Supporting Information

1,3-Diazido-2-(azidomethyl)-2-propylammonium salts

Young-Hyuk Joo and Jean'ne M. Shreeve*

Department of Chemistry, University of Idaho, ID 83844-2343, Moscow, USA E-Mail: jshreeve@uidaho.edu

Figure S7

Scheme S1.

The remaining task is to determine the heats of formation of the azide compounds 1, 3 and 6–20; these values of 1,3-diazido-2-(azidomethyl)-2-propylammonium cation and nitroiminotetrazole anion were computed by using the method of isodesmic reactions (Scheme S1). Calculations were carried out by using the Gaussian 03 (Revision D.01) suite of programs.¹ The geometric optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the 6-31+G** basis set, and single-point energies were calculated at the MP2/6-311++G** level.

Calculated (B3LYP/6-31+G**//MP2/6-311++G**) Total Energy (E_0), Zero Point Energy (ZPE), Values of Thermal correction (H_T), and Heats of Formation (HoF) [kJ/mol] of the compounds.

N ₃ — N ₃	E ₀	ZPE	H_{T}	HoF
	-1075.307892	0.188948	0.02075	790.03
HN-NO ₂				706.4
				(solid state)
0 ₂ N、				
- N _	E ₀	ZPE	H_{T}	HoF
N N=N	-555.6336611	0.080548	0.00961	306.66
O₂N N				
	D_2 E_0	ZPE	H_{T}	HoF
N=N	-873977078	0.116644	0.01401	188.11
$O_2 N \rightarrow N$	Eo	ZPE	H_{T}	HoF
N ^N N N	-1110 038766	0 143391	0 01751	783.0
_N-NO ₂	1110.020700	0.110071	0.01701	100.0
O ₂ N	N			
NNN N	L_{-} E_0	ZPE	H_{T}	HoF
N_N-NO2 N=	N -1149.2506	0.17239	7 0.01863	721.82
	₂ N=N N			
	E_0	ZPE	H_{T}	HoF
0 ₂ N ^{-N} C	D ₂ N ^{IN} -1428389	9886 0.1780	508 0.02198	643.26
o_				
O ₂ N NO ₂	E ₀	ZPE	H_{T}	HoF
	-918.7742066	0.09838	0.013945	-108.51
NO ₂				

Reference

(1) Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, Gomperts, J.; R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.