 787, 755, 735, 667, 658, 611, 535; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.75 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320-8ISO): 20.12 min ; MS (GC-MS): m/z (\%) = 374 (39), 295 (8), 205 (4), 204
(22), 193 (100), 192 (9), 182 (2), 177 (25), 171 (5), 155 (3), 91 (5), 77 (2); EM (ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}_{2}$: 375.0491, found: 375.0491.
N-(2-Bromophenyl)- \mathbf{N}^{\prime}-(2-tert-butylphenyl)-formamidine (1k)

The mixture of 2-tert-butylaniline $(1.70 \mathrm{~g}, \quad 1.78 \mathrm{~mL}$, $11.4 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , triethylorthoformate (1.69 \mathrm{~g}, 1.90 \mathrm{~mL}$, $11.4 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and glacial acetic acid ($34.2 \mathrm{mg}, 32.7 \mu \mathrm{~L}$, $0.57 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were stirred for 1.5 h at $120{ }^{\circ} \mathrm{C}$. The reaction vessel was removed from the oil bath and 2-bromo-4,6-dimethylaniline (2.29 g , $11.4 \mathrm{mmol}, 1.0$ eq.) was added. The resulting mixture was stirred for 20 h at $140{ }^{\circ} \mathrm{C}$ and then cooled to rt. The black oil was purified by column chromatography ($\varnothing 5 \mathrm{~cm}, \mathrm{SiO}_{2}$: $18 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The fractions containing the product were collected and concentrated. The resulting solid was washed with n-pentane (2 mL). The product $\mathbf{2 k}$ was obtained as a dark purple solid ($946.8 \mathrm{mg}, 23 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.90-6.25(\mathrm{~m}, 8 \mathrm{H}), 2.50-1.06(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 150.9,145.1,142.6,141.8,138.9,137.4,135.6,134.2,133.8,131.1$, $130.9,130.6,127.3,127.0,126.4,124.2,122.0$ (br), 119.6, 118.7, 35.1, 34.1, 30.4, 30.2, 20.5, 19.3, 18.5; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=2964,2919,2863,1661,1590,1566,1476,1437$, $1360,1303,1260,1196,1122,1089,1051,993,851,820,754,691,623,602,539 ; \mathbf{R}_{\mathbf{f}}(\boldsymbol{n}-$ pentane/EtOAc 1:1): 0.80 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.83 min ; MS (GC-MS): $m / z(\%)=358$ (9), 301 (13), 279 (3), 223 (2), 200 (15), 199 (100), 161 (10), 160 (82), 149 (15), 133 (4), 132 (13), 120 (15), 119 (6), 105 (5), 104 (15), 91 (25), 79 (4), 77 (16), 57 (1); EM (ESI): m/z $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrN}_{2}: 359.1117$, found: 359.1118 .

N, N^{\prime}-Bis-(2,4,6-tribromophenyl)-formamidine (11)

2,4,6-Tribromoaniline ($3.30 \mathrm{~g}, 10 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and triethylorthoformate $(741.0 \mathrm{mg}, 832.6 \mu \mathrm{~L}, 5 \mathrm{mmol}$, 1.0 eq.) were dissolved in para-xylene (4 mL) and three drops of conc. sulfuric acid were added. The reaction was stirred for 17 h at $150^{\circ} \mathrm{C}$ and allowed to cool to rt. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The organic phase was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was pre-adsorbed on silica gel and purified by column chromatography ($\varnothing 4 \mathrm{~cm}, \mathrm{SiO}_{2}: 16 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane $1: 19$). The product 11 was obtained as a purple solid ($272.8 \mathrm{mg}, 8 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d 6) : ~} \delta$ 9.89-9.18 (m, 1H), 8.11-7.58 (m, 5H); ${ }^{13}$ C NMR (100 MHz, DMSO-d6): $\delta 152.8$ (br), 135.3 (br), 134.8 (br), 126.6, 119.0; IR (ATR): $\mathbf{v} / \mathrm{cm}^{-1}=3359,3095,3070,2356,2329,1643,1555$, 1532, 1496, 1437, 1433, 1363, 1287, 1221, 1189, 1152, 1101, 1059, 988, 855, 830, 792, 737, 698, 658, 601, 564; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.78; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320_8ISO): 22.14 min ; MS (GC-MS): m/z (\%) = 585 (4), 429 (1), 338 (3), 327 (34), 311 (3), 261 (5), 260 (3), 248 (10), 247 (4), 233 (3), 182 (1), 170 (15), 169 (9), 155 (14), 79 (7); EM (ESI): $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{6} \mathrm{~N}_{2}: 664.5704$, found: 664.5694.

N-(2-Bromophenyl)- N '-pyridin-2-yl-formamidine (1m)

To a 10 mL round bottom flask fitted with a distillation apparatus was taken the o-bromoaniline ($3.66 \mathrm{~g}, 21.25 \mathrm{mmol}, 1 \mathrm{eq}$.$) and$ triethylorthoformate ($3.5 \mathrm{~mL}, 21.25 \mathrm{mmol}, 1 \mathrm{eq}$.$) . To this stirred$ solution was added acetic acid ($60 \mu \mathrm{~L}, 1.06 \mathrm{mmol}, 0.05 \mathrm{eq}$.). The reaction mixture was heated to $140{ }^{\circ} \mathrm{C}$ and kept stirring for 2 h . It was subsequently cooled and then 2aminopyridine ($2 \mathrm{~g}, 21.25 \mathrm{mmol}$) was added. The mixture was heated to $140{ }^{\circ} \mathrm{C}$ again and stirred for 12 h . It was then cooled and the residue was washed with n-hexane (3 x 10 mL). The crude residue upon recrystallization using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-n-hexane afforded the N -(2-bromophenyl)- N^{\prime}-pyridin-2-yl-formamidine $\mathbf{1 m}$ as a light brown solid ($3.58 \mathrm{~g}, 61 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 10.78$ ($\mathrm{s}, 0.5 \mathrm{H}$), $9.42(\mathrm{~s}, 0.5 \mathrm{H}), 877-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.73-$ 6.59 (m, 7H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 163.7,160.2,149.7,147.4,138.2,132.5$, 128.5, 119.3, 118.2, 115.8, 111.9, 109.3; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=2957,2916,2876,1664$, $1598,1572,1503,1473,1415,1354,1293,1236,1205,1157,1115,1096,1045,1028$, 1013, 990, 865; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.50; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.05 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=275$ (9), 197 (14), 196 (100), 173 (24), 171 (25), 155 (9), 94 (92), 79 (19), 78 (42), 76 (13), 67 (33); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{BrH}: 276.0131$, found: 276.0133 .
N-Adamantan-2-yl- N^{\prime}-(2-bromophenyl)-formamidine (1n)

To a 10 mL round bottom flask fitted with a distillation apparatus was taken the o-bromoaniline $(2.274 \mathrm{~g}, 13.22 \mathrm{mmol}$, 1 eq.) and triethylorthoformate ($2.2 \mathrm{~mL}, 13.22 \mathrm{mmol}, 1 \mathrm{eq}$.). To this stirred solution was added acetic acid ($37 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 0.05 \mathrm{eq}$.). The reaction mixture was heated to $140^{\circ} \mathrm{C}$ and kept stirring for 2 h . It was subsequently cooled and then adamantylamine ($2 \mathrm{~g}, 13.22 \mathrm{mmol}, 1 \mathrm{eq}$.) added. The mixture was heated to $140{ }^{\circ} \mathrm{C}$ again and stirred for 12 h . It was cooled and the residue was washed with n-hexane ($3 \times$ 10 mL). The crude residue upon recrystallization using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-n-hexane afforded N -adamantan-2-yl- N^{N}-(2-bromo-phenyl)-formamidine $\mathbf{1 n}$ as a white crystalline solid $(3.17 \mathrm{~g}$, 72%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 4 \mathrm{H}), 1.82(\mathrm{~s}, 7 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta$ $132.9,128.2,123.7,121.0,44.0,42.8,36.1,35.8,29.5,29.3$; IR (ATR): $v / \mathrm{cm}^{-1}=2917$, 2890, 2850, 1665, 1578, 1483, 1357, 1321, 1302, 1255, 1211, 1186, 1136, 1113, 1043, 1027, 992, 933, 863, 815, 754; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): $0.62 ; \boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.44 min ; MS (GC-MS): $m / z(\%)=333$ (18), 332 (51), 331 (8), 252 (21), 253 (100), 236 (17), 201 (12), 199 (19), 173 (56), 171 (57), 163 (23), 162 (56), 157 (19), 155 (18), 135 (92), 119 (41), 118 (30), 93 (65), 79 (64); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{BrH}$: 333.0961, found: 333.0967 .

N, N^{\prime}-Bis-(2,4-dichlorophenyl)-formamidine (10)

2,4-Dichloroaniline ($4.86 \mathrm{~g}, 30 \mathrm{mmol}, 2.0 \mathrm{eq}$.), triethylorthoformate ($2.22 \mathrm{~g}, 2.5 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0 \mathrm{eq}$. and glacial acetic acid $(45.0 \mathrm{mg}, 42.9 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 0.05 eq.) were mixed and stirred for 14 h at $150{ }^{\circ} \mathrm{C}$. After cooling to rt addition of $n-$ pentane (10 mL) induced solidification of the crude product. The resulting solid was triturated in n-pentane, filtered and washed with n-pentane (5 mL). Subsequently the solid was recrystallized from acetone to afford the product $\mathbf{1 0}$ as an off-white crystalline solid ($2.72 \mathrm{~g}, 54 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.95$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $7.62-7.09(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz , CDCl $_{3}$): $\delta 147.0$ (br), 140.1 (br), 129.4, 128.8, 127.8, 125.4 (br), 120.0 (br); IR (ATR): $v / \mathrm{cm}^{-1}=3394,3095,2165,1642,1576,1525,1472,1394,1326,1217,1140,1100,1051$, 961, 912, 875, 864, 834, 822, 729, 710, 688, 646, 627, 572, 555, 534; $\mathbf{R}_{\mathbf{f}}(\boldsymbol{n}-$ pentane/EtOAc 1:1): 0.82; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.39 min ; MS (GC-MS): m/z (\%) = 332 (7), 297 (15), 173 (2), 172 (17), 161 (100), 125 (3), 110 (3), 90 (5); EM (ESI): m/z [M + H $\left.{ }^{+}\right]$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{4} \mathrm{~N}_{2}$: 332.9514, found: 332.9532 .

N, N^{\prime}-Bis-(2,4,6-trichlorophenyl)-formamidine (1p)

The mixture of $2,4,6$-trichloroaniline $(5.89 \mathrm{~g}, 30 \mathrm{mmol}$, 2.0 eq.), triethylorthoformate ($2.22 \mathrm{~g}, 2.5 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.0 eq.) and glacial acetic acid ($45 \mathrm{mg}, 42.9 \mu \mathrm{~L}, 0.75$ mmol, 0.05 eq.) were stirred for 2.5 h at $150^{\circ} \mathrm{C}$. The temperature was elevated to $160^{\circ} \mathrm{C}$ due to sluggish conversion. After 30 min no reaction progress was observed based on GC-MS. Three drops of sulfuric acid were added and the mixture was stirred for 2.5 h at $160^{\circ} \mathrm{C}$. The crude mixture was soluted with n-pentane (20 mL) after cooling to rt and the solid was formed. This solid was filtered, washed with cold n-pentane and subsequently recrystallized from acetone. The product $\mathbf{1 p}$ was obtained as colorless needles $(1.47 \mathrm{~g}$, 24\%). The measurement of ${ }^{13} \mathrm{C}$ NMR was not successful. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 7.79$ (br s, 1H), $7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 4 \mathrm{H})$; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3367,3080,2360$, 2327, 1722, 1654, 1553, 1549, 1494, 1446, 1416, 1382, 1369, 1289, 1214, 1179, 1131, 1078, 979, 917, 855, 818, 796, 745, 709, 606, 565; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.82; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320_8ISO): 17.32 min ; MS (GC-MS): $m / \mathbf{z}(\%)=400$ (2), 365 (13), 331 (1), 206 (14), 195 (100), 194 (2), 179 (10), 159 (4), 145 (5), 125 (1), 110 (1); EM (ESI): m/z $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{6} \mathrm{~N}_{2}: 400.8735$, found: 400.8739 .

3. Synthesis of Characterization of 2-Unsubstituted, \mathbf{N}-Substituted Benzimidazoles

1-(2-Bromophenyl)-1H-benzoimidazole (2a)

Formamidine 1a ($177 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ eq.) was dissolved in 2 mL
DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}, 152 \mathrm{mg}$, $1.0 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 1 h 20 min at $110{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 14 \mathrm{~cm}$, n-pentane/EtOAc 3:1) yielded the benzimidazole 2a as a colorless oil ($135 \mathrm{mg}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.89(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.81 (dd, $J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45$ (dd, $J=7.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43-7.38$ (m, 1H, Ar-H), 7.37-7.28 (m, 2H, $2 \times \mathrm{Ar}-\mathrm{H}$), 7.21-7.17 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 143.2,142.9,135.1,134.3,134.2,130.6$, 129.1, 128.6, 123.7, 122.7, 121.4, 120.4, 110.5; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3061,1731,1614$, 1587, 1493, 1454, 1306, 1288, 1260, 1230, 1203, 1158, 1142, 1056, 1030, 1007, 977, 889, 865, 786, 743, 716, 654, 634, 581, 553, 535; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.29; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): $9.46 \mathrm{~min} ; \mathbf{M S}(\mathbf{G C - M S}): ~ m / z(\%)=272$ (100), 193 (86), 155 (5), 77 (5), 76 (18); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2}: 273.0022$, found: 273.0028; Elemental analysis: calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2}$ (273.13): C 57.17, H 3.32, N 10.26, found: C 57.27, H 3.26, N 10.04 .

1-(2-Bromo-5-trifluoromethylphenyl)-5-trifluoromethyl-1H-benzoimidazole (2b)

Formamidine 1b ($245 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}, 152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.) were added and the reaction was stirred for 1 h 15 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were
treated over brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 18 \mathrm{~cm}, \quad n$-pentane/EtOAc $5: 1$) to afford the benzimidazole $\mathbf{2 b}$ as a white crystalline solid ($188 \mathrm{mg}, 92 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.20$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 8.01 ($\mathrm{d}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 144.4$ (br), 143.0 (br), 135.4, 135.2, $131.7(\mathrm{q}, J=34 \mathrm{~Hz}), 127.8(\mathrm{q}, J=3.5 \mathrm{~Hz}), 126.0(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.9(\mathrm{q}, J=$ $33 \mathrm{~Hz}), 125.7,124.5(\mathrm{q}, J=273 \mathrm{~Hz}), 122.9(\mathrm{q}, J=273 \mathrm{~Hz}), 121.1(\mathrm{q}, J=3.6 \mathrm{~Hz}), 118.6$ $(\mathrm{q}, ~ J=4.1 \mathrm{~Hz}), 110.9 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(282 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta-60.84,-62.79 ; \mathbf{R}_{\mathbf{f}}(\boldsymbol{n}-$ pentane/EtOAc 1:1): 0.68; IR (ATR): $\mathbf{v} / \mathrm{cm}^{-1}=3134,3098,3032,2961,1628,1611$, $1499,1488,1444,1425,1355,1317,1302,1256,1224,1187,1158,1138,1107,1081$, 1048, 997, 976, 959, 916, 895, 934, 825, 805, 758, 729, 715, 671, 652; $\boldsymbol{t}_{\mathrm{R}}$ (50_40): 8.96 min ; MS (GC-MS): $m / z(\%)=408$ (100), 389 (13), 329 (45), 261 (8), 145 (5), 69 (8); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{BrF}_{6} \mathrm{~N}_{2}: 408.9770$, found: 408.9769;

Elemental analysis: calcd. (\%) for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{BrF}_{6} \mathrm{~N}_{2}$ (409.12): C 44.04, H 1.72, N 6.85, found: C 43.99, H 1.74, N 6.69.

1-(2-Bromo-3,5-dimethylphenyl)-5,7-dimethyl-1H-benzoimidazole (2c)

Formamidine 1c ($205 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 23 h 15 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times$ 20 mL), the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\emptyset 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 15 \mathrm{~cm}$, n-pentane/EtOAc 3:1) to yield the benzimidazole 2c as a white solid ($147 \mathrm{mg}, 89 \%$).
A scale-up reaction: Formamidine 1c ($811 \mathrm{mg}, 1.98 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in$ 7.9 mL DMSO. CuI ($75.3 \mathrm{mg}, 0.40 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($0.59 \mathrm{~mL}, 602 \mathrm{mg}$, 3.95 mmol , 2 eq.) were added and the reaction was stirred for 25 h 30 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, the combined organic layers were treated
with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\emptyset 3 \mathrm{~cm}, \mathrm{SiO}_{2}: 13 \mathrm{~cm}, \quad n$-pentane/EtOAc 3:1) to afford the benzimidazole 2c ($602 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 7.76$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 7.50 (br s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.24-7.20 (m, 1H, Ar-H), 7.13-7.09 (m, 1H, Ar-H), 6.85 (br s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.48$ (s, $3 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 143.8,143.3,139.3,137.4,136.8,132.5,132.1,131.1,128.2,126.9,122.7$, 121.3, 117.9, 23.5, 21.3, 20.7, 17.3; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3081,2956,2916,2858,1597$, 1575, 1493, 1460, 1441, 1385, 1345, 1308, 1270, 1247, 1229, 1209, 1163, 1135, 1082, $1063,1036,951,892,865,841,798,760,721,645,617,605,592,569,542,530,523$, 513, 505, 499, 483; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.29; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.62 min ; MS (GCMS): $m / z(\%)=328$ (100), 315 (11), 313 (12), 249 (85), 207 (4), 117 (23), 117 (23), 91 (8), 77 (17); $\mathbf{E M ~ (E S I) : ~} m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{2}: 329.0648$, found: 329.0643; Elemental analysis: calcd. (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{2}$ (329.23): C 62.02, H 5.20, N 8.51, found: C 62.05, H 5.04, N 8.31 .

6-Bromo-1-(2,4-dibromo-3,5-dimethylphenyl)-5,7-dimethyl-1H-benzoimidazole (2d)
 Formamidine 1d ($284 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}, 152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.) were added and the reaction was stirred for 24 h 10 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 15 \mathrm{~cm}$, n-pentane/EtOAc 3:1) yielded the benzimidazole $2 d$ as an offwhite solid ($242 \mathrm{mg}, 99 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.76$ (br s, $1 \mathrm{H}, \mathrm{NCHN}$), 7.62 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.23 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}$), 2.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}$), 2.54 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 2.46 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 2.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-$ $\mathbf{C H}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 139.6,138.7,135.7,132.8,129.3,128.6,123.9$, $123.5,121.8,119.2,25.4,24.8,24.1,17.8$; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3016,2952,2921,2859$, $2736,1736,1690,1582,1494,1465,1437,1412,1398,1380,1326,1304,1246,1226$,
$1192,1156,1066,1049,997,978,913,855,815,753,724,695,645,626,577 ; \mathbf{R}_{\mathrm{f}}(\boldsymbol{n}-$ pentane/EtOAc 1:1): 0.38; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320): 18.31 min ; MS (GC-MS): $m / z(\%)=484$ (35), 405 (24), 328 (12), 313 (21), 247 (21), 208 (5), 115 (5), 77 (6); EM (ESI): m/z [M $\left.+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{~N}_{2}$: 484.8858, found: 484.8891; Elemental analysis: calcd. (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}_{3} \mathrm{~N}_{2}$ (487.03): C 41.92, H 3.10, N 5.75, found: C 42.25, H 2.95, N 5.61.

1-(2-Bromo-4,6-dimethylphenyl)-4,6-dimethyl-1H-benzoimidazole (2e)

Formamidine $\mathbf{1 e}(205 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ eq.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred for$ 1 h 10 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \quad \mathrm{SiO}_{2}: 15 \mathrm{~cm}, \quad n$-pentane $/ \mathrm{EtOAc} 3: 1$) to afford the benzimidazole 2 e as an offwhite solid ($160 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.43$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.14 ($\mathrm{s}, 1 \mathrm{H}$, Ar-H), 6.96 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.64 (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.70 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}$), 2.40 (s, 3 H , Ar- CH_{3}), 2.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 1.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): δ $141.5,141.0,140.5,138.4,133.6,133.6,131.5,131.5,130.8,129.7,124.7,123.1,107.4$, $21.7,20.9,18.1,16.5$; IR (ATR): $v / \mathrm{cm}^{-1}=3109,3017,2955,2922,2855,1739,1699$, 1610, 1561, 1497, 1455, 1378, 1337, 1301, 1275, 1245, 1207, 1149, 1130, 1037, 990, 940, 854, 833, 821, 807, 772, 677, 643; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): $0.46 ; \boldsymbol{t}_{\boldsymbol{R}}$ (50_40): 10.19 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=328$ (100), 313 (24), 299 (1), 249 (15), 235 (2), 221 (2), 145 (1), 130 (1), 116 (4), 91 (3), 79 (1), 77 (5); EM (ESI): m/z [M + $\left.\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{2}$: 329.0648, found: 329.0649; Elemental analysis: calcd. (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{2}$ (329.23): C 62.02, H 5.20, N 8.51, found: C 62.16, H 5.11, N 8.41 .

1-(2,4,6-Trimethylphenyl)-1H-benzoimidazole (2f) ${ }^{3}$

Formamidine 1f ($159 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 4 h 20 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times$ 20 mL) and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\emptyset 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 13 \mathrm{~cm}$, n-pentane/EtOAc 3:1) to yield the benzimidazole $2 f$ as a yellow oil ($100 \mathrm{mg}, 85 \%$).

A scale-up reaction: Formamidine $\mathbf{1 f}(890 \mathrm{mg}, 2.81 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 11.0 mL DMSO. CuI ($107 \mathrm{mg}, 0.52 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($0.84 \mathrm{~mL}, 854 \mathrm{mg}$, $5.61 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 2 h 20 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and EtOAc $(100 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 3 \mathrm{~cm}, \mathrm{SiO}_{2}: 15 \mathrm{~cm}$, n-pentane/EtOAc 3:1) to yield the benzimidazole 2f as a yellow oil ($644 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN})$, 7.35-7.29 (m, 1H, Ar-H), 7.29-7.23 (m, 1H, Ar-H), 7.04 (s, 2H, $2 \times$ Ar-H), 7.02 (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 143.3,143.0,139.2,136.3,134.1,131.0,129.3,123.4,122.3,120.4,110.2$, 21.1, 17.4; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3079,3062,3051,3032,3020,2970,2951,2920,2859$, 1614, 1591, 1492, 1455, 1379, 1341, 1305, 1281, 1226, 1207, 1173, 1137, 1105, 1035, 1006, 980, 941, 886, 854, 785, 766, 743, 645; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.34; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 9.14 min ; MS (GC-MS): $m / z(\%)=236$ (96), 221 (7), 207 (3), 193 (6), 119 (2), 117 (3), 91 (8), 77 (8); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2}: 237.1386$, found: 237.1381.

[^2]
4,6-Dimethyl-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2g)

Formamidine $\mathbf{1 g}$ ($173 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred for$ 1 h 30 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}$: $16 \mathrm{~cm}, n$-pentane/EtOAc 3:1) to afford the benzimidazole 2 g as a yellowish solid ($131 \mathrm{mg}, 99 \%$).

A scale-up reaction: Formamidine $\mathbf{1 g}(716 \mathrm{mg}, 2.07 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in$ 8.3 mL DMSO. CuI ($79.0 \mathrm{mg}, 0.41 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($0.62 \mathrm{~mL}, 631 \mathrm{mg}$, $4.15 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 1 h 45 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ $(80 \mathrm{~mL})$ and EtOAc (80 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 3 \mathrm{~cm}, \mathrm{SiO}_{2}: 15 \mathrm{~cm}$, n-pentane/EtOAc 3:1) yielded the benzimidazole 2 g as an off-white solid (558 mg , quant.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 7.04 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}$), $6.95(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 6.64 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 2.38 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}$), 1.93 (s, 6 H , $2 \times \mathrm{Ar}^{-} \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 141.6,140.7,139.0,136.3,134.0,133.4$, 131.3, 129.6, 129.2, 124.4, 107.4, 21.6, 21.1, 17.4, 16.5; IR (ATR): $v / \mathrm{cm}^{-1}=3105,3018$, 2954, 2920, 2858, 1718, 1614, 1594, 1496, 1457, 1381, 1339, 1299, 1267, 1248, 1206, 1132, 1035, 981, 933, 855, 835, 813, 769, 742, 677, 650; $\mathbf{R}_{\mathbf{f}}(\boldsymbol{n}$-pentane/EtOAc 1:1): 0.35 ; $\boldsymbol{t}_{\mathbf{R}} \mathbf{(5 0 _ 4 0) : ~} 9.46 \mathrm{~min} ; \mathbf{M S}(\mathbf{G C - M S}): m / z(\%)=264$ (100), 249 (41), 235 (2), 221 (3), 207 (2), 193 (1), 145 (2), 119 (2), 105 (1), 91 (7), 77 (6); EM (ESI): $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2}: 265.1699$, found: 265.1697 .

4,6-Dibromo-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2h)

Formamidine $\mathbf{1 h}$ ($238 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred$ for 1 h 15 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 21 \mathrm{~cm}$, n-pentane/EtOAc 3:1) yielded the benzimidazole 2h as a white solid ($193 \mathrm{mg}, 98 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 1.90(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{Ar}^{2} \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 144.0,141.2,140.0,135.9,135.3,130.1$, 129.5, 128.2, 116.8, 114.6, 112.6, 21.1, 17.4; IR (ATR): $v / \mathrm{cm}^{-1}=3076,2976,2952$, 2920, 2860, 1735, 1604, 1561, 1489, 1447, 1412, 1379, 1342, 1326, 1281, 1250, 1186, 1136, 1066, 1037, 913, 838, 759, 742, 722, 650, 596; $\mathbf{R}_{\mathbf{f}}(\mathbf{n}-$ pentane/EtOAc 1:1): 0.62 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.18 min ; MS (GC-MS): m/z (\%) = 392 (52), 379 (2), 377 (2), 364 (2), 313 (22), 299 (6), 286 (2), 285 (2), 235 (5), 207 (9), 119 (3), 117 (14), 91 (16), 79 (3), 77 (13); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{2}$: 392.9597, found: 392.9595; Elemental analysis: calcd. (\%) for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2}$ (394.10): C 48.76, H 3.58, N 7.11, found: C 48.83, H 3.37, N 6.87.

1-(2,6-Diisopropylphenyl)-1H-benzoimidazole (2i)

Formamidine $1 \mathbf{1 i}$ ($180 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred for$ 5 h 15 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 16 \mathrm{~cm}$, n-pentane/EtOAc 3:1) yielded the benzimidazole $2 \mathbf{i}$ as a white crystalline solid ($127 \mathrm{mg}, 91 \%$).

An scale-up reaction: Formamidine $\mathbf{1 i}(1.65 \mathrm{~g}, 4.58 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in$ 18.5 mL DMSO. CuI ($174 \mathrm{mg}, 0.92 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($1.37 \mathrm{~mL}, 1.39 \mathrm{~g}$, $9.16 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 3 h 20 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ $(160 \mathrm{~mL})$ and $\operatorname{EtOAc}(160 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$), the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\emptyset 3 \mathrm{~cm}, \quad \mathrm{SiO}_{2}: 19 \mathrm{~cm}, \quad n$-pentane $/ \mathrm{EtOAc} 3: 1$) to afford the benzimidazole $2 \mathbf{i}$ ($1.22 \mathrm{~g}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C I}_{3}$): $\delta 7.94-7.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHN}, \mathrm{Ar}-\mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.36-7.30 (m, 1H, Ar-H), 7.33 (d, J=7.8 Hz, 2H, $2 \times$ Ar-H), 7.29-7.23 (m, 1 H , Ar-H), 7.04 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.27$ (sept, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 147.5,130.6,130.2,124.1,123.6,122.4,120.3,110.4,28.2,24.7$, 23.9; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3080,2964,2927,2869,1788,1616,1592,1485,1461,1443$, $1383,1363,1308,1287,1248,1222,1182,1158,1142,1058,1008,977,938,890,848$, 809, 789, 765, 758, 743, 649; $\mathbf{R}_{\mathbf{f}}$ (EtOAc/n-pentane 1:1): $0.56 ; \boldsymbol{t}_{\mathbf{R}} \mathbf{(5 0 _ 4 0) : ~} 9.30 \mathrm{~min}$; MS (GC-MS): $m / z(\%)=278$ (100), 263 (58), 248 (9), 235 (10), 221 (8), 206 (7), 193 (4), 117 (5), 91 (6), 77 (7), 43 (3); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}$: 279.1856, found: 279.1848; Elemental analysis: calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$ (278.39): C 81.97, H 7.97, N 10.06, found: C 81.86, H 7.81, N 9.88.

1-Anthracen-9-yl-1H-benzoimidazol (2j)

Formamidine $\mathbf{1 j}$ ($188 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL
 DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred for$ 2 h at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 14 \mathrm{~cm}$, n-pentane/EtOAc 3:1) to afford the benzimidazole $\mathbf{2 j}$ as a yellow-green solid (136 mg , 92\%).

A scale-up reaction: Formamidine $\mathbf{1 j}(477 \mathrm{mg}, 1.27 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in$ 5.0 mL DMSO. CuI ($48.4 \mathrm{mg}, 0.25 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($0.38 \mathrm{~mL}, 387 \mathrm{~g}$, $2.54 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 24 h at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$ and $\operatorname{EtOAc}(40 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 3 \mathrm{~cm}$, SiO_{2} : 16 cm , n-pentane/EtOAc 3:1) yielded the benzimidazole $2 \mathbf{j}$ ($323 \mathrm{mg}, 86 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.68$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 8.14 ($\mathrm{d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.44-$ 7.37 (m, 3H, $3 \times$ Ar-H), 7.36-7.32 (m, 2H, $2 \times$ Ar-H), 7.23-7.18 (m, 1H, Ar-H), 6.86 (d, J= $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 144.8,143.2,136.3,131.5,129.1$, $128.9,128.6,127.7,126.8,125.9,123.8,122.7,122.4,120.5,110.8$; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=$ $3081,3055,3030,1625,1612,1487,1453,1443,1416,1385,1306,1279,1218,1196$, 1144, 1089, 1011, 961, 918, 887, 852, 791, 775, 764, 743, 731; $\mathbf{R}_{\mathbf{f}}$ (EtOAc/npentane 1:1): $0.29 ; \boldsymbol{t}_{\mathbf{R}}$ (50_40): 12.78 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=294$ (100), 267 (7), 177 (3); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2}: 295.1230$, found: 295.1226; Elemental analysis: calcd. (\%) for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2}$ (294.35): C 85.69, H 4.79, N 9.52, found: C 85.59, H 4.67, N 9.65.

1-(2-tert-Butylphenyl)-4,6-dimethyl-1H-benzoimidazol (2k)

Formamidine $\mathbf{1 k}$ ($180 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in$ 2 mL DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU $(149.3 \mu \mathrm{~L}, 152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.) were added and the reaction was stirred for 96 h 30 min at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$), the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by column chromatography ($\varnothing 2 \mathrm{~cm}$, $\mathrm{SiO}_{2}: 22 \mathrm{~cm}$, n-pentane/EtOAc 3:1) afforded the benzimidazole $2 \mathbf{k}$ as a yellowish solid ($118 \mathrm{mg}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.67(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.52-7.44 (m, 1H, Ar-H), 7.30 (dt, $J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02$ (dd, $J=7.7$,
$1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 2.38(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.3,143.4,140.3$, $136.9,134.3,133.4,131.3,129.6,129.4,128.5,127.0,124.4,108.5,35.8,31.8,21.7$, 16.6; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3009,2963,2917,2873,1715,1614,1597,1491,1447,1396$, $1364,1338,1280,1265,1246,1204,1196,1169,1131,1103,1054,1036,978,953,875$, 860, 841, 814, 766, 759, 736, 671, 650, 615; $\mathbf{R}_{\mathrm{f}}(\boldsymbol{n}-\mathbf{p e n t a n e / E t O A c ~ 1 : 1) : ~ 0 . 5 1 ; ~}$ $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 9.62 min ; MS (GC-MS): $m / z(\%)=278$ (100), 263 (58), 249 (6), 235 (3), 221 (4), 207 (4), 193 (3), 145 (2), 132 (2), 117 (7), 91 (6), 77 (6); EM (ESI): m/z [M + $\left.\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}$: 279.1856, found: 279.1855.

4,6-Dibrom-1-(2,4,6-tribromphenyl)-1H-benzoimidazol (21)

Formamidine $1 \mathbf{1 l}$ ($200 \mathrm{mg}, 0.30 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 1.2 mL DMSO. CuI ($11.4 \mathrm{mg}, 0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($89.2 \mu \mathrm{~L}, 91 \mathrm{mg}, 0.60 \mathrm{mmol}, 2$ eq.) were added and the reaction was stirred for 1 h 10 min at $110{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}: 17 \mathrm{~cm}, n$-pentane $/ \operatorname{EtOAc} 5: 1$) to yield the benzimidazole as a white solid ($164 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.93$ (s, 2H, $2 \times \mathrm{Ar}-\mathrm{H}$), 7.92 (s, 1H, NCHN), 7.69 (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.16 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 143.0, 141.1, 135.6, 134.1, 132.7, 129.1, 125.4, 124.6, 117.5, 114.9, 112.7; IR (ATR): $v / \mathrm{cm}^{-1}=3114,3081,1722,1606,1566,1542,1487,1463,1449,1410,1373,1359,1343$, 1326, 1287, 1254, 1223, 1185, 1150, 1116, 1101, 1086, 1066, 1048, 986, 914, 877, 857, 839, 778, 756, 743, 735, 713, 640, 586; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.70; $\boldsymbol{t}_{\mathbf{R}}$ (50_20_320): 18.68 min ; MS (GC-MS): $m / z(\%)=584$ (10), 505 (2), 349 (12), 271 (3), 232 (2), 155 (7); EM (ESI): $m / z\left[M+\mathrm{Na}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Br}_{5} \mathrm{~N}_{2} \mathrm{Na}$: 606.6262, found: 606.6258; Elemental analysis: calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Br}_{5} \mathrm{~N}_{2}$ (588.71): C 26.52, H 0.86 , N 4.76 , found: C 26.80 , H 1.02, N 4.64 .

1-Pyridin-2-yl-1H-benzoimidazole (2m)

To an oven-dried screw-capped test tube equipped with a magnetic stir bar was added the N-(2-Bromophenyl)- N '-pyridin-2-yl-formamidine ($138.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.) followed by the addition of 2 mL of DMSO. To this stirring mixture was added $\mathrm{CuI}(19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.2$ eq.) and DBU ($149 \mu \mathrm{~L}, 2.0$ eq.). The reaction mixture was then stirred in a pre-heated oil bath at $110{ }^{\circ} \mathrm{C}$ for 1 h . Processing of the reaction mixture followed by flash column chromatography on silica gel (n-pentane/EtOAc 7:3) afforded the 1-pyridin-2-yl-1Hbenzoimidazole as a white solid ($85 \mathrm{mg}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.56-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$: $\delta 149.9,149.4,144.7,141.4,139.0,132.1,124.2,123.3,121.8,120.6$, 114.3, 112.7; IR (ATR): $v / \mathrm{cm}^{-1}=3081,3022,2974,1587,1498,1473,1451,1437$, 1371, 1336, 1301, 1279, 1242, 1204, 1172, 1156, 1145, 1097, 1054, 1011, 998, 983; $\mathbf{R}_{\mathbf{f}}$ (\boldsymbol{n}-pentane/EtOAc 1:1): 0.13 . $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 9.23 min ; MS (GC-MS): $\mathrm{m} / \mathrm{z}(\%)=195$ (100), 194 (51), 169 (43), 170 (6), 84 (10), 78 (14); EM (ESI): $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{H}: 196.0869$, found: 196.0864 .

1-Adamantan-2-yl-1H-benzoimidazole (2n)

To an oven-dried screw-capped test tube equipped with a magnetic stir bar was added the N-adamantan-2-yl- N^{-}-(2-bromophenyl)-formamidine ($166.4 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.) followed by the addition of 2 mL of DMSO. To this stirred mixture was added CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.2$ eq.) and DBU ($149 \mu \mathrm{~L}, 2.0$ eq.). The reaction mixture was then stirred in a pre-heated oil bath at $140{ }^{\circ} \mathrm{C}$ for 6 h . Processing of the reaction mixture followed by flash column chromatography on silica gel (n-pentane/EtOAc 1:1) afforded the 1 -adamantan-2-yl-1 H benzimidazole as a white solid ($120 \mathrm{mg}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.11$ (br s, 1H, NCHN), 7.80 ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}$), 7.24 (m, $2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 2.35\left(\mathrm{~m}, 10 \mathrm{H}\right.$, adamantyl), $1.85\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 5 \mathrm{H}\right.$, adamantyl); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 121.9,121.2,120.9,41.9,36.0,29.4$; $\mathbf{I R}$ (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3047$, 2922, 2905, 2851, 1612, 1485, 1452, 1363, 1311, 1280, 1227, 1181, 1154, 1105, 1091,

1013, 985, 888, 863, 818, 777; $\mathbf{R}_{\mathbf{f}}$ (n-pentane: EtOAc 1:1): $0.16 ; \boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.94 min ; MS (GC-MS): $m / z(\%)=252$ (46), 136 (12), 135 (100), 107 (8), 93 (16), 91 (10), 79 (18); EM (ESI): $m / z\left[M+H^{+}\right]$calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{H}: 253.1699$, found: 253.1696 .

6-Chloro-1-(2,4-dichlorophenyl)-1H-benzoimidazole (2o)

Formamidine $\mathbf{1 0}$ ($167 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL
 DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred$ for 190 h at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was purified by column chromatography ($\varnothing 2 \mathrm{~cm}, \mathrm{SiO}_{2}$: 13 cm , n-pentane/EtOAc 3:1) to yield the benzimidazole 2 o as a slightly orange solid (79 mg, 53\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.99$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 7.78 ($\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.67 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.31(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 143.4,141.8,136.1,134.7,132.3,131.7,131.0,129.9$, 129.4, 128.5, 123.7, 121.5, 110.5; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3090,3018,1779,1615,1584$, 1564, 1489, 1459, 1386, 1335, 1303, 1279, 1227, 1198, 1175, 1142, 1110, 1071, 1056, 977, 936, 913, 893, 874, 836, 816, 805, 719, 670, 609, 595, 573, 517; $\mathbf{R}_{\mathbf{f}}(\boldsymbol{n}-$ pentane/EtOAc 1:1): 0.30; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 10.10 min ; MS (GC-MS): m/z (\%) = 296 (100), 261 (18), 227 (7), 145 (4), 124 (5), 117 (6), 111 (6); EM (ESI): m/z [M + H $\left.{ }^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{2}$: 296.9748, found: 296.9739; Elemental analysis: calcd. (\%) for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ (297.57): C 52.47, H 2.37, N 9.41, found: C 52.47, H 2.33, N 9.32 .

4,6-Dichlor-1-(2,4,6-trichlorphenyl)-1H-benzoimidazol (2p)
Formamidine $\mathbf{1 p}$ ($201 \mathrm{mg}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL
 DMSO. CuI ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and DBU ($149.3 \mu \mathrm{~L}$, $152 \mathrm{mg}, 1.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) were added and the reaction was stirred$ for 171 h at $110^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added
and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$), the combined organic layers were treated with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The purification by preparative TLC (n-pentane/EtOAc 1:1) yielded the benzimidazole $\mathbf{2 p}$ as a white solid ($90 \mathrm{mg}, 49 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.94$ (s, $1 \mathrm{H}, \mathrm{NCHN}$), 7.59 ($\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}$), 7.39 (d, $J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 143.5$, 139.3, 137.2, 135.3, 134.5, 130.2, 129.4, 129.3, 126.2, 123.8, 109.2; IR (ATR): $v / \mathrm{cm}^{-1}=$ $3123,3079,2924,2853,1733,1685,1610,1574,1555,1495,1470,1457,1390,1374$, 1347, 1328, 1289, 1268, 1252, 1201, 1179, 1166, 1146, 1092, 1071, 1046, 999, 929, 864, 853, 841, 826, 807, 766, 756, 725, 655, 638, 600, 596; $\mathbf{R}_{\mathbf{f}}$ (n-pentane/EtOAc 1:1): 0.68 ; $\boldsymbol{t}_{\mathbf{R}}$ (50_40): 11.75 min ; MS (GC-MS): $m / z(\%)=364$ (62), 329 (11), 294 (25), 259 (8), 158 (6), 144 (5), 109 (14); EM (ESI): $m / z\left[M+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}_{5} \mathrm{~N}_{2}: 386.8788$, found: 386.8786 .

4. Synthesis and Characterization of Benzimidazolium Salts

1-Methyl-3-(2,4,6-trimethylphenyl)-3H-benzimidazol-1-ium iodide (3f) ${ }^{3}$

The benzimidazole $2 f(686 \mathrm{mg}, 2.90 \mathrm{mmol}, 1 \mathrm{eq}$.) was treated with 11.6 mL MeI in a sealed tube at $40^{\circ} \mathrm{C}$. After complete conversion, MeI was removed in high vacuum and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ to furnish the salt $3 \mathbf{f}$ as a white solid ($1.03 \mathrm{~g}, 94 \%$). In a scale-up reaction, Benzimidazole $2 f(4.867 \mathrm{~g}, 20 \mathrm{mmol}, 1$ eq.) was treated with 50 mL MeI in a sealed tube at $40^{\circ} \mathrm{C}$. After full conversion, MeI was removed in high vacuum and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the salt $\mathbf{3 f}$ as a white solid ($6.572 \mathrm{~g}, 87 \%$).
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.76-7.69 (m, 1H, Ar-H), 7.66-7.59 (m, 1H, Ar-H), 7.28-7.23 (m, 1H, Ar-H), 7.07 (s, 2H, $2 \times$ Ar-H), $4.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=142.1,141.5,135.2,131.7,131.1,129.9,128.0,127.6,127.5$, 113.4, 112.8, 35.0, 21.0, 17.9. EM (ESI): $m / z\left[M-I^{-}\right]$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2}$: 251.1543, Found: 251.1535.

1-Benzyl-5,7-dimethyl-3-(2,4,6-trimethylphenyl)-3H-benzimidazol-1-iumbromide (3g)

The benzimidazole 2 g ($403 \mathrm{mg}, 1.52 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved$ in 3 mL EtOAc. Benzyl bromide ($0.18 \mathrm{~mL}, 261 \mathrm{mg}, 1.52 \mathrm{mmol}$, 1 eq.) was added, and the reaction mixture was stirred first 24 h at r.t., than at $60^{\circ} \mathrm{C}$. The solid obtained was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the salt 3 g as a white solid ($637 \mathrm{mg}, 96 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}$ ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 11.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), ~ 7.37-7.28$ (m, $3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}$), $7.14-7.09(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}), 7.07\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}_{\mathrm{Mes}}\right), 6.80(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 6.43 (s, 2H, NCH 2 Ph), 2.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}$), 2.39 (s, 3H, Ar-CH3), 2.38 ($\mathrm{s}, 3 \mathrm{H}$, Ar- CH_{3}), 2.05 (s, $6 \mathrm{H}, 2 \times \mathrm{Ar}^{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$-NMR (75 MHz , DMSO-d6): $\delta 143.9,140.8$, 138.5, 135.2, 135.2, 132.4, 131.0, 129.7, 129.2, 128.4, 128.1, 127.7, 126.1, 125.2, 110.2, 51.7, 20.7, 20.7, 17.6, 16.9; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3108,3030,3006,2967,2954,2914$, 2857, 2773, 1882, 1608, 1557, 1499, 1486, 1467, 1456, 1389, 1369, 1353, 1319, 1236, $1200,1158,1139,1084,1052,1029,976,946,921,837,764,752,719,696,666,644$; EM (ESI): $m / z\left[M-\mathrm{Br}^{-}\right]$calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2}: 355.2169$, found: 355.2173.

3-(2,6-Diisopropylphenyl)-1-methyl-3H-benzimidazol-1-ium iodide (3i)

The benzimidazole $2 \mathbf{i}$ ($1.29 \mathrm{~g}, 4.65 \mathrm{mmol}, 1 \mathrm{eq}$.) was treated with 18.6 mL MeI in a sealed tube at $40^{\circ} \mathrm{C}$. After complete conversion, MeI was removed in high vacuum and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the salt $\mathbf{3 i}$ as an off-white solid ($1.92 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 10.83$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 8.01 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.79-7.71 (m, 1H, Ar-H), 7.66-7.55 (m, 2H, $2 \times$ Ar-H), 7.35 (d, J = 7.9 Hz, 2H, $2 \times \mathrm{Ar}-\mathrm{H}$), $7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.14$ (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, $2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{7 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 146.3,141.9,132.7,132.2,131.6$, $128.2,127.9,126.9,125.0,113.7,112.9,35.1,28.6,24.7,23.9$; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=$ 3116, 2965, 2935, 2872, 2361, 2343, 1613, 1560, 1478, 1459, 1451, 1382, 1360, 1321, 1279, 1251, 1217, 1180, 1148, 1129, 1104, 1059, 1043, 1005, 941, 899, 816, 787, 757, 641, 617, 598,3 575, 564, 529, 519, 508, 497, 491; EM (ESI): m/z [M - I-] calculated
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2}$: 293.2012, found: 293.2014; Elemental Analysis: calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{IN}_{2}$ (420.33): C 57.15, H 5.99, N 6.66, found: C 57.13, H 5.90, N 6.64 .

3-Anthracen-9-yl-1-methyl-3H-benzimidazol-1-ium iodide (3j)

The benzimidazole $\mathbf{2 j}$ ($348 \mathrm{mg}, 1.18 \mathrm{mmol}, 1$ eq.) was treated with 4.73 mL MeI in a sealed tube at $40^{\circ} \mathrm{C}$. After complete conversion, MeI was removed in high vacuum and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the salt $\mathbf{3 j}$ as a yellow solid ($520 \mathrm{mg}, 100 \%$).
${ }^{1}$ H-NMR (400 MHz , DMSO-d6): $\delta 10.32$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 9.16 (s , $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.39$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 8.34$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.85-7.80$ (m, 1H, Ar-H), 7.73-7.67 (m, 2H, $2 \times$ Ar-H), 7.66-7.60 (m, $2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}$), 7.59-7.52 (m, $3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}$), $7.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d6): $\delta 146.0,133.9,133.2,132.2,131.9,130.0,129.9,128.9,128.6,128.1$, 127.4, 123.8, 122.5, 115.4, 114.0, 35.2; IR (ATR): $\mathrm{v} / \mathrm{cm}^{-1}=3122,3059,2984,2959$, $2760,1626,1613,1560,1487,1457,1446,1420,1363,1307,1254,1202,1172,1132$, 1018, 1006, 912, 856, 821, 786, 774, 765, 752, 731, 662, 643, 602, 578; EM (ESI): m/z [$\mathrm{M}-\mathrm{I}^{-}$] calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2}: 309.1386$, found: 309.1376 .

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

1-(2-Bromophenyl)-1H-benzoimidazole (2a)

1-(2-Bromo-5-trifluoromethylphenyl)-5-trifluoromethyl-1H-benzoimidazole (2b)

1-(2-Bromo-3,5-dimethylphenyl)-5,7-dimethyl-1H-benzoimidazole (2c)

6-Bromo-1-(2,4-dibromo-3,5-dimethylphenyl)-5,7-dimethyl-1H-benzoimidazole (2d)

1-(2-Bromo-4,6-dimethylphenyl)-4,6-dimethyl-1H-benzoimidazole (2e)

1-(2,4,6-Trimethylphenyl)-1H-benzoimidazole (2f)

4,6-Dimethyl-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2g)

4,6-Dibromo-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2h)

1-(2,6-Diisopropylphenyl)-1H-benzoimidazole (2i)

1-Anthracen-9-yl-1H-benzoimidazol (2j)

1-(2-tert-Butylphenyl)-4,6-dimethyl-1H-benzoimidazol (2k)

4,6-Dibrom-1-(2,4,6-tribromphenyl)-1H-benzoimidazol (2l)

1-Pyridin-2-yl 1H Benzimidazole (2m)

1-Adamantan-2-yl-1H-benzoimidazole (2n)

6-Chloro-1-(2,4-dichlorophenyl)-1H-benzoimidazole (2o)

4,6-Dichlor-1-(2,4,6-trichlorphenyl)-1H-benzoimidazol (2p)

1-Methyl-3-(2,4,6-trimethylphenyl)-3H-benzimidazol-1-ium iodide (3f)

1-Benzyl-5,7-dimethyl-3-(2,4,6-trimethylphenyl)-3H-benzimidazol-1-iumbromide
(3g)

3-(2,6-Diisopropylphenyl)-1-methyl-3H-benzimidazol-1-ium iodide (3i)

3-Anthracen-9-yl-1-methyl-3H-benzimidazol-1-ium iodide (3j)

[^0]: ${ }^{1}$ Kuhn, K. M.; Grubbs, R. H. Org. Lett. 2008, 10, 2075.

[^1]: ${ }^{2}$ Futagawa, T. Jpn. Kokai Tokkyo Koho 1995, JP 07330690 A.

[^2]: ${ }^{3}$ Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.

