A Copper-Catalyzed Synthesis of 2-Unsubstituted N-Substituted Benzimidazoles

Keiichi Hirano, Akkattu T. Biju, Frank Glorius*

Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany

Supporting Information

1. General Informations	2
2. Synthesis and Characterization of Formamidines	3
3. Synthesis and Characterization of 2-Unsubstituted, N-Substituted Benzimidazoles	15
4. Synthesis and Characterization of Benzimidazolium Salts	27
5. ¹ H and ¹³ C NMR Spectra of Compounds	30

1. General information

All reactions were carried out in flame-dried reaction vessels. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel. All new compounds were fully characterized. The commercially available chemicals were used without further purification.

NMR-spectra were recorded on a Bruker ARX-300, AV-300, or AV-400 MHz. Chemical shifts (δ) are quoted in ppm downfield of tetramethylsilane. Coupling constants (J) are quoted in Hz.

Infrared spectra were recorded on a Varian Associated FT-IR 3100 Excalibur with ATR unit. The wave numbers (n) of recorded IR-signals are quoted in cm⁻¹. ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Elemental analyses were recorded on Vario EL III of Fa. Elementar Analysensysteme GmbH, Hanau.

GC-MS Spectra were recorded on an Agilent Technologies 7890A GC-system with Agilent 5975C VL MSD or 5975 inert Mass Selective Detector (EI) and a HP-5MS column (0.25 mm x 30 m, Film: 0.25 μ m). For control of the conversion and characterization of the products, two methods were used (Table 1). The method used starts with the injection temperature T_0 , after holding this temperature for 3 min, the column is heated to the temperature T_1 (ramp) and holds the final temperature for the indicated time.

Table 1: GC-MS methods

method	T_0 [°C]	ramp/K·min ⁻¹	T ₁ [°C] /holding time[min]
A	50	40	290 / 3
В	50	20	320 / 8

2. Synthesis and Characterization of Formamidines

The formamidines were synthesized following the reported procedure by Grubbs et al., which was not further optimized.¹

N,*N*'-Bis-(2-bromophenyl)-formamidine (1a)

2-Bromoaniline (3.44 g, 2.18 mL, 20 mmol, 2.0 eq.) and glacial acetic acid (30 mg, 29 $\mu L,\, 0.5$ mmol, 0.05 eq.) were mixed with

triethylorthoformate (1.48 g, 1.67 mL, 10 mmol, 1.0 eq.). The mixture was stirred for 10 h at 140 °C and allowed to cool to rt. The resulting viscous oil solidified on standing. The solid was washed with n-pentane $(2 \times 10 \text{ mL})$ and

¹H NMR (300 MHz, CDCl₃): δ 7.99 (s, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.46-7.14 (m, 5H), 7.00-6.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 147.3 (br), 142.9 (br), 132.9, 128.4, 124.5, 119.0 (br), 115.2 (br); **IR** (ATR): $v/cm^{-1} = 2989$, 2918, 2855, 1653, 1580, 1498, 1468, 1448, 1435, 1379, 1307, 1281, 1260, 1226, 1206, 1122, 1028, 1001, 937, 909, 855, 820, 745, 681, 659, 626, 610, 543; $\mathbf{R_f}$ (n-pentane/EtOAc 1:1): 0.78; $t_{\mathbf{R}}$ (50_40): 10.56 min; MS (GC-MS): m/z (%) = 351 (6), 273 (52), 198 (1), 182 (12), 171 (100), 155 (23), 91 (13), 77 (10); **EM** (**ESI**): m/z [M + Na⁺] calcd. for C₁₃H₁₀Br₂NaN₂: 374.9103, found: 374.9114.

N.N'-Bis-(2-bromo-5-trifluoromethylphenyl)-formamidine (1b)

recrystallized from EtOH to afford 1a as a white solid (2.67 g, 75%).

The mixture of 2-bromo-5-(trifluoromethyl)aniline (1.0 g, 4.17 mmol, 2.0 eq.), triethylorthoformate (378 mg, 415 µL, 2.52 mmol, 1.0 eq.) and glacial acetic acid (6.3

mg, 6.0 μL, 0.104 mmol, 0.05 eq.) were stirred for 24 h at 150 °C. The resulting viscous oil solidified during cooling to rt. The brown solid was triturated in cold n-pentane (2) mL) and the supernatant was removed by decantation. This operation was repeated three times and dried under reduced pressure. The product 1b was obtained as a white solid (726.2 mg, 71%). The exact assignment was not possible due to the complexity of the NMR spectra.

¹ Kuhn, K. M.; Grubbs, R. H. Org. Lett. 2008, 10, 2075.

¹H NMR (300 MHz, CDCl₃): δ 8.05 (br s, 1H), 7.78-7.66 (m, 2H), 7.32-7.17 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 147.1, 133.6, 131.2 (q, J = 33 Hz), 123.7 (q, J = 272 Hz), 121.5 (m), 116.5 (m); ¹⁹F NMR (282 MHz, CDCl₃): δ –62.7; IR (ATR): $v/cm^{-1} = 3378$, 3073, 1647, 1588, 1575, 1540, 1426, 1379, 1324, 1276, 1259, 1203, 1170, 1121, 1078, 1027, 959, 903, 882, 818, 746, 727, 682, 612, 586; R_f (*n*-pentane/EtOAc 1:1): 0.81; t_R (50_40): 9.77 min; MS (GC-MS): m/z (%) = 488 (4), 469 (1), 421 (1), 409 (41), 331 (1), 250 (18), 239 (100), 223 (18), 170 (3), 160 (12), 144 (37), 80 (1), 75 (10), 69 (5); EM (ESI): m/z [M + H⁺] calcd. for C₁₅H₉Br₂F₆N₂: 490.9011, found: 490.9001.

2-Bromo-3,5-dimethylphenylamine²

Following the procedure by Futagawa, ² 3,5-dimethylaniline (6.38 g. 52.7 NH_2 mmol, 1.0 eq.) was dissolved in CCl₄ (30 mL) and cooled to 0 °C. NBS (9.38 g, 52.7 mmol, 1.0 eq.) was added portionwise to the vigorously stirred solution at 0 °C and the residual NBS was rinsed with a small amount of CH₂Cl₂ in the reaction. The resulting brown suspenstion was stirred for 2.5 h at 0 °C and quenched by addition of H₂O (20 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under removed pressure. The brown residue was purified by column chromatography (Ø 5 cm, SiO₂: 16.5 cm, n-pentane/EtOAc 19:1) to yield the product as a greenish solid (1.78 g, 17%). As a byproducts 2,4-dibromo-3,5dimethylphenylamine (1.99 g, 14%, an off-white solid) and 2,4,6-tribromo-3,5dimethylphenylamine (696.7 mg, 4%, colorless needles) were obtained additionally and used for the synthesis of the symmetrically substituted formamidines. ¹H NMR (300 MHz, CDCl₃): δ 6.48-6.45 (m, 1H, Ar-H), 6.45-6.42 (m, 1H, Ar-H), 4.00 (br s, 2H, NH₂), 2.32 (s, 3H, CH₃), 2.18 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 143.9, 138.3, 137.3, 121.4, 113.8, 108.9, 23.4, 20.8; **IR** (ATR): $v/cm^{-1} = 3398, 3300, 3194, 3018,$ 2979, 2952, 2919, 2858, 2734, 1617, 1587, 1469, 1439, 1416, 1375, 1333, 1295, 1257, 1174, 1117, 1018, 965, 872, 836, 722, 693, 570; R_f (n-pentane/EtOAc 19:1): 0.27; t_R (50_40): 7.45 min; MS (GC-MS): m/z (%) = 201 (100), 184 (10), 120 (59), 105 (4), 91

² Futagawa, T. *Jpn. Kokai Tokkyo Koho* **1995**, JP 07330690 A.

(24), 79 (3), 77 (16); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₈H₁₁BrN: 200.0069, found: 200.0077.

2,4-Dibromo-3,5-dimethylphenylamine²

¹H NMR (300 MHz, DMSO-d6): δ 6.67 (s, 1H, Ar-H), 5.36 (s, 2H, NH₂),

Br 2.46 (s, 3H, CH₃), 2.20 (s, 3H, CH₃); ¹³C NMR (75 MHz, DMSO-d6): δ

146.0, 137.7, 137.0, 115.5, 113.1, 108.9, 25.5, 24.6; IR (ATR): $v/cm^{-1} = 3390, 3293, 3191, 3053, 2987, 2948, 2918, 2847, 1618, 1567, 1454, 1426, 1394, 1376, 1331, 1280, 1219, 1134, 1041, 973, 859, 846, 718, 691, 642, 605, 589, 560;

R_f ($ *n* $-pentane/EtOAc 19:1): 0.20; <math>t_R$ (50_40): 8.51 min; MS (GC-MS): m/z (%) = 279 (100), 198 (22), 118 (28), 104 (5), 91 (19), 77 (4); EM (ESI): m/z [M + H⁺] calcd. for C₈H₁₀Br₂N: 277.9175, found: 277.9165.

2,4,6-Tribromo-3,5-dimethylphenylamine²

¹H NMR (300 MHz, CDCl₃): δ 4.68 (br s, 2H, NH₂), 2.59 (s, 6H, Br $^{\text{NH}_2}$ Br $^{2\times\text{CH}_3}$); 13 C NMR (75 MHz, CDCl₃): δ 141.2, 136.6, 114.6, 108.6, 25.6; IR (ATR): $v/\text{cm}^{-1} = 3416$, 3294, 3191, 2921, 1604, 1547, 1432, 1394, 1373, 1264, 1101, 1026, 971, 711, 653; $\mathbf{R_f}$ (*n*-pentane/EtOAc 19:1): 0.58; $\mathbf{t_R}$ (50_40): 9.15 min; MS (GC-MS): m/z (%) = 357 (100), 342 (1), 278 (29), 197 (18), 184 (1), 168 (1), 91 (11), 90 (12), 78 (4), 77 (3); EM (ESI): m/z [M + H⁺] calcd. for $C_8H_9Br_3N$: 355.8280, found: 355.8281.

N,*N*'-Bis-(2-bromo-3,5-dimethylphenyl)-formamidine (1c)

2-Bromo-3,5-dimethylphenylamine (1.5 g, 7.5 mmol, 1.0 eq.) and glacial acetic acid (11.3 mg, 10.7
$$\mu$$
L, 0.189 mmol, 0.025 eq.) were mixed with triethylorthoformate (680.0 mg, 747.2 μ L, 5.7 mmol, 0.75 eq.). The mixture was stirred for 4

h at 150 °C and allowed to cool to rt. The resulting brown viscous oil was scratched in n-pentane (2 mL) to afford the solid. The supernatant was removed by a pipette and this procedure was repeated five times using n-pentane (5 mL). The product was obtained as an off-white solid (1.10 g, 72%).

¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.07-6.65 (m, 5H), 2.40 (s, 6H), 2.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 138.8, 137.5, 126.4, 116.9 (br), 23.6, 21.0; IR (ATR): $v/cm^{-1} = 3027$, 2977, 2950, 2918, 2857, 2733, 1651, 1629, 1571, 1458, 1435, 1402, 1376, 1327, 1280, 1262, 1246, 1202, 1170, 1027, 999, 950, 845, 837, 729, 704, 639, 600, 583, 575, 568, 533; **R**_f (*n*-pentane/EtOAc 1:1): 0.84; *t*_R (50_40): 11.34 min; MS (GC-MS): m/z (%) = 357 (100), 342 (1), 278 (29), 197 (18), 184 (1), 168 (1), 91 (11), 90 (12), 78 (4), 77 (3); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₁₇H₁₉Br₂N₂: 408.9910, found: 408.9899.

N,*N*'-Bis-(2,4-dibromo-3,5-dimethylphenyl)-formamidine (1d)

2,4-Dibromo-3,5-dimethylphenylamine (1.67 g, 6.0 mmol, 1.0 eq.), glacial acetic acid (9.0 mg, 8.6 μ L, 0.15 mmol, 0.025 eq.) and triethylorthoformate (544.0 mg, 597.8 μ L, 4.5 mmol, 0.75 eq.) were suspended in *para-*

xylene (4 mL) and the mixture was stirred for 11 h at 150 °C. After cooling to rt the resulting brown viscous oil was scratched in n-pentane (2 mL) to afford the solid. The supernatant was removed by a pipette and this procedure was repeated five times using n-pentane (5 mL). The product was obtained as a white solid (1.02 g, 60%). The measurement of 13 C NMR was not successful.

¹H NMR (400 MHz, DMSO-d6): δ 9.06 (s, 1H), 8.31 (s, 1H), 7.95 (s, 1H), 2.60 (s, 6H, CH₃), 2.34 (s, 6H, CH₃); IR (ATR): $v/cm^{-1} = 3377$, 2920, 1636, 1577, 1554, 1487, 1449, 1397, 1375, 1357, 1317, 1267, 1244, 1203, 1032, 984, 955, 849, 824, 760, 717, 698, 661, 627, 600, 575, 557, 519; R_f (*n*-pentane/EtOAc 1:1): 0.79; *t*_R (50_20_320_8ISO): 21.90 min; MS (GC-MS): m/z (%) = 568 (8), 487 (78), 406 (1), 327 (4), 279 (100), 198 (12), 119 (12), 118 (14), 117 (8), 103 (22), 91 (13), 77 (12); EM (ESI): m/z [M + H⁺] calcd. for C₁₇H₁₇Br₄N₂: 564.8120, found: 564.8106.

N,*N*'-Bis-(2-bromo-4,6-dimethylphenyl)-formamidine (1e)

¹**H-NMR** (**300 MHz, CDCl₃**): δ 7.40 (s, 1H), 7.24 (s, 2H), 6.95 (s, 2H), 6.21 (br s, 1H), 2.31 (br s, 6H), 2.25 (s, 6H);

¹³C-NMR (75 MHz, CDCl₃): δ 130.8 (br), 130.6 (br), 20.5, 19.3 (br); IR (ATR): v/cm^{-1} = 3143, 3011, 2976, 2948, 2918, 2844, 2732, 1644, 1600, 1556, 1470, 1438, 1371, 1315, 1264, 1216, 1170, 1122, 1110, 991, 846, 824, 810, 651; R_f (*n*-Pentan/EtOAc 1:1): 0.76; t_R (50_40): 12.13 min; MS (GC-MS): m/z (%) = 408 (2), 329 (18), 211 (2), 210 (5), 199 (100), 198 (11), 132 (3), 131 (25), 120 (25), 119 (5), 104 (18), 103 (15), 91 (10), 79 (2), 77 (16); EM (ESI): m/z [M + H⁺] calcd. for C₁₇H₁₉Br₂N₂: 408.9910, found: 408.9910.

N-(2-Bromophenyl)-*N*'-(2,4,6-trimethylphenyl)-formamidine (1f)

Br The mixture of 2,4,6-trimethylaniline (13.52 g, 14.08 mL, 100 mmol, 1.0 eq.), triethylorthoformate (14.82 g, 16.65 mL, 100 mmol, 1.0 eq.) and glacial acetic acid (300.3 mg, 287 μL,

5 mmol, 0.05 eq.) were stirred for 2.5 h at 120 °C, then cooled to rt. *ortho*-bromoaniline (17.20 g, 10.89 mL, 100 mmol, 1.0 eq.) was added to the reaction and the resulting mixture was stirred for 1.5 h at 140 °C, then for 14 h at 160 °C. After cooling to rt, the solidified crude product was triturated in *n*-pentane (10 mL) and the supernatant was removed by a pipette. The residue was recrystallized from acetone to yield the first fraction of the pure product. The mother liquor was concentrated and recrystallized fractionally from EtOAc to afford several pure fractions. The rest was purified by column chromatography (Ø 5 cm, SiO₂: 13 cm, CH₂Cl₂). The product **1f** was obtained as a white solid (6.84 g in total, 22%).

¹H NMR (400 MHz, CDCl₃): δ 7.91-7.65 (m, 1H), 7.58-7.43 (m, 1H), 7.35-7.14 (m, 2H), 6.96-6.68 (m, 3H), 2.32-2.07 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 133.0 (br), 129.0, 128.4 (br), 123.7 (br), 20.8, 18.6 (br); IR (ATR): $v/cm^{-1} = 3187$, 2974, 2914, 2854, 2733, 1624, 1608, 1579, 1547, 1467, 1433, 1367, 1321, 1256, 1216, 1179, 1156, 1117, 1044, 1024, 993, 918, 843, 751, 728, 696, 648, 583; R_f (*n*-pentane/EtOAc 1:1): 0.67; t_R (50_40): 10.31 min; MS (GC-MS): m/z (%) = 316 (24), 237 (17), 170 (100), 154 (4), 146 (80), 135 (20), 131 (24), 120 (23), 118 (7), 103 (11), 92 (8), 91 (39), 77 (22); EM (ESI): m/z [M + H⁺] calcd. for C₁₆H₁₈BrN₂: 317.0648, found: 317.0641.

N-(2-Bromo-4,6-dimethylphenyl)-N'-(2,4,6-trimethylphenyl)-formamidine (1g)

2,4,6-Trimethylaniline (2.45 g, 2.55 mL, 18.1 mmol, 1.0 eq.) and glacial acetic acid (54.3 mg, 52 μL, 0.905 mmol, 0.05 eq.) were mixed with triethylorthoformate (2.68 g, 3.01 mL,

18.1 mmol, 1.0 eq.) and the mixture was stirred for 1.5 h at 120 °C. The reaction vessel was removed from the oil bath and 2-bromo-4,6-dimethylaniline (3.62 g, 18.1 mmol, 1.0 eq.) was added. The resulting mixture was stirred for 20 h at 140 °C and cooled to rt. The obtained brown viscose oil solidified and the solid was triturated in n-pentane (10 mL), then the supernatant was removed with a pipette. The crude product was washed twice in the same fashion and recrystallized from EtOH. The further purification was performed by column chromatography (Ø 5 cm, SiO₂: 32 cm, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 4:1 \rightarrow 2:3 \rightarrow 1:4) to deliver the product **1g** as a white solid (1.02 g, 16%). The symmetrical formamidine from 2-bromo-4,6-dimethylaniline, N,N'-bis-(2-bromo-4,6-dimethylphenyl)-formamidine **1e**, was obtained additionally as a white solid (465.6 mg, 6%) and used for the corresponding benzimidazole synthesis.

¹H NMR (300 MHz, CDCl₃): δ 7.46-7.09 (m, 2H), 7.05-6.79 (m, 3H), 6.20 (br s, 1H), 2.37-2.14 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 148.1(br), 134.0 (br), 130.7, 130.4, 129.0 (br), 20.8, 20.4, 19.2 (br), 18.6 (br); IR (ATR): $v/cm^{-1} = 3143$, 2971, 2917, 2852, 1638, 1601, 1551, 1469, 1370, 1320, 1258, 1214, 1176, 1113, 847, 813; R_f (*n*-pentane/EtOAc 1:1): 0.68; t_R (50_40): 11.06 min; MS (GC-MS): m/z (%) = 344 (11), 265 (17), 199 (86), 146 (55), 145 (17), 135 (100), 134 (26), 132 (3), 120 (47), 119 (12), 118 (6), 104 (16), 91 (25), 79 (6), 77 (21); EM (ESI): m/z [M+H⁺] calcd. for $C_{18}H_{22}BrN_2$: 345.0961, found: 345.0959.

N-(2,4,6-Tribromophenyl)-*N*'-(2,4,6-trimethylphenyl)-formamidine (1h)

2,4,6-Tribromoaniline (3.30 g, 10 mmol, 2.0 eq.) and triethylorthoformate (741.0 mg, 832.6 μL, 5 mmol, 1.0 eq.) were dissolved in *para*-xylene (4 mL) and glacial acetic acid (15.0 mg, 14.3 μL, 0.25 mmol, 0.05 eq.) was added. The reaction was stirred for 2.5 h at 150 °C and cooled to rt. 2,4,6-Trimethylaniline (676.1 mg, 704.2 μL, 5 mmol, 1 eq.) was added to the mixture and it was stirred for 17.5 h at 140 °C. The mixture was diluted

with *n*-pentane (4 mL) after being cooled to rt. The obtained solid was filtered and washed with *n*-pentane (3 × 4 mL). The crude product was pre-adsorbed on silica gel and purified by column chromatography (\emptyset 4 cm, SiO₂: 14 cm, CH₂Cl₂) to give the product **1h** as a light violet solid (413.0 mg, 17%).

¹H NMR (300 MHz, DMSO-d6): δ 9.24-6.66 (m, 6H), 2.36-2.17 (m, 9H); ¹³C NMR (75 MHz, DMSO-d6): δ 153.2, 136.4 (br), 134.6 (br), 129.2, 21.5, 19.3; IR (ATR): $v/cm^{-1} = 2956$, 2918, 2854, 1639, 1606, 1549, 1525, 1482, 1434, 1412, 1366, 1323, 1296, 1241, 1216, 1178, 1128, 1106, 1059, 1033, 1013, 995, 920, 850, 798, 757, 734, 712, 617; **R**_f (*n*-pentane/EtOAc 1:1): 0.82; t_R (50_20_320): 17.45 min; MS (GC-MS): m/z (%) = 472 (1), 457 (1), 393 (5), 327 (5), 315 (3), 311 (1), 237 (2), 170 (1), 146 (100), 135 (19), 134 (16), 120 (22), 119 (6), 105 (2), 91 (13), 79 (4), 77 (8); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₁₆H₁₆Br₃N₂: 472.8858, found: 472.8877.

N-(2-Bromophenyl)-N'-(2,6-diisopropylphenyl)-formamidine (1i)

The mixture of 2,6-diisopropylamine (8.87 g, 9.43 mL, 50 mmol, 1.0 eq.), triethylorthoformate (7.41 g, 8.33 mL, 50 mmol, 1.0 eq.) and glacial acetic acid (150.1 mg, 143,2 μ L, 2.5 mmol, 0.05 eq.) were stirred for 3 h at 120 °C. The reaction vessel was removed

from the oil bath, *ortho*-bromoaniline (8.60 g, 5.44 mL, 50 mmol, 1 eq.) was added and the resulting mixture was stirred for 3 h at 140 °C. The reaction was cooled to rt and diluted with n-pentane (15 mL). The brown solution was cooled to 0 °C and stirred for 10 min to afford an off-white solid. The solid was filtered and washed with n-pentane (3 × 5 mL) and recrystallized from acetone subsequently. Two pure batches of the product **1i** were obtained as a white solid (3.98 g in total, 22%).

¹H NMR (300 MHz, CDCl₃): δ 8.04-6.66 (m, 9H), 3.32-2.96 (m, 2H), 1.27-1.15 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 148.1 (br), 142.1, 141.9, 141.2 (br), 138.5, 136.9, 133.2, 133.0 (br), 128.7, 128.5 (br), 124.7 (br), 124.3, 123.7, 123.5, 123.4, 123.2 (br), 117.3 (br), 115.1, 112.0, 28.0, 28.0 (br), 23.7 (br), 23.6, 23.5; IR (ATR): $v/cm^{-1} = 3191$, 2165, 2970, 2960, 2937, 2869, 1632, 1579, 1557, 1463, 1438, 1375, 1361, 1340, 1252, 1204, 1150, 1115, 1043, 1025, 995, 939, 850, 797, 768, 748, 717, 707, 651; R_f (*n*-pentane/EtOAc 1:1): 0.76; t_R (50_40): 10.31 min; MS (GC-MS): m/z (%) = 358 (7),

315 (6), 279 (1), 273 (1), 189 (15), 188 (100), 182 (2), 171 (32), 147 (12), 146 (98), 132 (5), 119 (2), 91 (10), 79 (2), 77 (7); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₁₉H₂₄BrN₂: 359.1117, found: 359.1124.

N-Anthracen-9-yl-*N*'-(2-bromophenyl)-formamidine (1j)

Anthracen-9-ylamine (3.87 g, 20 mmol, 1.0 eq.) and glacial acetic acid (60.1 mg, 55.3 μ L, 1 mmol, 0.05 eq.) were mixed with triethylorthoformate (2.96 g, 3.33 mL, 20 mmol, 1.0 eq.). The reaction was stirred for 1.5 h at 120 °C and the reaction

vessel was removed from the oil bath. 2-Bromoaniline (3.44 g, 2.18 mL, 20 mmol, 1.0 eq.) was added and the resulting mixture was stirred for 11 h at 140 °C. After cooling to rt the solid *n*-pentane (10 mL) was added to the mixture, the solid was triturated and the supernatant was removed by decantation. The crude mixture was washed twice in the same fashion and pre-adsorbed on silica gel. The first purification by column chromatography (Ø 5 cm, SiO₂: 37 cm, CH₂Cl₂/*n*-pentane $3:2 \rightarrow 4:1 \rightarrow \text{CH}_2\text{Cl}_2 \rightarrow \text{CH}_2\text{Cl}_2/\text{EtOAc}$ 4:1) did not afford the pure product. Therefore the fractions containing the product were collected and concentrated. The residue was suspended in hot EtOH (10 mL) and cooled to rt. The yellow supernatant was decanted off and the solid was washed twice in the same manner. The still contaminated product was pre-adsorbed on silica gel and purified by column chromatography (Ø 5 cm, SiO₂: 32 cm, CH₂Cl₂/*n*-Pentan 9:1). The obtained slightly contaminated product was recrystallized from EtOAc and subsequently purified by another column chromatography (Ø 5 cm, SiO₂: 15 cm, CH₂Cl₂/*n*-Pentan 4:1) to afford the product 2j (792 mg, 11%).

¹H NMR (300 MHz, CDCl₃): δ 8.27-8.17 (m, 3H), 8.13 (br s, 1H), 8.05-7.97 (m, 2H), 7.63 (d, J = 8.0 Hz, 1H), 7.53-7.42 (m, 5H), 7.31-7.23 (m, 2H), 6.97 (t, J = 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 150.2 (br), 137.9 (br), 133.1, 131.9, 128.6, 128.3, 125.4, 125.1, 124.4, 124.2, 123.9, 122.3, 117.7 (br), 112.9; IR (ATR): $v/cm^{-1} = 1652$, 1577, 1533, 1474, 1436, 1409, 1352, 1306, 1265, 1214, 1174, 1045, 1025, 1002, 957, 934, 886, 845, 787, 755, 735, 667, 658, 611, 535; R_f (*n*-pentane/EtOAc 1:1): 0.75; t_R (50_20_320-8ISO): 20.12 min; MS (GC-MS): m/z (%) = 374 (39), 295 (8), 205 (4), 204

(22), 193 (100), 192 (9), 182 (2), 177 (25), 171 (5), 155 (3), 91 (5), 77 (2); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₂₁H₁₆BrN₂: 375.0491, found: 375.0491.

N-(2-Bromophenyl)-*N*'-(2-*tert*-butylphenyl)-formamidine (1k)

The mixture of 2-*tert*-butylaniline (1.70 g, 1.78 mL, 11.4 mmol, 1.0 eq.), triethylorthoformate (1.69 g, 1.90 mL, 11.4 mmol, 1.0 eq.) and glacial acetic acid (34.2 mg, 32.7 μ L, 0.57 mmol, 0.05 eq.) were stirred for 1.5 h at 120 °C. The

reaction vessel was removed from the oil bath and 2-bromo-4,6-dimethylaniline (2.29 g, 11.4 mmol, 1.0 eq.) was added. The resulting mixture was stirred for 20 h at 140 °C and then cooled to rt. The black oil was purified by column chromatography (Ø 5 cm, SiO₂: 18 cm, CH₂Cl₂). The fractions containing the product were collected and concentrated. The resulting solid was washed with *n*-pentane (2 mL). The product **2k** was obtained as a dark purple solid (946.8 mg, 23%).

¹H NMR (300 MHz, CDCl₃): δ 7.90-6.25 (m, 8H), 2.50-1.06 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 150.9, 145.1, 142.6, 141.8, 138.9, 137.4, 135.6, 134.2, 133.8, 131.1, 130.9, 130.6, 127.3, 127.0, 126.4, 124.2, 122.0 (br), 119.6, 118.7, 35.1, 34.1, 30.4, 30.2, 20.5, 19.3, 18.5; IR (ATR): $v/cm^{-1} = 2964$, 2919, 2863, 1661, 1590, 1566, 1476, 1437, 1360, 1303, 1260, 1196, 1122, 1089, 1051, 993, 851, 820, 754, 691, 623, 602, 539; R_f (*n*-pentane/EtOAc 1:1): 0.80; t_R (50_40): 10.83 min; MS (GC-MS): m/z (%) = 358 (9), 301 (13), 279 (3), 223 (2), 200 (15), 199 (100), 161 (10), 160 (82), 149 (15), 133 (4), 132 (13), 120 (15), 119 (6), 105 (5), 104 (15), 91 (25), 79 (4), 77 (16), 57 (1); EM (ESI): m/z [M + H⁺] calcd. for C₁₉H₂₄BrN₂: 359.1117, found: 359.1118.

N,*N*'-Bis-(2,4,6-tribromophenyl)-formamidine (11)

Br H 2,4,6-Tribromoaniline (3.30 g, 10 mmol, 2.0 eq.) and triethylorthoformate (741.0 mg, 832.6 μ L, 5 mmol, Br H 1.0 eq.) were dissolved in *para*-xylene (4 mL) and three drops of conc. sulfuric acid were added. The reaction was stirred for 17 h at 150 °C and allowed to cool to rt. The mixture was diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL) was added. The organic phase was separated, washed with H₂O (2 × 20 mL) and dried

over Na₂SO₄. The crude product was pre-adsorbed on silica gel and purified by column chromatography (Ø 4 cm, SiO₂: 16 cm, CH₂Cl₂/n-pentane 1:19). The product **11** was obtained as a purple solid (272.8 mg, 8%). **¹H NMR (400 MHz, DMSO-d6):** δ 9.89-9.18 (m, 1H), 8.11-7.58 (m, 5H); **¹³C NMR (100 MHz, DMSO-d6):** δ 152.8 (br), 135.3 (br), 134.8 (br), 126.6, 119.0; **IR (ATR):** ν /cm⁻¹ = 3359, 3095, 3070, 2356, 2329, 1643, 1555, 1532, 1496, 1437, 1433, 1363, 1287, 1221, 1189, 1152, 1101, 1059, 988, 855, 830, 792, 737, 698, 658, 601, 564; **R**_f (n-pentane/EtOAc 1:1): 0.78; t_R (50_20_320_8ISO): 22.14 min; **MS (GC-MS):** m/z (%) = 585 (4), 429 (1), 338 (3), 327 (34), 311 (3), 261 (5), 260 (3), 248 (10), 247 (4), 233 (3), 182 (1), 170 (15), 169 (9), 155 (14), 79 (7); **EM (ESI):** m/z [M + H⁺] calcd. for C₁₃H₇Br₆N₂: 664.5704, found: 664.5694.

N-(2-Bromophenyl)-*N*'-pyridin-2-yl-formamidine (1m)

found: 276.0133.

To a 10 mL round bottom flask fitted with a distillation apparatus was taken the *o*-bromoaniline (3.66 g, 21.25 mmol, 1 eq.) and triethylorthoformate (3.5 mL, 21.25 mmol, 1 eq.). To this stirred solution was added acetic acid (60 μL, 1.06 mmol, 0.05 eq.). The reaction mixture was heated to 140 °C and kept stirring for 2 h. It was subsequently cooled and then 2-aminopyridine (2 g, 21.25 mmol) was added. The mixture was heated to 140 °C again and stirred for 12 h. It was then cooled and the residue was washed with *n*-hexane (3x 10 mL). The crude residue upon recrystallization using CH₂Cl₂-*n*-hexane afforded the *N*-(2-bromophenyl)-*N*'-pyridin-2-yl-formamidine 1m as a light brown solid (3.58 g, 61%).

¹H NMR (300 MHz, CDCl₃): δ 10.78 (s, 0.5H), 9.42 (s, 0.5 H), 877-8.28 (m, 2H), 7.73-6.59 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 163.7, 160.2, 149.7, 147.4, 138.2, 132.5, 128.5, 119.3, 118.2, 115.8, 111.9, 109.3; IR (ATR): v/cm⁻¹ = 2957, 2916, 2876, 1664, 1598, 1572, 1503, 1473, 1415, 1354, 1293, 1236, 1205, 1157, 1115, 1096, 1045, 1028, 1013, 990, 865; R_f (*n*-pentane/EtOAc 1:1): 0.50; t_R (50_40): 10.05 min; MS (GC-MS): m/z (%) = 275 (9), 197 (14), 196 (100), 173 (24), 171 (25), 155 (9), 94 (92), 79 (19), 78

(42), 76 (13), 67 (33); **EM** (**ESI**): m/z [M + H⁺] calcd. for $C_{12}H_{10}N_3BrH$: 276.0131,

N-Adamantan-2-yl-N'-(2-bromophenyl)-formamidine (1n)

this stirred solution was added acetic acid (37 μ L, 0.66 mmol, 0.05 eq.). The reaction mixture was heated to 140 °C and kept stirring for 2 h. It was subsequently cooled and then adamantylamine (2 g, 13.22 mmol, 1 eq.) added. The mixture was heated to 140 °C again and stirred for 12 h. It was cooled and the residue was washed with *n*-hexane (3 × 10 mL). The crude residue upon recrystallization using CH₂Cl₂-*n*-hexane afforded *N*-adamantan-2-yl-*N*'-(2-bromo-phenyl)-formamidine **1n** as a white crystalline solid (3.17 g, 72%).

¹H NMR (300 MHz, CDCl₃): δ 7.65 (s, 1H), 7.56-7.47 (m, 1H), 7.18 (s, 1H), 6.85 (d, J = 7.4 Hz, 2H), 2.11 (s, 4H), 1.82 (s, 7H), 1.69 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 132.9, 128.2, 123.7, 121.0, 44.0, 42.8, 36.1, 35.8, 29.5, 29.3; IR (ATR): v/cm⁻¹ = 2917, 2890, 2850, 1665, 1578, 1483, 1357, 1321, 1302, 1255, 1211, 1186, 1136, 1113, 1043, 1027, 992, 933, 863, 815, 754; R_f (*n*-pentane/EtOAc 1:1): 0.62; t_R (50_40): 11.44 min; MS (GC-MS): m/z (%) = 333 (18), 332 (51), 331 (8), 252 (21), 253 (100), 236 (17), 201 (12), 199 (19), 173 (56), 171 (57), 163 (23), 162 (56), 157 (19), 155 (18), 135 (92), 119 (41), 118 (30), 93 (65), 79 (64); EM (ESI): m/z [M + H⁺] calcd. for C₁₇H₂₁N₂BrH : 333.0961, found: 333.0967.

N,*N*'-Bis-(2,4-dichlorophenyl)-formamidine (10)

Cl 2,4-Dichloroaniline (4.86 g, 30 mmol, 2.0 eq.), triethylorthoformate (2.22 g, 2.5 mL, 15 mmol, 1.0 eq.) and glacial acetic acid (45.0 mg, 42.9 μL, 0.75 mmol, 0.05 eq.) were mixed and stirred for 14 h at 150 °C. After cooling to rt addition of *n*-pentane (10 mL) induced solidification of the crude product. The resulting solid was triturated in *n*-pentane, filtered and washed with *n*-pentane (5 mL). Subsequently the solid was recrystallized from acetone to afford the product **1o** as an off-white crystalline solid (2.72 g, 54%).

¹H NMR (300 MHz, CDCl₃): δ 7.95 (br s, 1H), 7.62-7.09 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 147.0 (br), 140.1 (br), 129.4, 128.8, 127.8, 125.4 (br), 120.0 (br); IR (ATR): $v/cm^{-1} = 3394$, 3095, 2165, 1642, 1576, 1525, 1472, 1394, 1326, 1217, 1140, 1100, 1051, 961, 912, 875, 864, 834, 822, 729, 710, 688, 646, 627, 572, 555, 534; R_f (*n*-pentane/EtOAc 1:1): 0.82; t_R (50_40): 11.39 min; MS (GC-MS): m/z (%) = 332 (7), 297 (15), 173 (2), 172 (17), 161 (100), 125 (3), 110 (3), 90 (5); EM (ESI): m/z [M + H⁺] calcd. for C₁₃H₉Cl₄N₂: 332.9514, found: 332.9532.

N,N'-Bis-(2,4,6-trichlorophenyl)-formamidine (1p)

The mixture of 2,4,6-trichloroaniline (5.89 g, 30 mmol, 2.0 eq.), triethylorthoformate (2.22 g, 2.5 mL, 15 mmol, °CI 1.0 eq.) and glacial acetic acid (45 mg, 42.9 µL, 0.75 mmol, 0.05 eq.) were stirred for 2.5 h at 150 °C. The temperature was elevated to 160 °C due to sluggish conversion. After 30 min no reaction progress was observed based on GC-MS. Three drops of sulfuric acid were added and the mixture was stirred for 2.5 h at 160 °C. The crude mixture was soluted with *n*-pentane (20 mL) after cooling to rt and the solid was formed. This solid was filtered, washed with cold *n*-pentane and subsequently recrystallized from acetone. The product 1p was obtained as colorless needles (1.47 g, 24%). The measurement of ¹³C NMR was not successful. ¹H NMR (300 MHz, CDCl₃): δ 7.79 (br s, 1H), 7.42 (br s, 1H), 7.38 (s, 4H); **IR** (**ATR**): $v/cm^{-1} = 3367$, 3080, 2360. 2327, 1722, 1654, 1553, 1549, 1494, 1446, 1416, 1382, 1369, 1289, 1214, 1179, 1131, 1078, 979, 917, 855, 818, 796, 745, 709, 606, 565; **R**_f (*n*-pentane/**EtOAc 1:1):** 0.82; $t_{\rm R}$ (50_20_320_8ISO): 17.32 min; MS (GC-MS): m/z (%) = 400 (2), 365 (13), 331 (1), 206 (14), 195 (100), 194 (2), 179 (10), 159 (4), 145 (5), 125 (1), 110 (1); **EM** (**ESI**): *m/z* $[M + H^{+}]$ calcd. for $C_{13}H_{7}Cl_{6}N_{2}$: 400.8735, found: 400.8739.

3. Synthesis of Characterization of 2-Unsubstituted, N-Substituted Benzimidazoles

1-(2-Bromophenyl)-1*H*-benzoimidazole (2a)

Formamidine **1a** (177 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 1 h 20 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were

separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \text{ mL}$) and the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by column chromatography (\emptyset 2 cm, SiO₂: 14 cm, n-pentane/EtOAc 3:1) yielded the benzimidazole **2a** as a colorless oil (135 mg, 99%).

¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H, NCHN), 7.89 (dd, J = 7.2, 1.1 Hz, 1H, Ar-H), 7.81 (dd, J = 8.0, 1.3 Hz, 1H, Ar-H), 7.54-7.48 (m, 1H, Ar-H), 7.45 (dd, J = 7.9, 1.8 Hz, 1H, Ar-H), 7.43-7.38 (m, 1H, Ar-H), 7.37-7.28 (m, 2H, 2×Ar-H), 7.21-7.17 (m, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 142.9, 135.1, 134.3, 134.2, 130.6, 129.1, 128.6, 123.7, 122.7, 121.4, 120.4, 110.5; IR (ATR): $v/cm^{-1} = 3061$, 1731, 1614, 1587, 1493, 1454, 1306, 1288, 1260, 1230, 1203, 1158, 1142, 1056, 1030, 1007, 977, 889, 865, 786, 743, 716, 654, 634, 581, 553, 535; R_f (*n*-pentane/EtOAc 1:1): 0.29; t_R (50_40): 9.46 min; MS (GC-MS): m/z (%) = 272 (100), 193 (86), 155 (5), 77 (5), 76 (18); EM (ESI): m/z [M + H⁺] calc. for C₁₃H₁₀BrN₂: 273.0022, found: 273.0028; Elemental analysis: calcd. (%) for C₁₃H₉BrN₂ (273.13): C 57.17, H 3.32, N 10.26, found: C 57.27, H 3.26, N 10.04.

1-(2-Bromo-5-trifluoromethylphenyl)-5-trifluoromethyl-1*H*-benzoimidazole (2b)

Formamidine **1b** (245 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 1 h 15 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous

layer was extracted with EtOAc (2 × 20 mL) and the combined organic layers were

treated over brine and dried with Na₂SO₄. The crude mixture was purified by column chromatography (Ø 2 cm, SiO₂: 18 cm, *n*-pentane/EtOAc 5:1) to afford the benzimidazole **2b** as a white crystalline solid (188 mg, 92%).

¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H, Ar-H), 8.17 (s, 1H, NCHN), 8.01 (d, J = 8.2 Hz, 1H, Ar-H), 7.75-7.70 (m, 2H, 2×Ar-H), 7.59 (d, J = 8.4 Hz, 1H, Ar-H), 7.28 (d, J = 8.4 Hz, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4 (br), 143.0 (br), 135.4, 135.2, 131.7 (q, J = 34 Hz), 127.8 (q, J = 3.5 Hz), 126.0 (q, J = 3.6 Hz), 125.9 (q, J = 3.6 Hz), 125.7, 124.5 (q, J = 273 Hz), 122.9 (q, J = 273 Hz), 121.1 (q, J = 3.6 Hz), 118.6 (q, J = 4.1 Hz), 110.9; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.84, -62.79; R_f (*n*-pentane/EtOAc 1:1): 0.68; IR (ATR): $v/cm^{-1} = 3134$, 3098, 3032, 2961, 1628, 1611, 1499, 1488, 1444, 1425, 1355, 1317, 1302, 1256, 1224, 1187, 1158, 1138, 1107, 1081, 1048, 997, 976, 959, 916, 895, 934, 825, 805, 758, 729, 715, 671, 652; t_R (50_40): 8.96 min; MS (GC-MS): m/z (%) = 408 (100), 389 (13), 329 (45), 261 (8), 145 (5), 69 (8); EM (ESI): m/z [M + H⁺] calcd. for C₁₅H₈BrF₆N₂: 408.9770, found: 408.9769; Elemental analysis: calcd. (%) for C₁₅H₇BrF₆N₂ (409.12): C 44.04, H 1.72, N 6.85, found: C 43.99, H 1.74, N 6.69.

1-(2-Bromo-3,5-dimethylphenyl)-5,7-dimethyl-1*H*-benzoimidazole (2c)

Br N

Formamidine 1c (205 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 23 h 15 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were

added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \text{ mL}$), the combined organic layers were treated with brine and dried over Na₂SO₄. The crude mixture was purified by column chromatography (\emptyset 2 cm, SiO₂: 15 cm, n-pentane/EtOAc 3:1) to yield the benzimidazole **2c** as a white solid (147 mg, 89%).

A scale-up reaction: Formamidine **1c** (811 mg, 1.98 mmol, 1 eq.) was dissolved in 7.9 mL DMSO. CuI (75.3 mg, 0.40 mmol, 20 mol%) and DBU (0.59 mL, 602 mg, 3.95 mmol, 2 eq.) were added and the reaction was stirred for 25 h 30 min at 110 °C. H_2O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL), the combined organic layers were treated

with brine and dried over Na_2SO_4 . The crude mixture was purified by column chromatography (Ø 3 cm, SiO_2 : 13 cm, n-pentane/EtOAc 3:1) to afford the benzimidazole **2c** (602 mg, 93%).

¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 1H, NCHN), 7.50 (br s, 1H, Ar-H), 7.24-7.20 (m, 1H, Ar-H), 7.13-7.09 (m, 1H, Ar-H), 6.85 (br s, 1H, Ar-H), 2.48 (s, 3H, Ar-CH₃), 2.45 (s, 3H, Ar-CH₃), 2.35 (s, 3H, Ar-CH₃), 1.96 (s, 3H, Ar-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 143.8, 143.3, 139.3, 137.4, 136.8, 132.5, 132.1, 131.1, 128.2, 126.9, 122.7, 121.3, 117.9, 23.5, 21.3, 20.7, 17.3; IR (ATR): v/cm^{-1} = 3081, 2956, 2916, 2858, 1597, 1575, 1493, 1460, 1441, 1385, 1345, 1308, 1270, 1247, 1229, 1209, 1163, 1135, 1082, 1063, 1036, 951, 892, 865, 841, 798, 760, 721, 645, 617, 605, 592, 569, 542, 530, 523, 513, 505, 499, 483; R_f (*n*-pentane/EtOAc 1:1): 0.29; t_R (50_40): 10.62 min; MS (GC-MS): m/z (%) = 328 (100), 315 (11), 313 (12), 249 (85), 207 (4), 117 (23), 117 (23), 91 (8), 77 (17); EM (ESI): m/z [M + H⁺] calcd. for C₁₇H₁₈BrN₂: 329.0648, found: 329.0643; Elemental analysis: calcd. (%) for C₁₇H₁₇BrN₂ (329.23): C 62.02, H 5.20, N 8.51, found: C 62.05, H 5.04, N 8.31.

6-Bromo-1-(2,4-dibromo-3,5-dimethylphenyl)-5,7-dimethyl-1*H*-benzoimidazole (2d)

Formamidine **1d** (284 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 24 h 10 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous

layer was extracted with EtOAc ($2 \times 20 \text{ mL}$) and the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by column chromatography (Ø 2 cm, SiO₂: 15 cm, *n*-pentane/EtOAc 3:1) yielded the benzimidazole **2d** as an off-white solid (242 mg, 99%).

¹**H NMR (400 MHz, CDCl₃):** δ 7.76 (br s, 1H, NCHN), 7.62 (s, 1H, Ar-H), 7.23 (s, 1H, Ar-H), 2.74 (s, 3H, Ar-CH₃), 2.54 (s, 3H, Ar-CH₃), 2.46 (s, 3H, Ar-CH₃), 2.10 (s, 3H, Ar-CH₃); ¹³**C NMR (100 MHz, CDCl₃):** δ 139.6, 138.7, 135.7, 132.8, 129.3, 128.6, 123.9, 123.5, 121.8, 119.2, 25.4, 24.8, 24.1, 17.8; **IR (ATR):** v/cm⁻¹ = 3016, 2952, 2921, 2859, 2736, 1736, 1690, 1582, 1494, 1465, 1437, 1412, 1398, 1380, 1326, 1304, 1246, 1226,

1192, 1156, 1066, 1049, 997, 978, 913, 855, 815, 753, 724, 695, 645, 626, 577; $\mathbf{R_f}$ (*n*-pentane/EtOAc 1:1): 0.38; $t_{\mathbf{R}}$ (50_20_320): 18.31 min; MS (GC-MS): m/z (%) = 484 (35), 405 (24), 328 (12), 313 (21), 247 (21), 208 (5), 115 (5), 77 (6); EM (ESI): m/z [M + H⁺] calcd. for $C_{17}H_{16}Br_3N_2$: 484.8858, found: 484.8891; Elemental analysis: calcd. (%) for $C_{17}H_{15}Br_3N_2$ (487.03): C 41.92, H 3.10, N 5.75, found: C 42.25, H 2.95, N 5.61.

1-(2-Bromo-4,6-dimethylphenyl)-4,6-dimethyl-1*H*-benzoimidazole (2e)

Formamidine 1e (205 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 1 h 10 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL) and the combined organic layers were treated

with brine and dried over Na_2SO_4 . The crude mixture was purified by column chromatography (Ø 2 cm, SiO_2 : 15 cm, n-pentane/EtOAc 3:1) to afford the benzimidazole **2e** as an offwhite solid (160 mg, 97%).

¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H, NCHN), 7.43 (s, 1H, Ar-H), 7.14 (s, 1H, Ar-H), 6.96 (s, 1H, Ar-H), 6.64 (s, 1H, Ar-H), 2.70 (s, 3H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃), 2.39 (s, 3H, Ar-CH₃), 1.99 (s, 3H, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 141.5, 141.0, 140.5, 138.4, 133.6, 133.6, 131.5, 131.5, 130.8, 129.7, 124.7, 123.1, 107.4, 21.7, 20.9, 18.1, 16.5; IR (ATR): $v/cm^{-1} = 3109$, 3017, 2955, 2922, 2855, 1739, 1699, 1610, 1561, 1497, 1455, 1378, 1337, 1301, 1275, 1245, 1207, 1149, 1130, 1037, 990, 940, 854, 833, 821, 807, 772, 677, 643; R_f (*n*-pentane/EtOAc 1:1): 0.46; t_R (50_40): 10.19 min; MS (GC-MS): m/z (%) = 328 (100), 313 (24), 299 (1), 249 (15), 235 (2), 221 (2), 145 (1), 130 (1), 116 (4), 91 (3), 79 (1), 77 (5); EM (ESI): m/z [M + H⁺] calcd. for C₁₇H₁₇BrN₂: 329.0648, found: 329.0649; Elemental analysis: calcd. (%) for C₁₇H₁₈BrN₂ (329.23): C 62.02, H 5.20, N 8.51, found: C 62.16, H 5.11, N 8.41.

1-(2,4,6-Trimethylphenyl)-1*H*-benzoimidazole (2f)³

Formamidine **1f** (159 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 4 h 20 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 ×

20 mL) and the combined organic layers were treated with brine and dried over Na_2SO_4 . The crude mixture was purified by column chromatography (\emptyset 2 cm, SiO_2 : 13 cm, n-pentane/EtOAc 3:1) to yield the benzimidazole **2f** as a yellow oil (100 mg, 85%).

A scale-up reaction: Formamidine **1f** (890 mg, 2.81 mmol, 1 eq.) was dissolved in 11.0 mL DMSO. CuI (107 mg, 0.52 mmol, 20 mol%) and DBU (0.84 mL, 854 mg, 5.61 mmol, 2 eq.) were added and the reaction was stirred for 2 h 20 min at 110 °C. H_2O (100 mL) and EtOAc (100 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 100 mL) and the combined organic layers were treated with brine and dried with Na_2SO_4 . The crude mixture was purified by column chromatography (Ø 3 cm, SiO_2 : 15 cm, n-pentane/EtOAc 3:1) to yield the benzimidazole **2f** as a yellow oil (644 mg, 97%).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.0 Hz, 1H, Ar-H), 7.87 (s, 1H, NCHN), 7.35-7.29 (m, 1H, Ar-H), 7.29-7.23 (m, 1H, Ar-H), 7.04 (s, 2H, 2×Ar-H), 7.02 (d, J = 8.1 Hz, 1H, Ar-H), 2.39 (s, 3H, Ar-CH₃), 1.92 (s, 6H, 2×Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 143.0, 139.2, 136.3, 134.1, 131.0, 129.3, 123.4, 122.3, 120.4, 110.2, 21.1, 17.4; IR (ATR): $v/cm^{-1} = 3079$, 3062, 3051, 3032, 3020, 2970, 2951, 2920, 2859, 1614, 1591, 1492, 1455, 1379, 1341, 1305, 1281, 1226, 1207, 1173, 1137, 1105, 1035, 1006, 980, 941, 886, 854, 785, 766, 743, 645; R_f (*n*-pentane/EtOAc 1:1): 0.34; t_R (50_40): 9.14 min; MS (GC-MS): m/z (%) = 236 (96), 221 (7), 207 (3), 193 (6), 119 (2), 117 (3), 91 (8), 77 (8); EM (ESI): m/z [M + H⁺] calcd. for C₁₆H₁₇N₂: 237.1386, found: 237.1381.

_

³ Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.

4,6-Dimethyl-1-(2,4,6-trimethylphenyl)-1*H*-benzoimidazole (2g)

Formamidine 1g (173 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 1 h 30 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with

EtOAc ($2 \times 20 \text{ mL}$) and the combined organic layers were treated with brine and dried over Na₂SO₄. The crude mixture was purified by column chromatography (\emptyset 2 cm, SiO₂: 16 cm, n-pentane/EtOAc 3:1) to afford the benzimidazole **2g** as a yellowish solid (131 mg, 99%).

A scale-up reaction: Formamidine **1g** (716 mg, 2.07 mmol, 1 eq.) was dissolved in 8.3 mL DMSO. CuI (79.0 mg, 0.41 mmol, 20 mol%) and DBU (0.62 mL, 631 mg, 4.15 mmol, 2 eq.) were added and the reaction was stirred for 1 h 45 min at 110 °C. H_2O (80 mL) and EtOAc (80 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL) and the combined organic layers were treated with brine and dried over Na_2SO_4 . The crude mixture was purified by column chromatography (Ø 3 cm, SiO_2 : 15 cm, n-pentane/EtOAc 3:1) yielded the benzimidazole **2g** as an off-white solid (558 mg, quant.).

¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H, NCHN), 7.04 (s, 2H, 2×Ar-H), 6.95 (s, 1H, Ar-H), 6.64 (s, 1H, Ar-H), 2.71 (s, 3H, Ar-CH₃), 2.38 (s, 6H, 2×Ar-CH₃), 1.93 (s, 6H, 2×Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 141.6, 140.7, 139.0, 136.3, 134.0, 133.4, 131.3, 129.6, 129.2, 124.4, 107.4, 21.6, 21.1, 17.4, 16.5; IR (ATR): $v/cm^{-1} = 3105$, 3018, 2954, 2920, 2858, 1718, 1614, 1594, 1496, 1457, 1381, 1339, 1299, 1267, 1248, 1206, 1132, 1035, 981, 933, 855, 835, 813, 769, 742, 677, 650; **R**_f (*n*-pentane/EtOAc 1:1): 0.35; *t*_R (50_40): 9.46 min; MS (GC-MS): m/z (%) = 264 (100), 249 (41), 235 (2), 221 (3), 207 (2), 193 (1), 145 (2), 119 (2), 105 (1), 91 (7), 77 (6); **EM** (**ESI**): m/z [M + H⁺] calcd. for C₁₈H₂₁N₂: 265.1699, found: 265.1697.

4,6-Dibromo-1-(2,4,6-trimethylphenyl)-1*H*-benzoimidazole (2h)

Formamidine **1h** (238 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 1 h 15 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL) and the combined organic layers

were treated with brine and dried over Na_2SO_4 . The purification by column chromatography (\emptyset 2 cm, SiO_2 : 21 cm, n-pentane/EtOAc 3:1) yielded the benzimidazole **2h** as a white solid (193 mg, 98%).

¹H NMR (300 MHz, CDCl₃): δ 7.90 (s, 1H, NCHN), 7.63 (d, J = 1.6 Hz, 1H, Ar-H), 7.12 (d, J = 1.6 Hz, 1H, Ar-H), 7.04 (s, 2H, 2×Ar-H), 2.37 (s, 3H, Ar-CH₃), 1.90 (s, 6H, 2×Ar-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 144.0, 141.2, 140.0, 135.9, 135.3, 130.1, 129.5, 128.2, 116.8, 114.6, 112.6, 21.1, 17.4; IR (ATR): $v/cm^{-1} = 3076$, 2976, 2952, 2920, 2860, 1735, 1604, 1561, 1489, 1447, 1412, 1379, 1342, 1326, 1281, 1250, 1186, 1136, 1066, 1037, 913, 838, 759, 742, 722, 650, 596; R_f (*n*-pentane/EtOAc 1:1): 0.62; t_R (50_40): 11.18 min; MS (GC-MS): m/z (%) = 392 (52), 379 (2), 377 (2), 364 (2), 313 (22), 299 (6), 286 (2), 285 (2), 235 (5), 207 (9), 119 (3), 117 (14), 91 (16), 79 (3), 77 (13); EM (ESI): m/z [M + H⁺] calcd. for C₁₆H₁₅Br₂N₂: 392.9597, found: 392.9595; Elemental analysis: calcd. (%) for C₁₆H₁₄Br₂N₂ (394.10): C 48.76, H 3.58, N 7.11, found: C 48.83, H 3.37, N 6.87.

1-(2,6-Diisopropylphenyl)-1*H*-benzoimidazole (2i)

Formamidine **1i** (180 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 5 h 15 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added

and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \text{ mL}$) and the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by column chromatography (Ø 2 cm, SiO₂: 16 cm, *n*-pentane/EtOAc 3:1) yielded the benzimidazole **2i** as a white crystalline solid (127 mg, 91%).

An scale-up reaction: Formamidine 1i (1.65 g, 4.58 mmol, 1 eq.) was dissolved in 18.5 mL DMSO. CuI (174 mg, 0.92 mmol, 20 mol%) and DBU (1.37 mL, 1.39 g, 9.16 mmol, 2 eq.) were added and the reaction was stirred for 3 h 20 min at 110 °C. H_2O (160 mL) and EtOAc (160 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL), the combined organic layers were treated with brine and dried over Na_2SO_4 . The crude mixture was purified by column chromatography (Ø 3 cm, SiO_2 : 19 cm, n-pentane/EtOAc 3:1) to afford the benzimidazole 2i (1.22 g, 96%).

¹H NMR (400 MHz, CDCl₃): δ 7.94-7.84 (m, 2H, NCHN, Ar-H), 7.51 (t, J = 7.8 Hz, 1H, Ar-H), 7.36-7.30 (m, 1H, Ar-H), 7.33 (d, J = 7.8 Hz, 2H, 2×Ar-H), 7.29-7.23 (m, 1H, Ar-H), 7.04 (d, J = 7.8 Hz, 1H, Ar-H), 2.27 (sept, J = 6.9 Hz, 2H, 2×CH(CH₃)₂), 1.10 (d, J = 6.9 Hz, 6H,CH(C H_3)CH₃), 1.02 (d, J = 6.9 Hz, 6H, CH(CH₃)C H_3); ¹³C NMR (100 MHz, CDCl₃): δ 147.5, 130.6, 130.2, 124.1, 123.6, 122.4, 120.3, 110.4, 28.2, 24.7, 23.9; IR (ATR): v/cm⁻¹ = 3080, 2964, 2927, 2869, 1788, 1616, 1592, 1485, 1461, 1443, 1383, 1363, 1308, 1287, 1248, 1222, 1182, 1158, 1142, 1058, 1008, 977, 938, 890, 848, 809, 789, 765, 758, 743, 649; R_f (EtOAc/n-pentane 1:1): 0.56; t_R (50_40): 9.30 min; MS (GC-MS): m/z (%) = 278 (100), 263 (58), 248 (9), 235 (10), 221 (8), 206 (7), 193 (4), 117 (5), 91 (6), 77 (7), 43 (3); EM (ESI): m/z [M + H⁺] calcd. for C₁₉H₂₃N₂: 279.1856, found: 279.1848; Elemental analysis: calcd. (%) for C₁₉H₂₂N₂ (278.39): C 81.97, H 7.97, N 10.06, found: C 81.86, H 7.81, N 9.88.

1-Anthracen-9-yl-1*H*-benzoimidazol (2j)

Formamidine 1j (188 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 2 h at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc

 $(2 \times 20 \text{ mL})$, the combined organic layers were treated with brine and dried over Na₂SO₄. The crude mixture was purified by column chromatography (Ø 2 cm, SiO₂: 14 cm, n-pentane/EtOAc 3:1) to afford the benzimidazole **2j** as a yellow-green solid (136 mg, 92%).

A scale-up reaction: Formamidine **1j** (477 mg, 1.27 mmol, 1 eq.) was dissolved in 5.0 mL DMSO. CuI (48.4 mg, 0.25 mmol, 20 mol%) and DBU (0.38 mL, 387 g, 2.54 mmol, 2 eq.) were added and the reaction was stirred for 24 h at 110 °C. H₂O (40 mL) and EtOAc (40 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL), the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by column chromatography (\emptyset 3 cm, SiO₂: 16 cm, n-pentane/EtOAc 3:1) yielded the benzimidazole **2j** (323 mg, 86%).

¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H, Ar-H), 8.17 (s, 1H, NCHN), 8.14 (d, J = 8.6 Hz, 2H, 2×Ar-H), 8.05 (d, J = 8.2 Hz, 1H, Ar-H), 7.56-7.51 (m, 2H, 2×Ar-H), 7.44-7.37 (m, 3H, 3×Ar-H), 7.36-7.32 (m, 2H, 2×Ar-H), 7.23-7.18 (m, 1H, Ar-H), 6.86 (d, J = 8.1 Hz, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 143.2, 136.3, 131.5, 129.1, 128.9, 128.6, 127.7, 126.8, 125.9, 123.8, 122.7, 122.4, 120.5, 110.8; IR (ATR): v/cm^{-1} = 3081, 3055, 3030, 1625, 1612, 1487, 1453, 1443, 1416, 1385, 1306, 1279, 1218, 1196, 1144, 1089, 1011, 961, 918, 887, 852, 791, 775, 764, 743, 731; R_f (EtOAc/n-pentane 1:1): 0.29; t_R (50_40): 12.78 min; MS (GC-MS): m/z (%) = 294 (100), 267 (7), 177 (3); EM (ESI): m/z [M + H⁺] calcd. for C₂₁H₁₅N₂: 295.1230, found: 295.1226; Elemental analysis: calcd. (%) for C₂₁H₁₄N₂ (294.35): C 85.69, H 4.79, N 9.52, found: C 85.59, H 4.67, N 9.65.

1-(2-tert-Butylphenyl)-4,6-dimethyl-1*H*-benzoimidazol (2k)

Formamidine **1k** (180 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 96 h 30 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous

layer was extracted with EtOAc (2 × 20 mL), the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by column chromatography (\emptyset 2 cm, SiO₂: 22 cm, *n*-pentane/EtOAc 3:1) afforded the benzimidazole **2k** as a yellowish solid (118 mg, 85%).

¹**H NMR** (**300 MHz, CDCl₃**): δ 7.90 (s, 1H, NCHN), 7.67 (dd, J = 8.2, 1.4 Hz, 1H, Ar-H), 7.52-7.44 (m, 1H, Ar-H), 7.30 (dt, J = 7.4, 1.4 Hz, 1H, Ar-H), 7.02 (dd, J = 7.7,

1.4 Hz, 1H, Ar-H), 6.94 (s, 1H, Ar-H), 6.66 (s, 1H, Ar-H), 2.70 (s, 3H, Ar-CH₃), 2.38 (s, 3H, Ar-CH₃), 1.16 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 148.3, 143.4, 140.3, 136.9, 134.3, 133.4, 131.3, 129.6, 129.4, 128.5, 127.0, 124.4, 108.5, 35.8, 31.8, 21.7, 16.6; IR (ATR): v/cm⁻¹ = 3009, 2963, 2917, 2873, 1715, 1614, 1597, 1491, 1447, 1396, 1364, 1338, 1280, 1265, 1246, 1204, 1196, 1169, 1131, 1103, 1054, 1036, 978, 953, 875, 860, 841, 814, 766, 759, 736, 671, 650, 615; R_f (*n*-pentane/EtOAc 1:1): 0.51; t_R (50_40): 9.62 min; MS (GC-MS): m/z (%) = 278 (100), 263 (58), 249 (6), 235 (3), 221 (4), 207 (4), 193 (3), 145 (2), 132 (2), 117 (7), 91 (6), 77 (6); EM (ESI): m/z [M + H⁺] calcd. for C₁₉H₂₃N₂: 279.1856, found: 279.1855.

4,6-Dibrom-1-(2,4,6-tribromphenyl)-1*H*-benzoimidazol (2l)

Formamidine 11 (200 mg, 0.30 mmol, 1 eq.) was dissolved in 1.2 mL DMSO. CuI (11.4 mg, 0.06 mmol, 20 mol%) and DBU (89.2 μ L, 91 mg, 0.60 mmol, 2 eq.) were added and the reaction was stirred for 1 h 10 min at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 × 20 mL), the combined organic

layers were treated with brine and dried over Na₂SO₄. The crude mixture was purified by column chromatography (Ø 2 cm, SiO₂: 17 cm, *n*-pentane/EtOAc 5:1) to yield the benzimidazole as a white solid (164 mg, 93%).

¹H NMR (400 MHz, CDCl₃): δ 7.93 (s, 2H, 2×Ar-H), 7.92 (s, 1H, NCHN), 7.69 (d, J = 1.6 Hz, 1H, Ar-H), 7.16 (d, J = 1.6 Hz, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 141.1, 135.6, 134.1, 132.7, 129.1, 125.4, 124.6, 117.5, 114.9, 112.7; IR (ATR): $v/cm^{-1} = 3114$, 3081, 1722, 1606, 1566, 1542, 1487, 1463, 1449, 1410, 1373, 1359, 1343, 1326, 1287, 1254, 1223, 1185, 1150, 1116, 1101, 1086, 1066, 1048, 986, 914, 877, 857, 839, 778, 756, 743, 735, 713, 640, 586; R_f (*n*-pentane/EtOAc 1:1): 0.70; t_R (50_20_320): 18.68 min; MS (GC-MS): m/z (%) = 584 (10), 505 (2), 349 (12), 271 (3), 232 (2), 155 (7); EM (ESI): m/z [M + Na⁺] calcd. for C₁₃H₅Br₅N₂Na: 606.6262, found: 606.6258; Elemental analysis: calcd. (%) for C₁₃H₅Br₅N₂ (588.71): C 26.52, H 0.86, N 4.76, found: C 26.80, H 1.02, N 4.64.

1-Pyridin-2-yl-1*H*-benzoimidazole (2m)

To an oven-dried screw-capped test tube equipped with a magnetic stir bar was added the *N*-(2-Bromophenyl)-*N*'-pyridin-2-yl-formamidine (138.1 mg, 0.5 mmol, 1.0 eq.) followed by the addition of 2 mL of DMSO. To this stirring mixture was added CuI (19.0 mg, 0.1 mmol, 0.2

eq.) and DBU (149 μ L, 2.0 eq.). The reaction mixture was then stirred in a pre-heated oil bath at 110 °C for 1 h. Processing of the reaction mixture followed by flash column chromatography on silica gel (n-pentane/EtOAc 7:3) afforded the 1-pyridin-2-yl-1H-benzoimidazole as a white solid (85 mg, 87%).

¹H NMR (400 MHz, CDCl₃): δ 8.56-8.37 (m, 2H), 7.99-7.91 (m, 1H), 7.81-7.70 (m, 2H), 7.43 (d, J = 8.2 Hz, 1H), 7.32-7.21 (m, 2H), 7.19-7.12 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 149.4, 144.7, 141.4, 139.0, 132.1, 124.2, 123.3, 121.8, 120.6, 114.3, 112.7; IR (ATR): $v/cm^{-1} = 3081$, 3022, 2974, 1587, 1498, 1473, 1451, 1437, 1371, 1336, 1301, 1279, 1242, 1204, 1172, 1156, 1145, 1097, 1054, 1011, 998, 983; R_f (*n*-pentane/EtOAc 1:1): 0.13. t_R (50_40): 9.23 min; MS (GC-MS): m/z (%) = 195 (100), 194 (51), 169 (43), 170 (6), 84 (10), 78 (14); EM (ESI): m/z [M + H⁺] calcd. for $C_{12}H_9N_3H$: 196.0869, found: 196.0864.

1-Adamantan-2-yl-1*H*-benzoimidazole (2n)

To an oven-dried screw-capped test tube equipped with a magnetic stir bar was added the *N*-adamantan-2-yl-*N*'-(2-bromophenyl)-formamidine (166.4 mg, 0.5 mmol, 1.0 eq.) followed by the addition of 2 mL of DMSO. To this stirred mixture was added CuI (19.0 mg, 0.1 mmol, 0.2

eq.) and DBU (149 μ L, 2.0 eq.). The reaction mixture was then stirred in a pre-heated oil bath at 140 °C for 6 h. Processing of the reaction mixture followed by flash column chromatography on silica gel (n-pentane/EtOAc 1:1) afforded the 1-adamantan-2-yl-1H-benzimidazole as a white solid (120 mg, 95%).

¹H NMR (400 MHz, CDCl₃): δ 8.11 (br s, 1H, NCHN), 7.80 (m, 2H, 2×Ar-H), 7.24 (m, 2H, 2×Ar-H), 2.35 (m, 10H, adamantyl), 1.85 (d, J = 2.8 Hz, 5H, adamantyl); ¹³C NMR (100 MHz, CDCl₃): δ 121.9, 121.2, 120.9, 41.9, 36.0, 29.4; IR (ATR): v/cm⁻¹ = 3047, 2922, 2905, 2851, 1612, 1485, 1452, 1363, 1311, 1280, 1227, 1181, 1154, 1105, 1091,

1013, 985, 888, 863, 818, 777; $\mathbf{R_f}$ (*n*-pentane: EtOAc 1:1): 0.16; t_R (50_40): 10.94 min; **MS** (GC-MS): m/z (%) = 252 (46), 136 (12), 135 (100), 107 (8), 93 (16), 91 (10), 79 (18); EM (ESI): m/z [M + H⁺] calcd. for $C_{17}H_{20}N_2H$: 253.1699, found: 253.1696.

6-Chloro-1-(2,4-dichlorophenyl)-1*H*-benzoimidazole (20)

Formamidine **1o** (167 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 190 h at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added and the layers were separated. The aqueous layer was extracted

with EtOAc (2 × 20 mL), the combined organic layers were treated with brine and dried over Na₂SO₄. The crude mixture was purified by column chromatography (\emptyset 2 cm, SiO₂: 13 cm, n-pentane/EtOAc 3:1) to yield the benzimidazole **20** as a slightly orange solid (79 mg, 53%).

¹H NMR (400 MHz, CDCl₃): δ 7.99 (s, 1H, NCHN), 7.78 (d, J = 8.6 Hz, 1H, Ar-H), 7.67 (d, J = 2.2 Hz, 1H, Ar-H), 7.46 (dd, J = 8.5, 2.2 Hz, 1H, Ar-H), 7.39 (d, J = 8.5 Hz, 1H, Ar-H), 7.31 (dd, J = 8.6, 2.0 Hz, 1H, Ar-H), 7.18 (d, J = 2.0 Hz, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 141.8, 136.1, 134.7, 132.3, 131.7, 131.0, 129.9, 129.4, 128.5, 123.7, 121.5, 110.5; IR (ATR): $v/cm^{-1} = 3090$, 3018, 1779, 1615, 1584, 1564, 1489, 1459, 1386, 1335, 1303, 1279, 1227, 1198, 1175, 1142, 1110, 1071, 1056, 977, 936, 913, 893, 874, 836, 816, 805, 719, 670, 609, 595, 573, 517; R_f (*n*-pentane/EtOAc 1:1): 0.30; t_R (50_40): 10.10 min; MS (GC-MS): m/z (%) = 296 (100), 261 (18), 227 (7), 145 (4), 124 (5), 117 (6), 111 (6); EM (ESI): m/z [M + H⁺] calcd. for C₁₃H₈Cl₃N₂: 296.9748, found: 296.9739; Elemental analysis: calcd. (%) for C₁₃H₇Cl₃N₂ (297.57): C 52.47, H 2.37, N 9.41, found: C 52.47, H 2.33, N 9.32.

4,6-Dichlor-1-(2,4,6-trichlorphenyl)-1*H*-benzoimidazol (2p)

Formamidine **1p** (201 mg, 0.50 mmol, 1 eq.) was dissolved in 2 mL DMSO. CuI (19.0 mg, 0.1 mmol, 20 mol%) and DBU (149.3 μ L, 152 mg, 1.0 mmol, 2 eq.) were added and the reaction was stirred for 171 h at 110 °C. H₂O (20 mL) and EtOAc (20 mL) were added

and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 20 \text{ mL}$), the combined organic layers were treated with brine and dried over Na₂SO₄. The purification by preparative TLC (n-pentane/EtOAc 1:1) yielded the benzimidazole **2p** as a white solid (90 mg, 49%).

¹H NMR (300 MHz, CDCl₃): δ 7.94 (s, 1H, NCHN), 7.59 (s, 2H, 2×Ar-H), 7.39 (d, J = 1.8 Hz, 1H, Ar-H), 6.98 (d, J = 1.8 Hz, 1H, Ar-H); ¹³C NMR (75 MHz, CDCl₃): δ 143.5, 139.3, 137.2, 135.3, 134.5, 130.2, 129.4, 129.3, 126.2, 123.8, 109.2; IR (ATR): v/cm⁻¹ = 3123, 3079, 2924, 2853, 1733, 1685, 1610, 1574, 1555, 1495, 1470, 1457, 1390, 1374, 1347, 1328, 1289, 1268, 1252, 1201, 1179, 1166, 1146, 1092, 1071, 1046, 999, 929, 864, 853, 841, 826, 807, 766, 756, 725, 655, 638, 600, 596; **R**_f (*n*-pentane/EtOAc 1:1): 0.68; $t_{\rm R}$ (50_40): 11.75 min; MS (GC-MS): m/z (%) = 364 (62), 329 (11), 294 (25), 259 (8), 158 (6), 144 (5), 109 (14); **EM** (ESI): m/z [M + H⁺] calcd. for C₁₃H₅Cl₅N₂: 386.8788, found: 386.8786.

4. Synthesis and Characterization of Benzimidazolium Salts

1-Methyl-3-(2,4,6-trimethylphenyl)-3*H*-benzimidazol-1-ium iodide (3f)³

The benzimidazole **2f** (686 mg, 2.90 mmol, 1 eq.) was treated with 11.6 mL MeI in a sealed tube at 40 °C. After complete conversion, MeI was removed in high vacuum and the solid was washed with Et₂O to furnish the salt **3f** as a white solid (1.03 g, 94%). In a scale-up reaction, Benzimidazole **2f** (4.867 g, 20 mmol, 1 eq.) was treated with 50 mL MeI

in a sealed tube at 40 °C. After full conversion, MeI was removed in high vacuum and the solid was washed with Et_2O to yield the salt **3f** as a white solid (6.572 g, 87%).

¹H-NMR (300 MHz, CDCl₃): δ 10.81 (s, 1H, NCHN), 7.89 (d, 1H, J = 8.3 Hz, Ar-H), 7.76-7.69 (m, 1H, Ar-H), 7.66-7.59 (m, 1H, Ar-H), 7.28-7.23 (m, 1H, Ar-H), 7.07 (s, 2H, 2×Ar-H), 4.56 (s, 3H, NCH₃), 2.38 (s, 3H, Ar-CH₃), 2.03 (s, 6H, 2×Ar-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 142.1, 141.5, 135.2, 131.7, 131.1, 129.9, 128.0, 127.6, 127.5, 113.4, 112.8, 35.0, 21.0, 17.9. EM (ESI): m/z [M – Γ] calculated for C₁₇H₁₉N₂: 251.1543, Found: 251.1535.

The benzimidazole 2g (403 mg, 1.52 mmol, 1 eq.) was dissolved in 3 mL EtOAc. Benzyl bromide (0.18 mL, 261 mg, 1.52 mmol, 1 eq.) was added, and the reaction mixture was stirred first 24 h at r.t., than at 60 °C. The solid obtained was filtered and washed with Et₂O to yield the salt 3g as a white solid (637 mg, 96%).

¹H-NMR (300 MHz, CDCl₃): δ 11.07 (s, 1H, NCHN), 7.37-7.28 (m, 3H, 3×Ar-H), 7.14-7.09 (m, 3H, 3×Ar-H), 7.07 (s, 2H, 2×Ar-H_{Mes}), 6.80 (s, 1H, Ar-H), 6.43 (s, 2H, NCH₂Ph), 2.53 (s, 3H, Ar-CH₃), 2.39 (s, 3H, Ar-CH₃), 2.38 (s, 3H, Ar-CH₃), 2.05 (s, 6H, 2×Ar-CH₃); ¹³C-NMR (75 MHz, DMSO-d6): δ 143.9, 140.8, 138.5, 135.2, 135.2, 132.4, 131.0, 129.7, 129.2, 128.4, 128.1, 127.7, 126.1, 125.2, 110.2, 51.7, 20.7, 20.7, 17.6, 16.9; IR (ATR): v/cm^{-1} = 3108, 3030, 3006, 2967, 2954, 2914, 2857, 2773, 1882, 1608, 1557, 1499, 1486, 1467, 1456, 1389, 1369, 1353, 1319, 1236, 1200, 1158, 1139, 1084, 1052, 1029, 976, 946, 921, 837, 764, 752, 719, 696, 666, 644; EM (ESI): m/z [M – Br⁻] calcd. for C₂₅H₂₇N₂: 355.2169, found: 355.2173.

3-(2,6-Diisopropylphenyl)-1-methyl-3*H*-benzimidazol-1-ium iodide (3i)

The benzimidazole **2i** (1.29 g, 4.65 mmol, 1 eq.) was treated with 18.6 mL MeI in a sealed tube at 40 °C. After complete conversion, MeI was removed in high vacuum and the solid was washed with Et₂O to yield the salt **3i** as an off-white solid (1.92 g, 98%).

¹H-NMR (300 MHz, CDCl₃): δ 10.83 (s, 1H, NCHN), 8.01 (d, J = 8.4 Hz, 1H, Ar-H), 7.79-7.71 (m, 1H, Ar-H), 7.66-7.55 (m, 2H, 2×Ar-H), 7.35 (d, J = 7.9 Hz, 2H, 2×Ar-H), 7.20 (d, J = 8.4 Hz, 1H, Ar-H), 4.62 (s, 3H, NCH₃), 2.14 (sept, J = 6.8 Hz, 2H, CH(CH₃)CH₃), 1.20 (d, J = 6.8 Hz, 6H, 2×CH(CH₃)CH₃), 0.96 (d, J = 6.8 Hz, 6H, 2×CH(CH₃)CH₃); ¹³C-NMR (75 MHz, CDCl₃): δ 146.3, 141.9, 132.7, 132.2, 131.6, 128.2, 127.9, 126.9, 125.0, 113.7, 112.9, 35.1, 28.6, 24.7, 23.9; IR (ATR): v/cm⁻¹ = 3116, 2965, 2935, 2872, 2361, 2343, 1613, 1560, 1478, 1459, 1451, 1382, 1360, 1321, 1279, 1251, 1217, 1180, 1148, 1129, 1104, 1059, 1043, 1005, 941, 899, 816, 787, 757, 641, 617, 598,3 575, 564, 529, 519, 508, 497, 491; EM (ESI): m/z [M – I⁻] calculated

 $C_{20}H_{25}N_2$: 293.2012, found: 293.2014; **Elemental Analysis:** calcd. (%) for $C_{20}H_{25}IN_2$ (420.33): C 57.15, H 5.99, N 6.66, found: C 57.13, H 5.90, N 6.64.

3-Anthracen-9-yl-1-methyl-3*H*-benzimidazol-1-ium iodide (3j)

The benzimidazole **2j** (348 mg, 1.18 mmol, 1 eq.) was treated with 4.73 mL MeI in a sealed tube at 40 °C. After complete conversion, MeI was removed in high vacuum and the solid was washed with Et₂O to yield the salt **3j** as a yellow solid (520 mg, 100%).

¹H-NMR (400 MHz, DMSO-d6): δ 10.32 (s, 1H, NCHN), 9.16 (s, 1H, Ar-H), 8.39 (d, J = 8.5 Hz, 2H, 2×Ar-H), 8.34 (d, J = 8.4 Hz, 1H, Ar-H), 7.85-7.80 (m, 1H, Ar-H), 7.73-7.67 (m, 2H, 2×Ar-H), 7.66-7.60 (m, 2H, 2×Ar-H), 7.59-7.52 (m, 3H, 3×Ar-H), 7.11 (d, J = 8.4 Hz, 1H, Ar-H), 4.32 (s, 3H, CH₃); ¹³C-NMR (100 MHz, DMSO-d6): δ 146.0, 133.9, 133.2, 132.2, 131.9, 130.0, 129.9, 128.9, 128.6, 128.1, 127.4, 123.8, 122.5, 115.4, 114.0, 35.2; IR (ATR): v/cm⁻¹ = 3122, 3059, 2984, 2959, 2760, 1626, 1613, 1560, 1487, 1457, 1446, 1420, 1363, 1307, 1254, 1202, 1172, 1132, 1018, 1006, 912, 856, 821, 786, 774, 765, 752, 731, 662, 643, 602, 578; EM (ESI): m/z [M – Γ] calcd. for C₂₂H₁₇N₂: 309.1386, found: 309.1376.

5. ¹H and ¹³C NMR Spectra of Compounds

1-(2-Bromophenyl)-1*H*-benzoimidazole (2a)

$1\hbox{-}(2\hbox{-}Bromo\hbox{-}5\hbox{-}trifluoromethyl phenyl)\hbox{-}5\hbox{-}trifluoromethyl\hbox{-}1H\hbox{-}benzoimidazole~(2b)$

$1\hbox{-}(2\hbox{-Bromo-3,5-dimethylphenyl})\hbox{-}5,7\hbox{-dimethyl-}1H\hbox{-benzoimidazole }(2c)$

$\textbf{6-Bromo-1-} (\textbf{2,4-dibromo-3,5-dimethylphenyl}) \textbf{-5,7-dimethyl-1} \textbf{\textit{H}-benzoimidazole} \ (\textbf{2d})$

$1\hbox{-}(2\hbox{-Bromo-4,6-dimethylphenyl})\hbox{-4,6-dimethyl-1} H\hbox{-benzoimidazole (2e)}$

$1\hbox{-}(2,\!4,\!6\hbox{-Trimethylphenyl})\hbox{-}1H\hbox{-benzoimidazole}\ (2f)$

4,6-Dimethyl-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2g)

4,6-Dibromo-1-(2,4,6-trimethylphenyl)-1H-benzoimidazole (2h)

${\bf 1 \hbox{-}} (2, \! 6 \hbox{-} Diisopropylphenyl) \hbox{-} 1 H \hbox{-} benzoimidazole \ (2i)$

$1\hbox{-}Anthracen-9\hbox{-}yl\hbox{-}1H\hbox{-}benzoimidazol~(2j)$

110 100 90 f1 (ppm)

130 120

1-(2-tert-Butylphenyl)-4,6-dimethyl-1H-benzoimidazol (2k)

f1 (ppm)

140 130

$\textbf{4,6-Dibrom-1-} (\textbf{2,4,6-tribromphenyl}) \textbf{-1} \textbf{\textit{H}-benzoimidazol} \ (\textbf{2l})$

${\bf 1\text{-}Pyridin\text{-}2\text{-}yl}~{\bf 1} H~{\bf Benzimidazole}~(2\mathbf{m})$

149.85 149.44 149.47 − 144.70 − 141.37 − 132.14 − 132.14 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84 ✓ 121.84

₹77.48 ₹77.16 76.84

${\bf 1\text{-}Adamantan\text{-}2\text{-}yl\text{-}1} \\ H\text{-}benzoimidazole} \ (2n)$

$\hbox{6-Chloro-1-(2,4-dichlorophenyl)-1} \\ H\hbox{-benzoimidazole (2o)}$

4,6-Dichlor-1-(2,4,6-trichlorphenyl)-1H-benzoimidazol (2p)

1-Methyl-3-(2,4,6-trimethylphenyl)-3*H*-benzimidazol-1-ium iodide (3f)

 ${\bf 1\text{-}Benzyl\text{-}5,7\text{-}dimethyl\text{-}3\text{-}(2,4,6\text{-}trimethylphenyl)\text{-}3} \\ H\text{-}benzimidazol\text{-}1\text{-}iumbromide} \\ (3g)$

${\bf 3-} ({\bf 2,6-Diisopropylphenyl}) {\bf -1-methyl-3} \\ H{\bf -benzimidazol-1-ium\ iodide\ (3i)}$

${\bf 3-} Anthracen-9-yl-1-methyl-3 \\ H-benzimidazol-1-ium\ iodide\ (3j)$

