Supplementary Information for

Structural, Magnetic, and Mössbauer Spectral Study of the Electronic Spin-State Transition in $\left\{\mathbf{F e}\left[\mathbf{H C}(3-\mathrm{Mepz})_{2}(5-\mathrm{Mepz})\right]_{2}\right\}\left(\mathrm{BF}_{4}\right)_{2}$

Daniel L. Reger ${ }^{a^{*}}$, J. Derek Elgin ${ }^{a, b}$, Elizabeth A. Foley ${ }^{a}$, Mark D. Smith ${ }^{a}$, Fernande Grandjean ${ }^{c}$, and Gary J. Long ${ }^{d^{*}}$
${ }^{a}$ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
${ }^{\mathrm{b}}$ Department of Chemistry and Physics, Coastal Carolina University, Conway, SC 29528, USA
${ }^{c}$ Department of Physics, B5, University of Liège, B-4000 Sart-Tilman, Belgium
${ }^{d}$ Department of Chemistry, Missouri University of Science and Technology,

Figure S1. The temperature dependence of the thermal factor, $U_{i s o}$, and the equivalent recoil-free fraction, the f-factor, of $\mathbf{1}$, solid points, and of $\left\{\mathrm{Fe}\left[\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right]_{2}\right\}\left(\mathrm{BF}_{4}\right)_{2}$, open points. ${ }^{6 \mathrm{a}, \mathrm{c}}$ The error bars are smaller than the data points.

Figure S2. The temperature dependence of χ_{M} obtained for $\mathbf{1}$ after zero-field cooling and subsequent warming and cooling in a 0.1 T applied field.

Figure S3. The temperature dependence of $\mu_{e f f}$ obtained for $\mathbf{1}$ after zero-field cooling and subsequent warming and cooling in a 0.1 T applied field.

Figure S4. The temperature dependence of the percentage of high-spin iron(II) in 1 obtained with the 300 K low-spin and high-spin $\mu_{\text {eff }}$ values, respectively, of 0.0 and $4.9 \mu_{\mathrm{B}}$, red, 0.1 and $5.0 \mu_{\mathrm{B}}$, black, 0.2 and $5.2 \mu_{\mathrm{B}}$, green, and 0.4 and $5.4 \mu_{\mathrm{B}}$, blue.

