Kinetic Isolation of Reaction Intermediates on Ice Surfaces. Precursor States of SO₂ Hydrolysis

Young-Kwang Kim, Sun-Kyung Kim, Jung-Hwan Kim, and Heon Kang*

Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea

Estimation of the Population of Intermediate Species

The population of the ionic intermediate species on the surface was estimated from LES anion signal intensity. For the calibration of LES intensity, a reference sample was prepared to have a predetermined amount of hydroxide ions on the surface. The hydroxide ions were provided by depositing a known amount of Na atoms on a D₂O-ice film, which produced Na⁺ and OD⁻ ions at 140 K via spontaneous stoichiometric reaction [Kim et al., *J. Phys. Chem. C* **2009**, *113*, 321]. When the reference sample was prepared to have OD⁻ surface population of 0.2 MLE, LES measurements gave OD⁻ signal intensity of 510 cps from this surface. To compare, the OD⁻ intensity in the spectrum of Fig. 1(b) was 110 cps, which corresponded to the "OD⁻ population" of about 0.04 MLE on the surface. The sample in Fig. 1(b) was prepared by SO₂ exposure of 0.2 L on a D₂O-ice surface at 140 K. We assumed that the OD⁻ population thus estimated represented the population of intermediates II and III, because these intermediates produced an OD⁻ signal. The efficiency of OD⁻ emission could be different for these species and the hydroxide ions externally provided on the reference sample, but probably not to a large extent.

The population of molecular SO₂ adsorbates was estimated from the RIS signal intensity of $CsSO_2^+$. The sample employed in Figure 1 had the initial SO₂ coverage of 0.2 MLE at 100 K, if we assumed that the sticking coefficient of SO₂ was unity on the ice surface at a low temperature. The SO₂ population was reduced by a factor of 10 upon heating the sample from 100 K to 140 K, as shown by the temperature-dependent variation of $CsSO_2^+$ intensity in Figure 2(a). Therefore, after heating the sample from 100 K to 140 K, 10% (0.02 MLE) of the SO₂ adsorbates remained on the surface as molecular SO₂ species (intermediate I). 20% (0.04 MLE) of the adsorbates underwent reactive conversion to intermediates II and III during the heating, and 70% desorbed from the surface. Owing to the assumptions used in the estimations, these percentages may be reliable only in the order of magnitude.