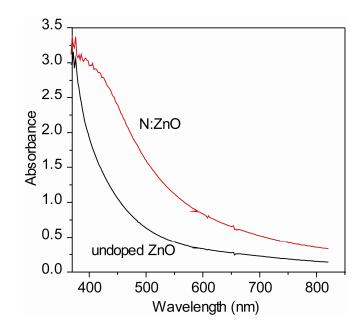
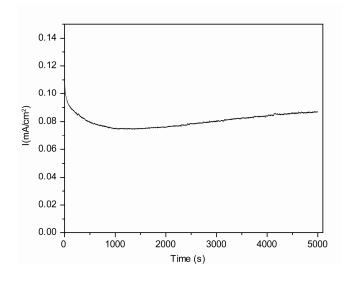
Supporting Information

Nitrogen-doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting


Xunyu Yang^{†‡}, Abraham Wolcott^{†‡}, Gongming Wang^{†‡}, Alissa Sobo[‡], Robert Carl Fitzmorris[‡], Fang Qian[§], Jin Z. Zhang^{*‡} and Yat Li^{*‡}

[‡]Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064


[§]Department of Molecular, Cellular, and Development Biology, University of California, Santa Barbara, California 93106

[†]These authors contributed equally to this work.

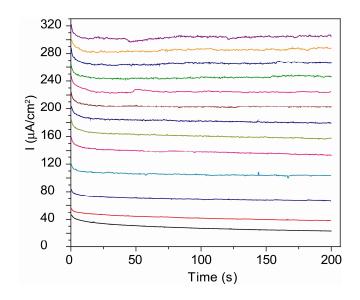

*Corresponding Authors. E-mail: zhang@chemistry.ucsc.edu; yli@chemistry.ucsc.edu

Figure S1 UV-vis spectra of undoped ZnO and ZnO:N nanowires showing a red shift of absorption wavelength to the visible region of interest in ZnO:N sample. This result indicates the reduction of bandgap of ZnO:N due to the N dopant.

Figure S2 Amperometric I–t curves of the ZnO:N nanowires collected at a overpotential of + 0.5 V (versus Ag/AgCl) for 5000s.

Figure S3 Amperometric I–t curves of the ZnO:N nanowires as a function of applied potential from 0 V (bottom) to +1.2 V (top) (versus Ag/AgCl) at a step of 0.1 V.