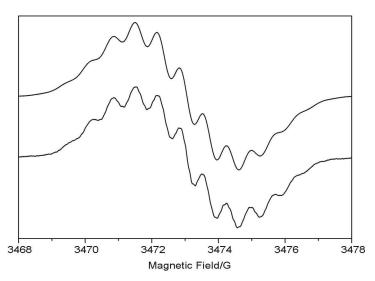
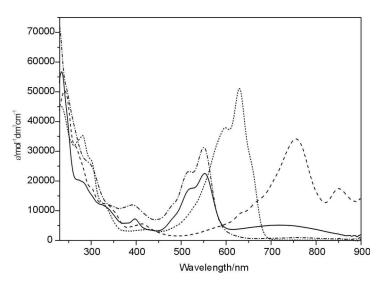
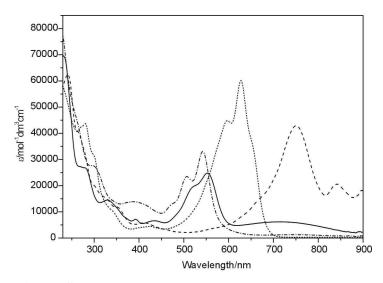
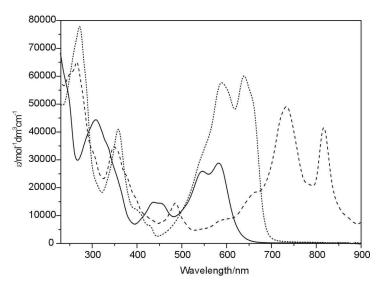
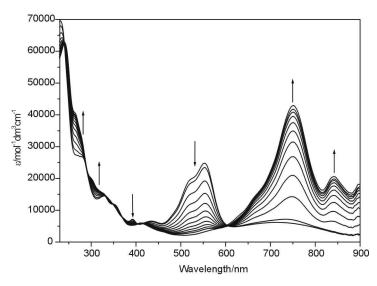

Supporting Information

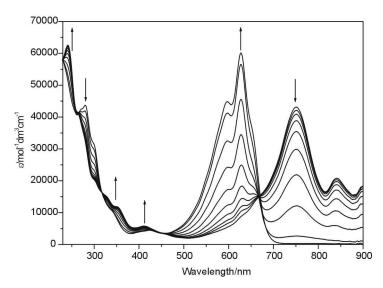

Figure S1 Cyclic voltammograms recorded for **1a** in CH₂Cl₂ containing [Bu₄N][BF₄] (0.4 M) showing the effect of scan rate on profile of the oxidation process. 0.02 Vs⁻¹ (short dashed line), 0.10 Vs⁻¹ (solid line), 0.20 Vs⁻¹ (dashed line), and 0.50 Vs⁻¹ (dashed-dotted line).


Figure S2. Cyclic voltammograms recorded for **1a** in CH₂Cl₂ containing [Bu₄N][BF₄] (0.4 M) showing the effect of scan rate on profile of the oxidation process. 0.10 Vs⁻¹ (solid line), 0.50 Vs⁻¹ (dashed line), 1.00 Vs⁻¹ (short dashed line) and 2.00 Vs⁻¹ (dashed-dotted line).


Figure S3. Experimental (bottom) and simulated (top) EPR spectra for electrochemically generated **1a** in CH₂Cl₂ containing [Bu₄N][BF₄] (0.4 M) at 291 K.


Figure S4. Experimental (bottom) and simulated (top) EPR spectra for electrochemically generated **2** in CH₂Cl₂ containing [Bu₄N][BF₄] (0.4 M) at 291 K.


Figure S5. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **2** at 273 K. The spectrum of **2** is represented by the solid line, **2**⁻ (dashed line), **2**²⁻ (short dashed line) and the oxidised species **2**²⁺ recorded at 243 K (dashed-dotted line).


Figure S6. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **3** at 273 K. The spectrum of **3** is represented by the solid line, **3**⁻ (dashed line), **3**²⁻ (short dashed line) and the oxidised species **3**²⁺ recorded at 243 K (dashed-dotted line)

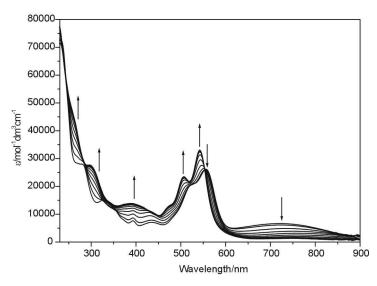

Figure S7. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **5** at 273 K. The spectrum of **5** is represented by the solid line, **5** $^-$ (dashed line) and **5** $^{2-}$ (short dashed line).

Figure S8. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **3** at 273 K showing the inter-conversion of **3** to **3**°. Arrows indicate the progress of the reduction.

Figure S9. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **3** at 273 K showing the inter-conversion of **3** to **3**². Arrows indicate the progress of the reduction.

Figure S10. UV-visible spectra recorded in CH_2Cl_2 containing $[Bu_4N][BF_4]$ (0.4 M) using spectroelectrochemical methods for **3** at 273 K showing the interconversion of **3** to 3^{2+} . Arrows indicate the progress of the oxidation.

Table S1. UV-visible spectroelectrochemical data for disubstituted PBI derivatives **1-5** in neutral, reduced and oxidised.

Compound	$\lambda_{\text{max}}/\text{nm} \ (\epsilon/\text{moldm}^{-3}\text{cm}^{-1})$
$[1a]^{0}$	307 (2.9), 431 (1.2), 523 (1.8), 556(2.4), 686 (0.7)
$[1a]^{1-}$	245 (6.2), 348 (2.7), 460 (0.8), 736 (3.9), 825 (3.0)
$[1a]^{2-}$	243 (6.1), 274 (5.1), 342 (2.6), 429 (0.4), 589 (4.7), 634 (5.8)
$[1a]^{2+}$	234 (2.8), 299 (1.5), 416 (0.6), 523 (0.9), 561 (1.2), 766 (< 0.1)
$[2]^0$	235 (5.7), 398 (0.7), 552 (2.3), 718 (0.5)
[2] ¹⁻	241 (5.1), 412 (0.6), 756 (3.5), 851 (1.8)
[2] ²⁻	232 (4.5), 281 (3.6), 598 (3.8), 630 (5.1)
$[2]^{2+b}$	391 (1.2), 518 (2.3), 551 (3.1), 760 (< 0.1)
$[3]^0$	329 (1.5), 392 (0.7), 434 (0.7), 553 (2.5), 711 (0.6)
[3] ¹⁻	242 (6.3), 263 (4.1), 349 (1.2), 410 (0.6), 752 (4.3), 844 (2.1)
[3] ²⁻	280 (4.4), 295 (3.2), 424 (0.4), 596 (4.5), 628 (6.0)
$[3]^{2+b}$	295 (2.8), 388 (1.4), 506 (2.4), 542 (3.3)
$[4]^0$	293 (6.9), 466 (1.6), 600 (2.5)
[4] ¹⁻	237 (7.1), 288 (6.4), 572 (1.6), 745 (4.1)
$[4]^{2}$	236 (6.5), 288 (7.4), 600 (4.4)
[4] ⁴⁻	261 (6.9), 624 (5.0), 655 (3.5)
$[5]^0$	309 (4.4), 437 (1.5), 545 (2.6), 582 (2.9)
[5] ¹⁻	266 (6.5), 348 (3.5), 486 (1.5), 734 (5.0), 817 (4.3)
[5] ²⁻	272 (7.8), 358 (4.1), 588 (5.8), 639 (6.0)

 $[^]a$ in CH_2Cl_2 containing $[^nBu_4N][BF_4]$ (0.4 M) at 273 K unless stated otherwise, spectral range: 230 - 900 nm; b at 243 K