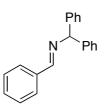
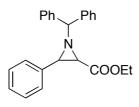
Ru/PNNP-Catalyzed Asymmetric Imine Aziridination by Diazoester Activation


Marco Ranocchiari and Antonio Mezzetti*

Department of Chemistry and Applied Biosciences, ETH Zürich, CH 8093 Zürich, Switzerland

Supporting Information


General. Reactions with air- or moisture-sensitive materials were carried out under an argon atmosphere using Schlenk techniques or in a glove box under purified nitrogen. CH_2Cl_2 and CD_2Cl_2 were distilled from CaH and degassed (3 × freeze/pump/thaw) under argon prior to use. ¹H, ¹³C, ¹⁵N, and ³¹P NMR spectroscopic experiments were run on Bruker AVANCE DPX 250, 300 and 500 spectrometers. ¹H and ¹³C positive chemical shifts in ppm are downfield from tetramethylsilane. ¹⁵N NMR spectra are referenced to external CH_3NO_2 (neat). ³¹P NMR spectra are referenced to external CH_3NO_2 (neat). ³¹P NMR spectra are referenced to external CH_3NO_2 (neat). ³¹P NMR spectra are referenced to external 85% H₃PO₄. Optical rotations were measured using a Perkin Elmer 341 polarimeter with a 1 dm cell. 2-¹³C-glycine (98% ¹³C) and Na¹⁵NO₂ (98% ¹⁵N) were purchased from Cambridge Isotope Labs.

Synthesis of *N*-benzylidene-1,1-diphenylmethanamine (5)

A mixture of benzaldehyde (8.4 g, 72 mmol), diphenylmethaneamine (14.8 g, 72 mmol), and ZnCl₂ (125 mg, 0.92 mmol) in toluene (500 mL) was refluxed overnight with a Dean-Stark apparatus. ZnCl₂ was filtered off, the solvent evaporated under reduced pressure, and the crude product was recrystallized several times from hot ethanol to give white crystals. Yield: 19.2 g, 88 %. ¹H NMR (300 MHz, CDCl₃): δ 8.46 (*s*, 1H, C*H*=N), 7.88 (*m*, 2H, arom.), 7.45 – 7.23 (*m*, 13H, arom.), 5.63 (*s*, 1H, C*H*Ph₂).

Catalytic procedures for the synthesis of enantiomerically enriched *cis*-ethyl 1benzhydryl-3-phenylaziridine-2-carboxylate (6)

Method 1: [RuCl(PNNP)]PF₆ (2) as catalyst (Table 1, run 1). [RuCl₂(PNNP)] (19.9 mg, 0.024 mmol) and TlPF₆ (8.4 mg, 0.024 mmol) were dissolved in CH₂Cl₂ (1 mL) and stirred at room temperature overnight. Then, the precipitate was filtered off with a glass fiber filter, and imine 5 (130 mg, 0.48 mmol) was added to the mother liquor. The mixture was stirred at room temperature for 10 minutes, and EDA (55 mg, 0.48 mmol) in CH₂Cl₂ (3 mL) was added over 8 hours by syringe pump. The mixture was stirred room temperature for 24 hours, the solvent removed under reduced pressure, and the crude product purified by column chromatography (hexane/ethylacetate 95:5) to obtain a white solid. Yield: 28%. ee: 25% (2S,3S).

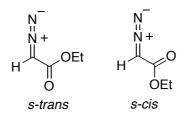
Method 2: [RuCl(H₂O)(PNNP)]PF₆ (3) as catalyst (Table 1, runs 3,4). [RuCl₂(PNNP)] (20.7 mg, 0.025 mmol) and TlPF₆ (8.7 mg, 0.025 mmol) were stirred in CH₂Cl₂ (2 mL) at room temperature overnight. The precipitate was filtered off with a glass fiber filter, and H₂O (2.1 μ L, 0.114 mmol) and imine **5** (135 mg, 0.50 mmol) were added to the solution.¹ The solution was stirred at room temperature for 10 min, and EDA (57 mg, 0.50 mmol) was added thereto. After stirring at room temperature for 24 h, the solvent was removed under reduced pressure, and the crude product was purified by column chromatography (hexane/ethylacetate 95:5) to obtain a white solid. Yield: 18%. ee: 61% (2*R*,3*R*).

Method 3, which gave the best results for substrate **5**, was used to screen imines with different substituents and nitrogen-protecting groups (see Table S1 below).

Table S1. Substrate screening.^a

x II N ^{-R}	+ N ₂ C(H)COOEt	4 (5 or 10 m −78 °C te	>	R N	COOEt
R	X	4 (mol %)	yield (%)	ee (%)	
CHPh ₂	4-F	5	10	84	
CHPh ₂	4-F	10	10	87	
CHPh ₂	$4-F_3C$	5	11	30	
CHPh ₂	4-MeO	5	3	nd	
CHPh ₂	2-MeO	5	2	nd	
CHPh ₂	$4-Me_2N$	5	0	_	
CHPh ₂	4-Me	10	5	nd	
CPh ₃	Н	5	0	_	
CH ₂ Ph	Н	10	0	_	

^{*a*} Reactions performed according to **Method 3** (see above). Yields were determined by ¹H NMR spectroscopy by adding a known amount of 1,3,5-trimethoxybenzene as internal standard to the crude mixture at the end of the reaction.


Synthesis of ¹³C- and ¹⁵N-Labeled EDA

Ethyl 2-¹³C-glycine hydrochloride.³ 2-¹³C-glycine (98% 2-¹³C, 0.50 g, 4.85 mmol) was suspended in ethanol, and the mixture cooled down to $-20 \,^{\circ}$ C (ice-salt bath). SOCl₂ (0.58 mL, 8.00 mmol) was added, the temperature raised to room temperature, and another equivalent of solid 2-¹³C-glycine (0.50 g, 4.85 mmol) was slowly added. The mixture was refluxed for 2 h. After cooling the colorless solution to room temperature, the solvent was evaporated under reduced pressure. The resulting white solid was dried in high vacuum for 2 h and recrystallized from ethanol. Yield: 1.10 g, 95 %. m.p. = 145–147 °C.

Ethyl 2-¹³C-diazoacetate (¹³C-EDA).⁴ Ethyl 2-¹³C-glycine hydrochloride (1.00 g, 7.1 mmol) was mixed with H_2O (2 mL) and CH_2Cl_2 (4 mL) in a two-necked flask equipped with

septum, argon inlet, and internal thermometer. The colorless mixture was cooled down to -5 °C, and an ice-cold solution of NaNO₃ (0.59 g, 8.5 mmol) in H₂O (2 mL) was added. The resulting mixture was cooled to -9 °C, and a 5% (w/w) H₂SO₄ solution (0.679 g) was slowly added. As higher temperature might decrease the yield, the temperature was never let to above +1 °C during the addition. Thereafter, the mixture was stirred for 20 min between -9 °C and +1 °C, and then poured into an ice-cold separating funnel. The yellow organic layer was recovered, and the water phase was extracted with CH₂Cl₂ (2 × 3 mL). The combined organic phase was washed with a 5% ice-cold NaHCO₃ solution (6 mL), the organic phase was separated, and the water phase was extracted with CH₂Cl₂ (2 × 3 mL). The combined organic phase was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting yellow oil was dried in vacuum for 15 min, and the product distilled with cold distillation under high vacuum. Yield: g (0.74 g, 81%). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 4.80 (*d*, 1H, ¹*J*_{C,H} = 205 Hz, N₂¹³CH), 4.23 (*q*, ²*J*_{H,H} = 7.1, 2H, OCH₂CH₃), ^{1.3}C NMR (126 MHz, CD₂Cl₂, 298 K): δ 46.3 (*s*, N₂CH).

In the low-temperature ¹H and ¹³C NMR spectra of EDA, We observed signal broadening and decoalescence to resolved signals in a 5:4 ratio. We attribute this dynamic phenomenon to the interconversion between the *s*-*cis* and *s*-*trans* isomers, which are in fast equilibrium on the NMR time-scale at room temperature. The ¹H and ¹³C NMR spectroscopic data at -80 °C are given below.

Low-temperature data: ¹H NMR (500 MHz, CD₂Cl₂, 195 K): δ 5.01 (*d*, 1H, ¹J_{C,H} = 205 Hz, N₂¹³CH), 4.72 (*d*, 1H, ¹J_{C,H} = 205 Hz, N₂¹³CH), 4.20 (*q*, ²J_{H,H'} = 7.1, 2H, OCH₂CH₃),

4.17 (q, ${}^{2}J_{H,H'}$ = 7.1, 2H, OCH₂CH₃), 1.29 (t, ${}^{2}J_{H,H'}$ = 7.1, 3H, OCH₂CH₃), 1.25 (t, ${}^{2}J_{H,H'}$ = 7.1, 3H, OCH₂CH₃), 1.25 (t, ${}^{2}J_{H,H'}$ = 7.1, 3H, OCH₂CH₃). 1³C NMR (126 MHz, CD₂Cl₂, 195 K): δ 47.5 (s, N₂CH), 46.5 (s, N₂CH).

Synthesis of ethyl ¹⁵**N-diazoacetate.** (¹⁵**N-EDA**).⁴ ¹⁵N-EDA was prepared analogously to ¹³C-EDA from ethyl glycine hydrochloride (1.00 g, 7.1 mmol) and Na¹⁵NO₂ (98% ¹⁵N, 0.60 g, 8.5 mmol). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 4.80 (*br s*, 1H, N₂C*H*), 4.23 (*q*, ²*J*_{H,H'} = 7.1, 2H, OC*H*₂CH₃), 1.30 (*t*, ²*J*_{H,H'} = 7.1, 3H, OCH₂C*H*₃). ¹⁵N NMR (50.7 MHz, CD₂Cl₂, 298 K): δ 4.05 (*br s*, 1N, ¹⁵NNC). Low-temperature data: ¹H NMR (500 MHz, CD₂Cl₂, 195 K): δ 5.04 (*s*, 1H, N₂C*H*), 4.74 (*s*, 1H, N₂C*H*), 4.20 (*q*, ²*J*_{H,H'} = 7.1, 2H, OC*H*₂CH₃), 4.17 (*q*, ²*J*_{H,H'} = 7.1, 2H, OC*H*₂CH₃), 1.29 (*t*, ²*J*_{H,H'} = 7.1, 3H, OCH₂C*H*₃), 1.25 (*t*, ²*J*_{H,H'} = 7.1, 3H, OCH₂C*H*₃). ¹⁵N NMR (50.7 MHz, CD₂Cl₂, 195 K): δ 7.6 (*s*, 1N, ¹⁵NNC), -1.29 (*s*, 1N, ¹⁵NNC).

NMR Spectroscopic Studies: General. The reactions described below were run under argon in NMR tubes fitted with serum septa and were monitored by NMR spectroscopy as detailed below. Additions of reagents were performed by microsyringe. A 2-PrOH bath at the appropriate temperature was used to keep the sample temperature at the values indicated below during all manipulations and transfers from and to the spectrometer.

Experiment 1. The goal of the experiment was to establish whether the carbene complex *trans*-[RuCl(C(H)COOEt)(PNNP)]⁺ (8) reacts with imine 5. Thus, labeled 8 was prepared by adding ¹³C-EDA (1 equiv) to a CD_2Cl_2 solution of [RuCl(OEt_2)(PNNP)]⁺ (4) and imine 5 (4:5:EDA = 1:1:1).

Preparation of 4: [RuCl₂(PNNP)] (30.0 mg, 0.036 mmol) and (Et₃O)PF₆ (9.0 mg, 0.036 mmol) were dissolved in CD₂Cl₂ (0.5 mL) and stirred overnight at room temperature. The ³¹P and ¹H NMR spectra at 195 K (Figure S1) are consistent with the formulation of the complex as cis- β -[RuCl(OEt₂)(PNNP)]^{+,5}

Then, imine **5** (9.8 mg, 0.036 mmol) was added to the mixture at room temperature, and the ³¹P and ¹H NMR spectra were recorded at 298 K and at 195 K. Along with unreacted **4**, the signals of an unknown product (**C**, AX system, 13%, δ 42.3 (*d*, ²*J*_{P,P'} = 24.8 Hz), 36.3 $(d, {}^{2}J_{P,P'} = 24.8 \text{ Hz}))$ were observed (Figure S2). This species is not the imine complex $[\text{RuCl}(\mathbf{5})(\text{PNNP})]^{+}$, as confirmed by $({}^{1}\text{H}, {}^{1}\text{H})$ -NOESY analysis and by the observation that it is formed in small amounts in the reaction of **4** with EDA.

After extracting the sample from the NMR spectrometer, EDA (9.0 µL, 0.036 mmol) was added by microsyringe to the solution at 195 K. The sample was transferred immediately to the precooled NMR spectrometer (195 K) and the ³¹P and ¹H NMR spectra were recorded (Figure S3). The ³¹P NMR spectrum of the reaction solution shows that **4** is quantitatively converted to *trans*-[RuCl(C(H)COOEt)(PNNP)]⁺ (**8**) (74%, δ 42.3 (d, ² $J_{P,P'}$ = 24.8 Hz), 36.3 (d, ² $J_{P,P'}$ = 24.8 Hz)³, and an apparently C_2 -symmetric dinitrogen complex (**10**, see below) featuring singlet **D** (15%, δ 42.3) in the ³¹P NMR spectrum. Upon warming to room temperature in 20 K steps, the composition of the solution did not change, and no aziridine was formed, as indicated by (¹³C,¹H)-HMQC experiments. The signals of impurity **C** (11%) remained unchanged up to room temperature and disappeared within 4 h time. After 4 h at room temperature, all the species had converted to dinitrogen complex **10** (signal **D**, 60%) and to [RuCl(CH₂COOEt)(PNNP)] (**E**, 40%, δ 47.8, AB system) (see below) (Figure S4).

The ³¹P NMR signal **E** is a tight AB pattern δ 47.9 (d, ² $J_{P,P'}$ = 28.2 Hz), 47.8 (d, ² $J_{P,P'}$ = 28.2 Hz) (202 MHz, CD₂Cl₂, 298 K) and is assigned to the new complex *trans*-[RuCl(CH₂COOEt)(PNNP)] on the basis of the ¹H NMR signals of the RuCH₂COOEt moiety, which were identified by means of (³¹P,¹H)-HMQC and (¹³C,¹H)-HMQC experiments: ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 3.79 (d, 1H, ² $J_{H,H'}$ = 11.2 Hz, RuCHH'COOEt), 3.36 (d, 1H, ² $J_{H,H'}$ = 11.2 Hz, RuCHH'COOEt).

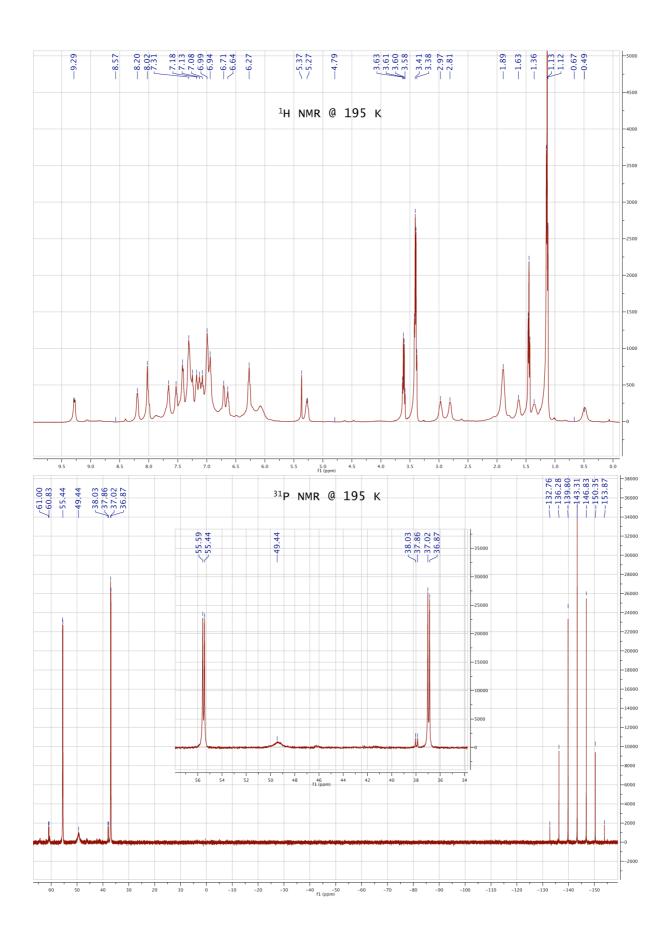


Figure S1. ¹H (500 MHz) and ³¹P (202 MHz) NMR spectra of 4 at 195 K in CD_2Cl_2 .

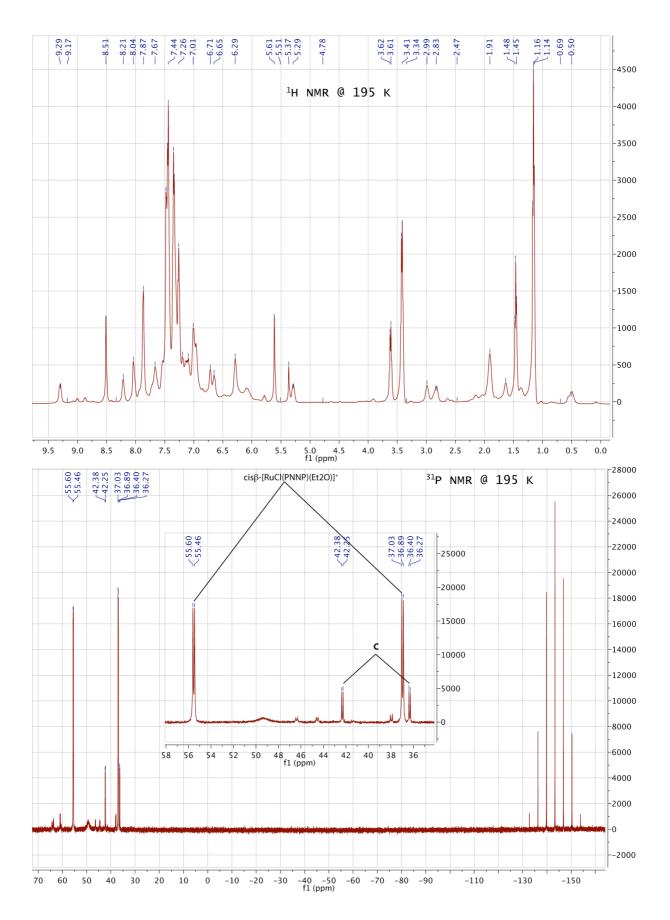


Figure S2. ¹H (500 MHz) and ³¹P (202 MHz) NMR spectra after imine addition at 195 K in CD_2Cl_2 .

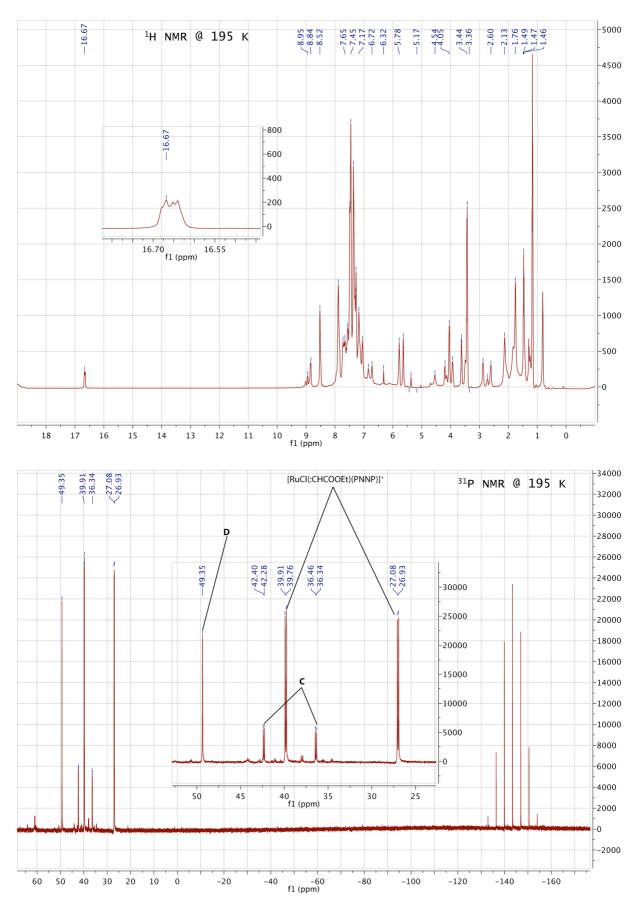


Figure S3. ¹H (500 MHz) and ³¹P (202 MHz) NMR spectra after ¹³C-EDA addition at 195 K in CD_2Cl_2 .

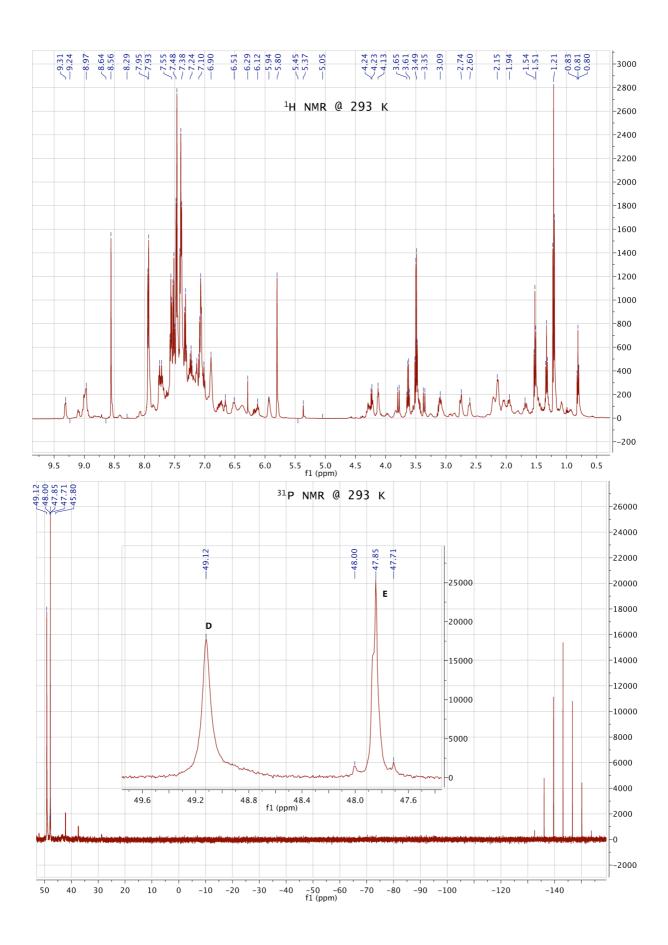
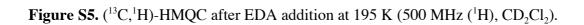
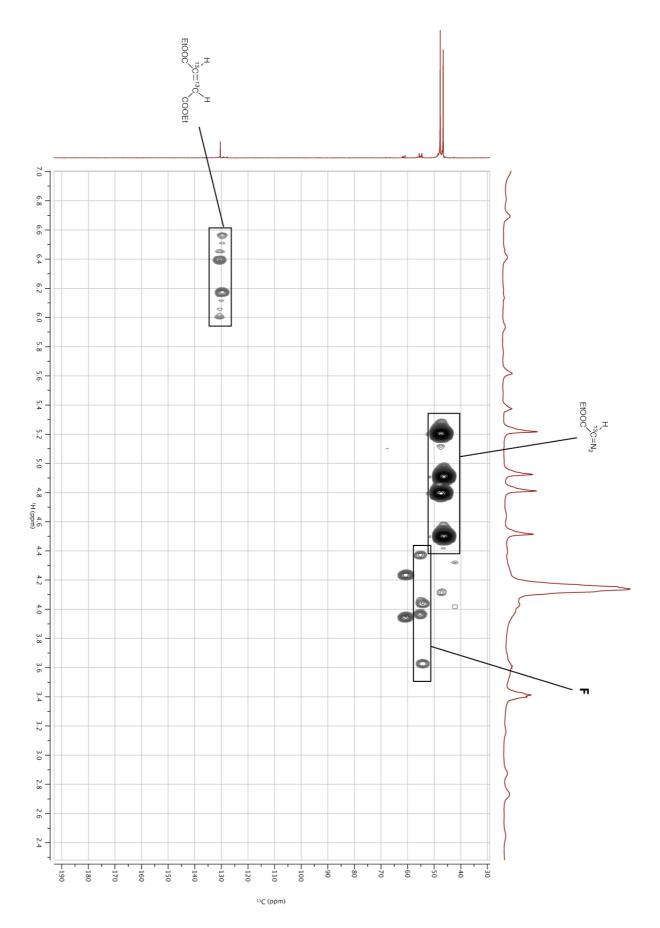


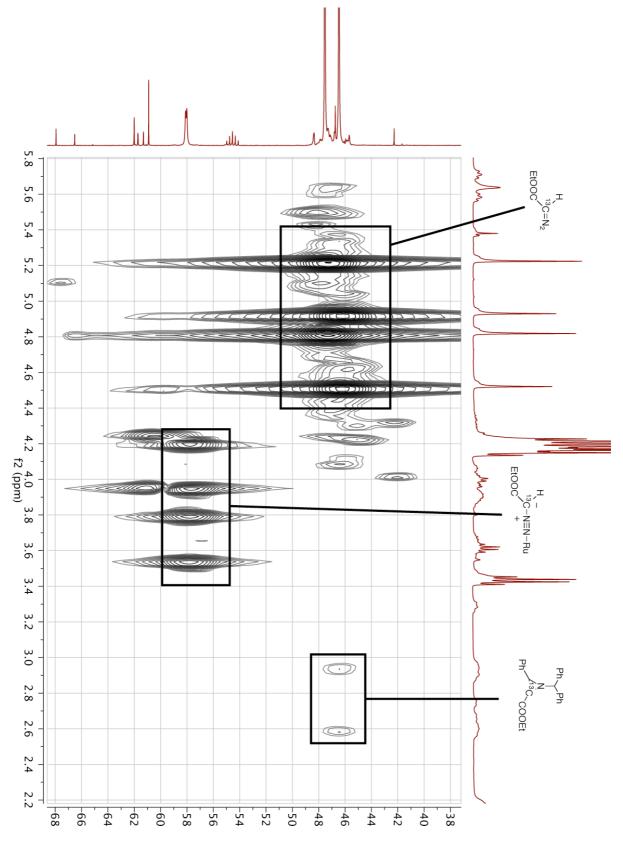
Figure S4. ¹H (500 MHz) and ³¹P (202 MHz) NMR spectra after 4 h at 293 K in CD₂Cl₂.

Experiment 2. An excess of ¹³C-EDA (10 equiv) was added to a CD_2Cl_2 solution of complex $[RuCl(OEt_2)(PNNP)]^+$ (4) and imine 5 (4:5:EDA = 1:1:10) as described below.


Complex **4** was prepared by treating [RuCl₂(PNNP)] (24.3 mg, 0.029 mmol) with (Et₃O)PF₆ (7.3 mg, 0.029 mmol) in CD₂Cl₂ (0.5 mL). After stirring the solution at room temperature overnight, the formation of **4** was confirmed by the ³¹P and ¹H NMR spectra at 298 K and 195 K. Then, imine **5** (7.9 mg, 0.029 mmol) was added to the solution, which was cooled again. EDA (32.2 μ L, 0.293 mmol) was added at 195 K, and the ¹³C, ¹H, and ³¹P NMR spectra were run at the same temperature, as well as a (¹³C,¹H)-HMQC experiment. The (¹³C,¹H)-HMQC correlation showed the signals of unreacted ¹³C-EDA as major product, along with those of *trans*-[RuCl(PNNP)(¹³C(H)COOEt)]⁺ (traces), ¹³C-maleate (traces) (Figure S5). The signal (**F**) of an additional ¹³C-containing species with a *J*_{C,H} comparable to that of ¹³C-EDA is present, but disappears after heating to -20 °C. As this signal has never been observed at temperatures higher than -20 °C, we deem it immaterial for the further discussion. The ³¹P NMR spectrum showed the quantitative conversion of **4** to several unknown species.


As no aziridine **6** was observed at 193 K, the sample was carefully warmed up to 253 K. At this temperature, (¹³C,¹H)-HMQC correlation experiment indicated that a small amount of ¹³C-aziridine had formed. To slow down the reaction, the sample was cooled to 213 K, at which temperature a (¹³C,¹H)-HMQC experiment revealed new signals that we assign to the coordinated ¹³C-EDA of the new complex *trans*-[RuCl(N₂¹³C(H)COOEt)(PNNP)]⁺ (**9**) (Figure S6). At the same temperature, the ³¹P NMR spectrum shows the signals of dinitrogen complex **10** (signal **D**, 31 %) and the same AB system observed in **Experiment 1** upon addition of imine to **4** (**C**, δ 42.3 (*d*, ²*J*_{P,P'} = 24.2 Hz), 36.2 (*d*, ²*J*_{P,P'} = 24.2 Hz)) (9 %) (Figure S7). The main feature of the spectrum consists of two AB patterns in equal ratio, **A** (31%) and **B** (31%) (δ (**A**) 42.4 (*d*, ²*J*_{P,P'} = 25.3 Hz) and 35.8 (*d*, ²*J*_{P,P'} = 25.2 Hz); δ (**B**) 41.1 (*d*, ²*J*_{P,P'} = 25.3 Hz), 34.8 (*d*, ²*J*_{P,P'} = 25.4 Hz)). Although no NOESY contacts were detected between the *sp*² diazoester proton (N₂¹³C-H) and any other signal, the diazoester complex **9** was identified

unambiguously by (³¹P,¹H)-HMQC and by the use of ¹⁵N labeled EDA (see **Experiment 3** below). The (³¹P,¹H)-HMQC spectrum showed cross peaks between the ³¹P signals and the N₂¹³C-*H* proton of the coordinated diazoester in **A** and **B**, which had been previously identified by a (¹³C,¹H)-HMQC experiment. Furthermore, (¹H-¹H)-NOESY and (³¹P,¹H)-HMQC experiments indicate that **A** and **B** are exchanging with each other even at -40 °C. Again, we attribute this observation to the interconversion between the *s*-*cis* and *s*-*trans* isomers of the C(H)COOEt moiety (see above). Upon raising the temperature in 20 K-steps, the ³¹P NMR signals of **9** coalesced at 253 K and then gave a single well-resolved AB system at 293 K (**A**+**B**, δ 42.1 (*d*, ²*J*_{P,P} = 24.2 Hz), 36.9 (*d*, ²*J*_{P,P} = 24.2 Hz)) (Figure S8). In the temperature interval between 253 K and 293 K, imine **5** was fully converted to aziridine **6**, and the signals of free ¹³C-EDA disappeared in the ¹H and ¹³C NMR spectra.


After few minutes at 293 K, the ¹³C-EDA complex **9** was converted to the previously reported⁶ carbene complex *trans*-[RuCl(¹³C(H)COOEt)(PNNP)]⁺ (**8**) (Figure S9). The ³¹P and ¹³C NMR spectra indicated that the conversion of **9** to **8** begins after the disappearance of free ¹³C-EDA from the reaction solution and is quantitative after 15 minutes. Then, the *trans*-carbene complex **8** decomposes within 4 h to [RuCl(¹³CH₂COOEt)(PNNP)] (**11**). The main signals in the ³¹P NMR spectrum after 10 h at 293 K are those of the dinitrogen complex **10** (signal **D**, 55%) at δ 49.2 and of alkyl complex **11** at ca. δ 47.9 (signal **E**, 45%, AB part of an ABX system, where X is ¹³C) (Figure S10). As previously observed in **Experiment 1**, the alkyl complex **11** (signal **E**) was detected as the main product after 3 days at 298 K. At present, we have no explanation for its formation from *trans*-carbene **8**.

Experiment 2 was repeated three times with essentially the same results. In the last run, the ¹³C NMR signals of the coordinated diazoester of **9** at δ 58.0 were irradiated at 273 K, which left the intensity of the signal of free N₂¹³C(H)COOEt unchanged, indicating that the exchange between free and coordinated EDA is slow on the NMR time scale at this temperature.

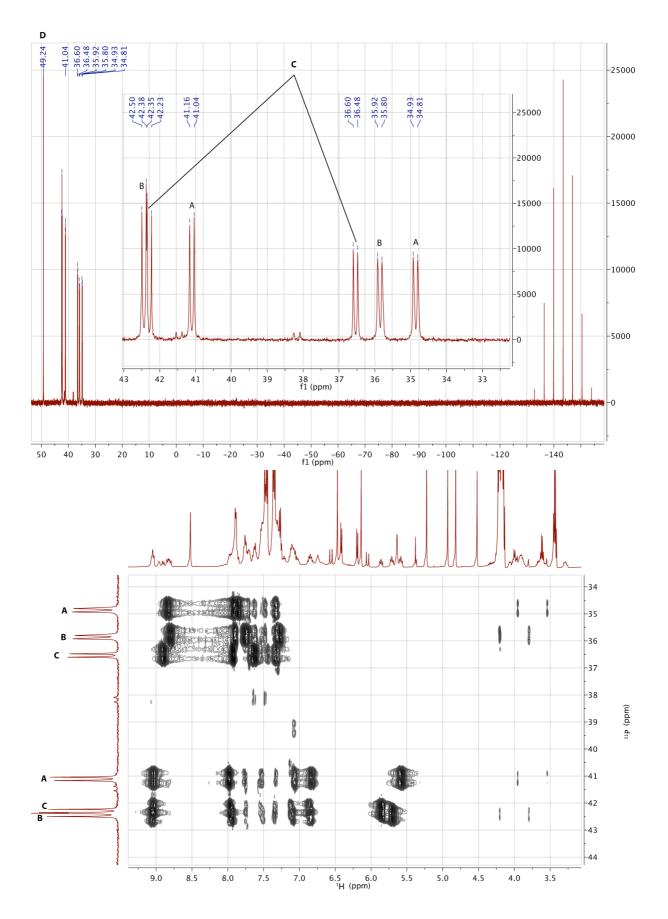
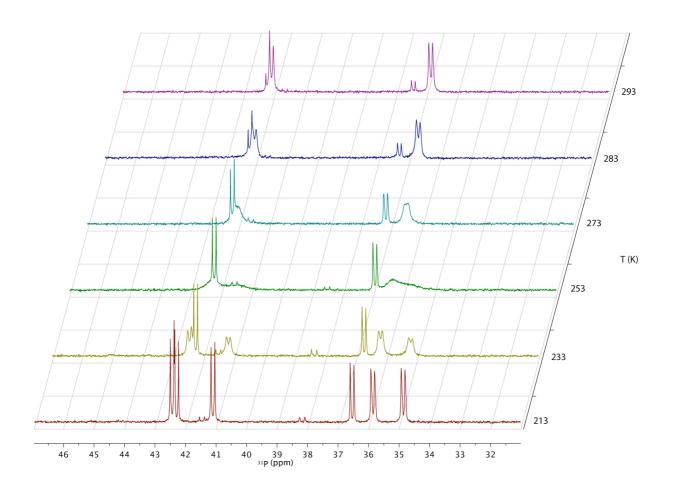


Figure S6. (${}^{13}C, {}^{1}H$)-HMQC after EDA addition after warming up to 253 K and recooling to 213 K (500 MHz (${}^{1}H$), CD₂Cl₂). (The poor quality is caused by the large excess of ${}^{13}C$ -EDA vs. aziridine.)



f1 (ppm)

Figure S7. ³¹P (202 MHz) and (³¹P,¹H)-HMQC (500 MHz for ¹H) NMR spectra after EDA addition, warming up to 253 K, and re-cooling to 213 K in CD₂Cl₂.

Figure S8. ³¹P NMR spectrum of the CD_2Cl_2 reaction solution between 213 and 293 K (202 MHz). The signals undergoing coalescence (**A** and **B**) are those of the carbene complex *trans*-[RuCl(N₂¹³C(H)COOEt)(PNNP)]⁺ (**9**).

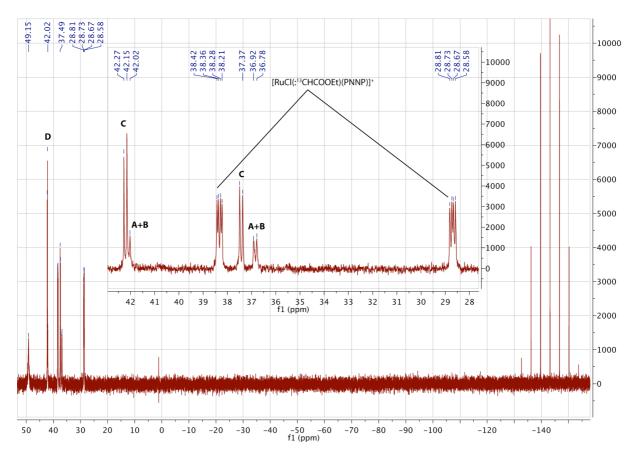
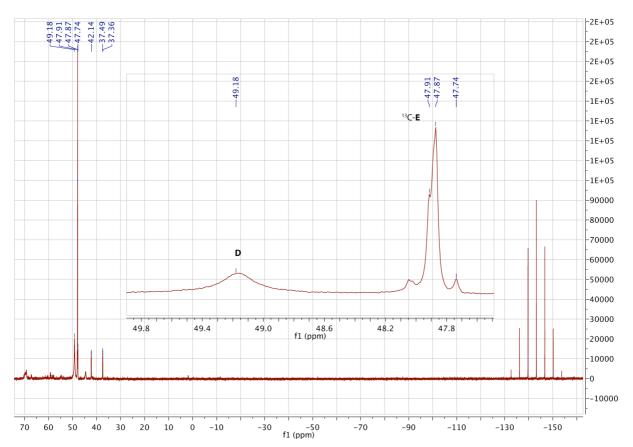



Figure S9. ³¹P NMR spectrum just after heating to 293 K (202 MHz, CD₂Cl₂).

Figure S10. ³¹P NMR spectrum after 10 h at 293 K (202 MHz, CD₂Cl₂).

Experiment 3 (with ¹⁵N-EDA). The former experiment 2 was repeated with ¹⁵N-EDA (10 equiv) instead of ¹³C-EDA. The Ru:imine:¹⁵N-EDA ration was 1:1:10. [RuCl₂(PNNP)] (21.5 mg, 0.026 mmol) and (Et₃O)PF₆ (6.4 mg, 0.026 mmol) were dissolved in CD₂Cl₂ (0.5 mL) and stirred overnight at room temperature, and ³¹P and ¹H NMR spectra were recorded at 298 K and 195 K. Imine **5** (7.0 mg, 0.026 mmol) was added to the solution at room temperature.

Then, after cooling the sample to 195 K, ¹⁵N-EDA (28.4 µL, 0.259 mmol) was added at 195 K, and the sample was transferred to the precooled NMR spectrometer. After warming to 253 K for 15 minutes to assure aziridine formation, the sample was cooled at 213 K. A (¹³C,¹H)-HMQC experiment confirmed the formation of the aziridine. The ³¹P NMR spectrum at the same temperature (213 K) showed that **4** was quantitatively converted to the diazoester complex **9** (signals **A+B**), the impurity (**C**), and to the dinitrogen complex **10** (signal **D**) with the same pattern observed in **Experiment 2** (Figure S11). As no P,N coupling was detected, the sample was further cooled down to 193 K. At this temperature, two of the four ³¹P NMR signals of *trans*-[RuCl(¹⁵N₂C(H)COOEt)(PNNP)]⁺ showed coupling to ¹⁵N (δ 42.4 and 41.1, ²*J*_{P,P'} = 25.3, ²*J*_{P,N} = 2.4 Hz for both signals) (Figure S13). Additionally, the ¹⁵N NMR spectrum at 213 K shows two broad signals corresponding to the two isomers of *trans*-[RuCl(¹⁵N₂C(H)COOEt)(PNNP)]⁺ along with free ¹⁵N-EDA, ¹⁵NN, and coordinated ¹⁵NN (Figure S12).

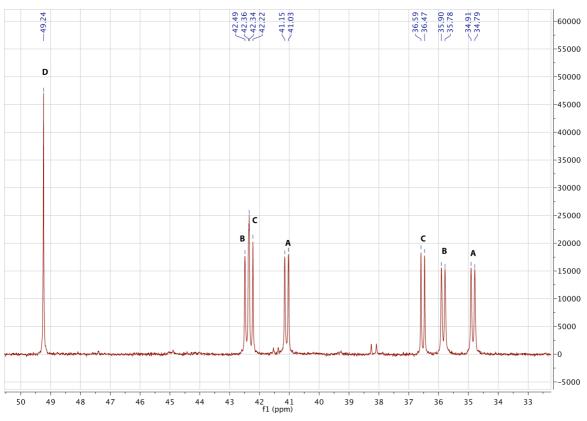
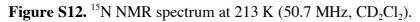
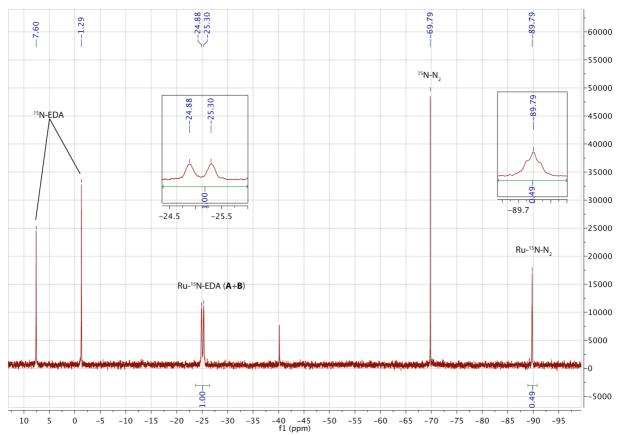
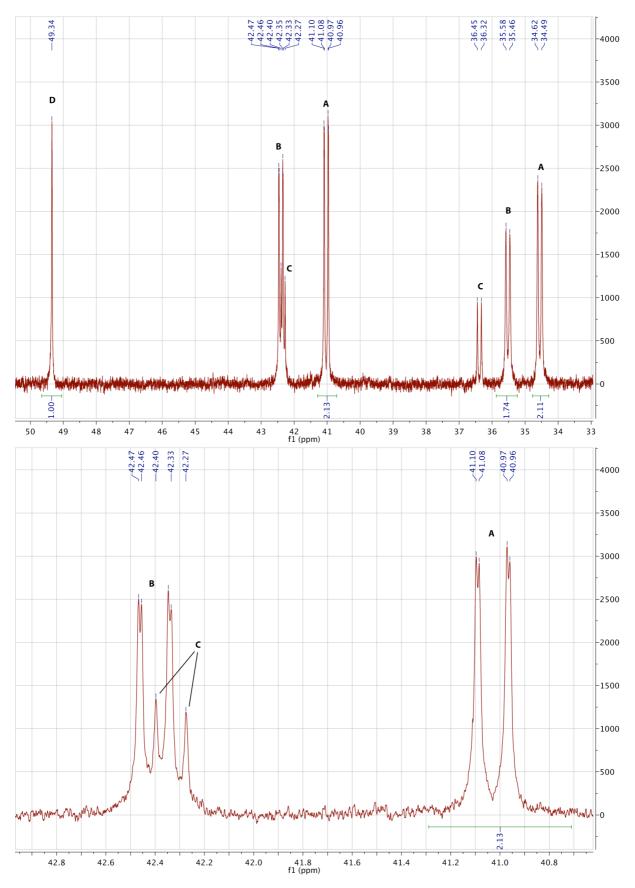





Figure S11. ³¹P NMR spectrum at 213 K (202 MHz, CD₂Cl₂).

Figure S13. ³¹P NMR spectrum at 193 K (202 MHz, CD_2Cl_2), with an expansion of the signals (**A**, **B**) of the *s*-*cis* and *s*-*trans* isomers of complex **9** showing the P,N-coupling of 2.4 Hz (signal **C** results from an unknown impurity).

Experiment 4. The goal of this control experiment was to check whether aziridine **6** is formed in the presence of diazoester complex **9** *after quantitative consumption of EDA*. The initial Ru:imine:¹³C-EDA ratio was 1:1:10 and imine **5** was added to the solution at 195 K after the signals of ¹³C-EDA had disappeared as described in detail below.

[RuCl₂(PNNP)] (21.8 mg, 0.026 mmol) and (Et₃O)PF₆ (6.5 mg, 0.026 mmol) were dissolved in CD₂Cl₂ (0.5 mL) and stirred at room temperature overnight. The formation of **4** was confirmed by ³¹P and ¹H NMR spectroscopy at 298 K and 195 K. Then, ¹³C-EDA (28.8 μ L, 0.262 mmol) was added at 195 K, and the mixture was warmed to 273 K. After 30 minutes, the ¹H and ¹³C NMR signals of free EDA had disappeared. Then, the mixture was cooled to 195 K, and ³¹P NMR spectrum showed the signals of **A+B**, **C**, and **D** (Figure S14), which the same pattern observed in the presence of imine **5** (see Experiment 2).

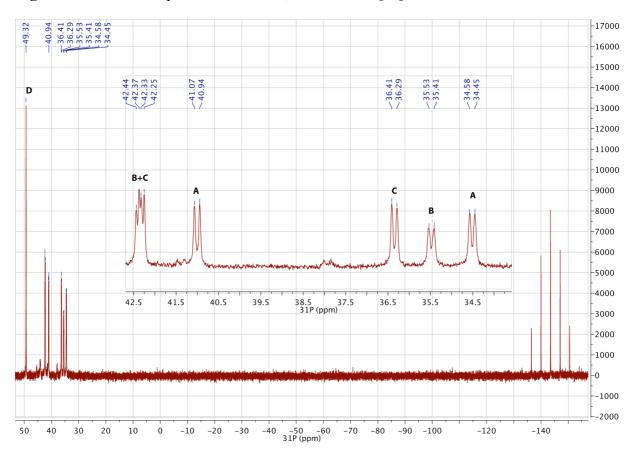
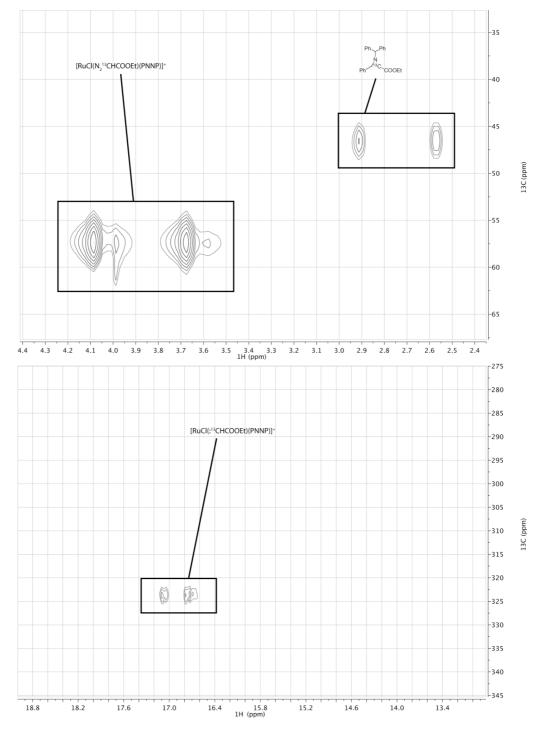



Figure S14. ³¹P NMR spectrum at 193 K (202 MHz, CD₂Cl₂).

Then, imine **5** (7.1 mg, 0.026 mmol) was added to the solution at 195 K. The sample temperature was increased in 20 K-steps. At 253 K, a (¹³C,¹H)-HMQC experiment (Figure 22

S15) indicated the formation of aziridine **6** and the decomposition of the diazoester complex **9** to the carbene complex **8**, as usually observed after the consumption of free EDA. It should be noted that, at this temperature, free and coordinated EDA are not exchanging with each other (see Experiment 3), indicating that the dissociation of EDA is slow. Therefore, we conclude that carbene transfer does not take place from uncoordinated EDA.

Figure S15. Sections of a $({}^{13}C, {}^{1}H)$ -HMQC experiment (195 K, 500 MHz $({}^{1}H)$, CD_2Cl_2) with the signals of aziridine, **9**, and **8**.

Experiment 5. The goal of this experiment was to establish whether carbene complex $[RuCl(C(H)COOEt)(PNNP)]^+$ (8) reacts with free EDA to give diethyl maleate 7. To assess this unambiguously, preformed 8 was treated with ¹³C-EDA (2 equiv).

[RuCl₂(PNNP)] (19.8 mg, 0.024 mmol) and TIPF₆ (8.3 mg, 0.024 mmol) were dissolved in CD₂Cl₂ (0.5 mL) and stirred overnight at room temperature, The ³¹P and ¹H NMR spectra at 298 K showed the formation of the five-coordinate complex [RuCl(PNNP)]⁺ (2). Then, EDA (5.2 μ L, 0.024 mmol) was added at room temperature, and the mixture was cooled down to 195 K. The ³¹P and ¹H NMR spectra showed full conversion of [RuCl(PNNP)]⁺ (2) to [RuCl(C(H)COOEt)(PNNP)]⁺ (8) (85%) and to the putative dinitrogen complex 10 having signal D (15%).

Upon addition of ¹³C-EDA (10.4 μ L, 0.048 mmol) at 195 K, the (¹³C,¹H)-HMQC and ¹H NMR spectra showed the signals of the diazoester complex [RuCl(N₂¹³C(H)COOEt)-(PNNP)]⁺ (**9**), traces of [RuCl(¹³C(H)COOEt)(PNNP)]⁺ (**8**), and the signals of different isotopomers of diethyl maleate. The isotopic distribution, as determined by integration of the ¹H NMR spectrum, is 41% 2-(¹³C)-ethylmaleate, 52% 2,3-bis(¹³C)-ethylmaleate, and 7% diethyl maleate. The formation of the monolabeled 2-(¹³C)-ethylmaleate (41%) is diagnostic of the reaction of ¹³C-EDA with non-labeled [RuCl(¹³C(H)COOEt)(PNNP)]⁺ (**8**), whereas 2,3-bis(¹³C)-ethylmaleate (52%) is formed by successive carbene formation. Accordingly, upon increasing the temperature, the ratio between [RuCl(C(H)COOEt)(PNNP)]⁺ and [RuCl(¹³C(H)COOEt)(PNNP)]⁺ gradually decreased. Finally, the small amount of nonlabeled diethyl maleate (7%) can result from residual ¹²C in the labeled compounds.

Summary of NMR Spectroscopic Data

 $(cis-\beta)$ -[RuCl(OEt₂)(PNNP)]⁺ (4) ³¹P NMR data (202 MHz, CD₂Cl₂, 195 K): δ 55.5 (*d*, ²*J*_{P,P} = 29.5 Hz), 36.9 (*d*, ²*J*_{P,P} = 29.5 Hz).

A+B (13 C-labeled): *trans*-[RuCl(N₂ 13 C(H)COOEt)(PNNP)]⁺ (13 C-9):

³¹P NMR data (202 MHz, CD₂Cl₂, 213 K): δ 42.4 (*d*, ²*J*_{P,P'} = 25.3 Hz), 41.1 (*d*, ²*J*_{P,P'} = 25.3 Hz), 35.8 (*d*, ²*J*_{P,P'} = 25.2 Hz), 34.8 (*d*, ²*J*_{P,P'} = 25.4 Hz). At 298 K: δ 42.1 (*d*, ²*J*_{P,P'} = 24.2 Hz), 36.9 (*d*, ²*J*_{P,P'} = 24.2 Hz).

¹H NMR data (500 MHz, CD₂Cl₂, 213 K): δ 3.97 (*d*, 1H, ¹*J*_{C,H} = 203 Hz, RuN₂CHCOOEt) 3.72 (*d*, 1H, ¹*J*_{C,H} = 205 Hz, RuN₂CHCOOEt).

¹³C NMR data (126 MHz, CD_2Cl_2 , 213 K): δ 58.1 (*s*, $RuN_2CHCOOEt$), 58.0 (*s*, $RuN_2CHCOOEt$).

A+B (¹⁵**N-labeled**): *trans*-[RuCl(¹⁵NNC(H)COOEt)(PNNP)]⁺ (¹⁵N-**9**):

¹⁵N NMR data (50.7 MHz, CD₂Cl₂, 213 K): δ –24.9 (*s*, 1N, ¹⁵*N*NC), –25.3 (*s*, 1N, ¹⁵*N*NC). ³¹P NMR data (202 MHz, CD₂Cl₂, 193 K): δ 42.4 (*dd*, ²*J*_{P,P} = 25.3 Hz, ²*J*_{P,N} = 2.4 Hz), 41.1 (²*J*_{P,P} = 25.3 Hz, ²*J*_{P,N} = 2.4 Hz), 35.8 (*d*, ²*J*_{P,P} = 25.2 Hz), 34.8 (*d*, ²*J*_{P,P} = 25.4 Hz).

C: Unknown Impurity

³¹P NMR data (202 MHz, CD₂Cl₂, 195 K): δ 42.3 (*d*, ²*J*_{P,P'} = 24.8 Hz), 36.3 (*d*, ²*J*_{P,P'} = 24.8 Hz).

D: Dinitrogen Complex **10** ³¹P NMR data (202 MHz, CD₂Cl₂, 195 K): δ 49.2 (*s*). 293 K: δ 49.2 (*br s*).

E: *trans*-[RuCl(CH₂COOEt)(PNNP)] (11)

³¹P NMR data (202 MHz, CD₂Cl₂, 298 K): 47.9 (d, ² $J_{P,P}$ = 28.2 Hz), 47.8 (d, ² $J_{P,P}$ = 28.2 Hz). ¹H NMR data (500 MHz, CD₂Cl₂, 298 K): δ 3.79 (d, 1H, ² $J_{H,H'}$ = 11.2 Hz, RuCHH'COOEt), 3.36 (d, 1H, ² $J_{H,H'}$ = 11.2 Hz, RuCHH'COOEt).

F (¹³**C-labeled): Unknown Species** containing a X=C(H)Y moiety observed below -20 °C. ¹H NMR data (500 MHz, CD₂Cl₂, 195 K): δ 4.21 (*d*, 1H, ¹*J*_{C,H} = 206 Hz), 4.21 (*d*, 1H, ¹*J*_{C,H} = 213 Hz).

¹³C NMR data (126 MHz, CD₂Cl₂, 195 K): δ 55.4 (*s*), 54.6 (*s*).

G (¹³C-labeled): *trans*-[RuCl(¹³C(H)COOEt)(PNNP)] (8)

³¹P NMR data (202 MHz, CD₂Cl₂, 298 K): 38.3 (*dd*, ${}^{2}J_{P,C} = 13.9$ Hz, ${}^{2}J_{P,P'} = 30.4$ Hz), 47.8 (*dd*, ${}^{2}J_{P,C} = 13.9$ Hz, ${}^{2}J_{P,P'} = 30.4$ Hz).

Diethylmaleate

¹H NMR data (500 MHz, CD₂Cl₂, 195 K): δ 6.29 (*s*, 2H).

2-¹³C-diethylmaleate

¹H NMR data (500 MHz, CD₂Cl₂, 195 K): δ 6.29 (*dd*, 1H, ²*J*_{C,H} = 2.0 Hz, ²*J*_{H,H'} = 11.9 Hz, *H*C), 6.29 (*dd*, 1H, ¹*J*_{C,H} = 167 Hz, ²*J*_{H,H'} = 11.9 Hz, *H*¹³C).

2,3-bis(¹³C)-diethylmaleate

¹H NMR data (500 MHz, CD₂Cl₂, 195 K): δ 6.29 (AA' of an AA'XX' system, 2H, ¹ $J_{C,H}$ = 166 Hz, ² $J_{C,H}$ = 16.7 Hz, ³ $J_{C,H}$ = 6.81).

References

- 1 The aqua complex **3** is formed as a mixture of diastereoisomers in 5:1 ratio when H₂O (4.8 equiv) is added to the five-coordinate complex [RuCl(PNNP)]⁺ (**2**). The major isomer gives an AX pattern at δ 67.0 and 46.3 (${}^{2}J_{P,P'}$ = 31.6 Hz), whereas the signals of the minor isomer are at δ 50.8 and 44.1 (${}^{2}J_{P,P'}$ = 27.2 Hz).
- 2 Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099.
- 3 Gerlach, M.; Putz, C.; Enders, D.; Gaube, G.; Patent Nr. WO 02/22569, 2002.
- 4 Searle, N. E. Organic Syntheses Coll. Vol. 4 **1963**, 424.
- 5 (a) We have previously reported that [RuCl₂(PNNP)] reacts quantitatively with $(Et_3O)PF_6$ (1 equiv) in CD₂Cl₂ within 15 min to give the elusive adduct [RuCl(OEt₂)(1a)]⁺ (4).^{5b} However, we discovered during the present study that the ³¹P NMR spectroscopic data in reference 5b are incorrect. In all the experiments reported in this paper, the only product of the above reaction was a species featuring one broad ³¹P NMR signals at δ 40.9 at room temperature, which progressively sharpened into an AX pattern at -80 °C (δ 55.5 and 36.9, ² $J_{p,p'}$ = 29.5 Hz). Addition of Et₂O (carefully dried by distillation and molecular sieves) to CD₂Cl₂ solutions does not change this spectral pattern either at room temperature or at -80 °C. We conclude that the ³¹P NMR data previously reported^{5b} for 4 (δ 66.8 and 45.9, ² $J_{p,p'}$ = 30.6 Hz, 300 K) were affected by adventitious water, as they are very similar to those of one isomer of the aqua complex [RuCl(OH₂)(PNNP)]⁺ (δ 67.0 and 46.3, ² $J_{p,p'}$ = 31.6 Hz, 298 K). (b) Bonaccorsi, C; Bachmann, S.; Mezzetti, A. *Tetrahedron: Asymmetry* 2003, *14*, 845.
- 6

Bachmann, S.; Furler, M.; Mezzetti, A. Organometallics 2001, 20, 2102.