Supporting Information Available

Synthesis of titanate-based nanotubes for onedimensionally confined electrical properties

Wanbiao Hu,^a Liping Li,^a Guangshe Li,^a* Jian Meng,^b Wenming Tong^{a,c}

^a State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter and Graduate School of Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China; ^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China; ^c School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.

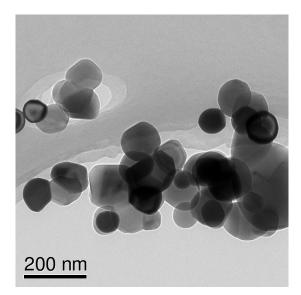
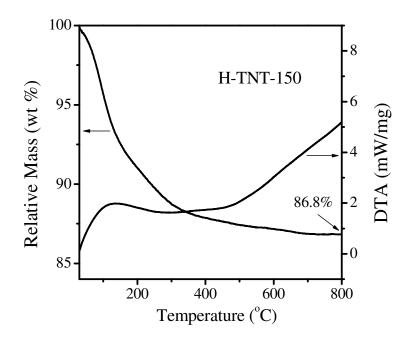
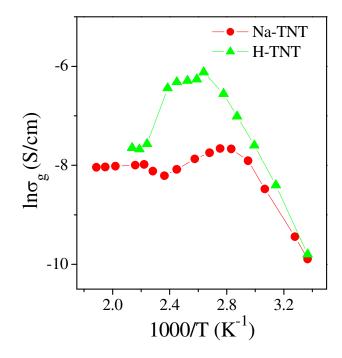




Figure S1. TEM image of the starting material of TiO₂.

Figure S2. TG-DTA data of H-TNT-150. When the temperature increased to 800 °C, H-TNT-150 showed a total mass loss of 13.2 wt%, which is much smaller than that of 20.5 wt% for H-TNT as indicated in Figure 3 of the text. This observation strongly evidenced the irreversible processes of water desorption and readsorption behavior.

Figure S3. Temperature dependence of grain conductivities (σ_g) of Na-TNT and H-TNT. On removal of water from the nanotubes during heating, the number of protons decreases, causing a deviation from a simple thermal activation process and hence a nonlinear increase of grain conductivities. As a result, the conduction did not follow Arrhenius law, and no activation energy can be expected.