KINETIC AND STRUCTURAL INVESTIGATIONS OF THE ALLOSTERIC SITE IN HUMAN EPITHELIAL 15-LIPOXYGENASE- 2^{\dagger}

Aaron T. Wecksler, ¹ Victor Kenyon, ¹ Natalie K. Garcia, ¹ Joshua D. Deschamps, ² Wilfred A. van der Donk, ³ and Theodore R. Holman^{1,*}

Supporting Information

Figure S1

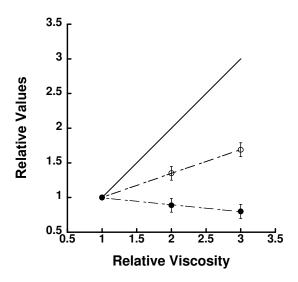
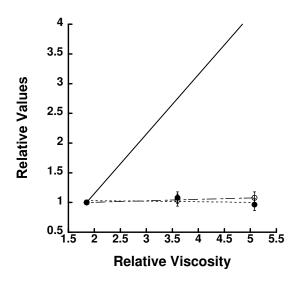



Figure S1. Effect of viscosity on the reaction with AA at 20 °C. The slope of the line is 0.345 (\pm 0.02) and -0.10 (\pm 0.01) for k_{cat}/K_m (open circles) and k_{cat} (close circles), respectively. Solid line is the theoretical behavior for a fully-diffusion controlled reaction. Enzymatic assays performed in 25 mM HEPES (pH 7.5).

Figure S2

<u>Figure S2</u>. Effect of viscosity on the reaction with AA at 5 °C. The slope of the line is $0.025 (\pm 0.003)$ and $-0.010 (\pm 0.002)$ for k_{cat}/K_m (open circles) and k_{cat} (close circles), respectively. Solid line is the theoretical behavior for a fully-diffusion controlled reaction. Enzymatic assays performed in 25 mM HEPES (pH 7.5).