Scaffolded DNA Origami of a DNA Tetrahedron Molecular Cage

Yonggang Ke, Jaswinder Sharma, Minghui Liu, Kasper Jahn, Yan Liu, Hao Yan

Material and Methods:

Materials. All staple strands for the folding of the tetrahedron cage were purchased and commercially synthesized from Integrated DNA Technologies, Inc. (www.idtdna.com) in 96-well plates that were normalized to $100 \mu \mathrm{M} \times 60 \mu \mathrm{~L}$, and were used without further purification. M13 viral DNA was purchased from New England Biolabs, Inc. (NEB, Catalog number:\#N4040S).

Assembly of DNA tetrahedron cage. M13 viral DNA and all the staple strands were mixed together at 1:20 ratio, in $1 \times$ TAE- Mg^{2+} buffer (Tris, 40 mM ; Acetic acid, 20 mM ; EDTA, 2 mM ; and Magnesium acetate, $12.5 \mathrm{mM} ; \mathrm{pH} 8.0$). DNA tetrahedron cage was formed by annealing the oligo mixtures from 90 ${ }^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$ over 24 hours.

AFM imaging. The DNA tetrahedron cage sample ($2 \mu \mathrm{~L}$) was deposited onto a freshly cleaved mica (Ted Pella, Inc.) and left to adsorb for 3 min . Buffer (1 x TAE- $\mathrm{Mg}^{2+}, 400 \mu \mathrm{~L}$) was added to the liquid cell and the sample was scanned in a tapping mode on a Pico-Plus AFM (Molecular Imaging, Agilent Technologies) with NP-S tips (Veeco, Inc.).

TEM imaging. The TEM sample was prepared by dropping $2 \mu \mathrm{~L}$ of the sample solution on carboncoated grid (400 mesh, Ted pella). Before depositing the sample, the grids were negatively glow discharged using Emitech K100X machine. After 30 seconds, the sample was wicked from the grid by touching its edge with a piece of filter paper. To remove the excess salt, the grid was washed by touching with a drop of water and excess water was wicked away by touching with a filter paper. The grid was touched with a drop of 0.7% uranyl formate solution and excess solution was wicked away with a filter paper. Again the grid was touched with the second drop of uranyl formate solution for 15 seconds, and the excess solution was removed with a filter paper. To evaporate extra solution, the grid was kept at room temperature. Low resolution TEM studies were conducted by using a Philips CM12 transmission electron microscope, operated at 80 kV in the bright field mode, and high resolution TEM studies were conducted by using a Philips CM200 microscope, operated at 200 kV in the bright field mode.

DLS experiments. Measurements were made on a Zetasizer, Nano Series, Nano ZS machine made by Malvern Instruments. The Software used is Dispersion Technology Software 5.10., also from Malvern Instruments. Settings used for the measurement were standard settings.

Calculations for dimensions of each triangle in the tetrahedron origami structure:

For the calculation of the dimensions of each triangle in the tetrahedron origami structure, we made assumptions based on AFM images of the rectangular shaped 2D origami obtained before [Ke, et al. Science, 319, 180-183, 2008.]. The gap between two neighboring helices was measured to be $\sim 1 \mathrm{~nm}$. Each gap distance is shared by two helices (see picture below), so the height of the triangle equals to $18 * 2+18 * 0.5=45 \mathrm{~nm}$. Along the helix direction of the edge of the triangle, there are $12 * 16=192$ bases. To calculate the length, we used .288 nm (because there is a gap between neighboring helices so the network is stretched perpendicular to the helix direction, this number is from empirical measurement
from AFM imaging of rectangular shaped 2D origami) for each bp instead of 0.34 nm . Based on these assumptions, the length of parallel edge equals to $192 * 0.288=55 \mathrm{~nm}$. The length of each the other edge equals to $\operatorname{Sqrt}\left(27.5^{\wedge} 2+45^{\wedge} 2\right)=53 \mathrm{~nm}$.

Calculations for the volume of tetrahedron:

Base on the average edge length (54 nm) of the triangles. We calculated the total volume to be $54 \mathrm{~nm}^{\wedge} 3 * \operatorname{Sqrt}(2) / 12=18557 \mathrm{~nm}^{\wedge} 3=1.8 \times 10^{-23} \mathrm{~m}^{3}$. To calculate the internal cavity, we used 50 nm instead of 54 nm (we simply subtracted 54 by 4 nm , which equals to 2 times of DNA diameter), $50 \mathrm{~nm}^{\wedge} 3 * \operatorname{Sqrt}(2) / 12=14731 \mathrm{~nm}^{\wedge} 3=1.5 \times 10^{-23} \mathrm{~m}^{3}$.

Comparison of the volume of the DNA tetrahedron to the volume of ribosome protein:
To gain an idea how large the DNA tetrahedron container is compared to protein molecules of large size. We docked the pdb coordinates of the ribosome protein into the tetrahedron container. As illustrated by the following graphs viewed from different angles, the ribosome protein (one of the larger known protein in nature) fits well into the tetrahedron cage. Note that one face of the tetrahedron was deleted for illustration purpose. Ribosome protein is shown in pink and cyan colored domains.

Figure S1. 1.2\% Native Agarose Gel electrophoresis assay. Lane 1: 1kbp marker; Lane 2: M13 single strand; Lane 3: DNA tetrahedron cage. The DNA tetrahedron migrate faster into the gel due to more compact conformation compared to the single stranded M13 DNA.

Figure S2. Additional zoom-in high-resolution TEM images (A) of DNA tetrahedron with superimposed contours (B).

Figure S3. Representative zoom-out TEM images.

Figure S4. AFM image of the partial structure of the DNA tetrahedron formed by removal of the short strands for two entire faces. This should result in a single layer parallelogram with some unstructured single stranded loops from the M13 scaffold strand (a). (b) shows the zoom-out and zoom-in images of such structure, clearly indicating the parallelogram shape. Note that high-resolution imaging has been particularly difficult for this sample due to the unstructured single stranded loops.

Figure S5. Schematic of the DNA triangular pyramid structure, staple strand location and numbering.

Table S1. Sequences of the staple strands.

Name	Sequence of the helper strand (left to right: 5^{\prime}-3')
1	AATTCTACTAATAGTAGTAGCATT
2	CAGAAGCATTCAACGCAAGGATAAGTGGCATC
3	GGCGCGAGCTGAAAAGAAATTTTTAGAACCCTGGTCTTTA
4	AAAAATCACATATATTTTAAATGCCTATATTTTCATTTGG
5	TCAATAACCTGTTTAGAATGCCTGAGTAATGTAGAAAACG
6	AACAGTTCGTAGGTAAAGATTCAATACATTTCGCAAATGG
7	TAGTTTGACCATTAGAAAGGGTGAGAAAGGCCATTGAATC
8	AAATATTCGGAGACAGTCAAATCATGCGAACGAGTAGATT
9	AGTTGATTCCCAATTCCCATCAATATGATATTCGTCCAAT
10	CTGGATAGCAACCGTTCTAGCTGATTTCATTCCATATAAC
11	TCTGGAAGTAAATTAATGCCGGAGGGGGGTAA
12	AAATATGCAACTAAAGTACGGTG
13	TTTTGAGATTT
14	ATGGATCTACA
15	CTGAATATAATGCTGTAGCTCAA
16	AAAAACCAGTCATTGCCTGAGAGTCTTAATTG
17	TGCGGATGGCTTAGAGCTGGAGCAAACAAGAGAACCCTCG
18	ACTATCATAATCGATGAACGGTAAGATAAGAGGTCATTTT

TTTAATTGCTCCTTTTTCGTAAAACTAGCATGATTACGAG
CAAAAGGATCAATCATATGTACCCAGGATTAGAGAGTACC CAAACTCCAACAGGTCCGGTTGATAATCAGAATCAACTAA

TACCACATAAGCCCCAAAAACAGGCGAACCAGACCGGAAG
AATTCGAGCTTCAAAGAAGATTGTATAAGCAAGATTCATC
GGTAGAAAATATTTAAATTGTAAATCAAATATCGCGTTTT
GAAAGACTCGTTAATATTTTGTTAAACTAACG
TCAAAAAGATTAAGAGGAAGCCC
AAATTTTTTGC
GATGTTAAATC
GAAGCCTTTATAAG
CCAGAAGGGTAGCTA
AGGCTATCAGAAATA
AAACGAAATTCGCAT
CTCATTTTTTAACCATTATAGT
CCCTGACTAATAGGAACGCCATCAAGAACTGG
CGATTTTAAAAATAATTCGCGTCTCATAAATC
AGAATGACGGCCTTCCTGTAGCCATTAATCAT
TTTCAACTGCTTTCATCAACATTAATGCTTTA
CCCCTCAAAATGTGAGCGAGTAACTAAATTGG
ACGAGTAGAACCCGTCGGATTCTCATCGTCAT
ACTGCGGACGTGGGAACAAACGGCCTTGCCCT
GAATAAGGGGATTGACCGTAATGGTGTTTAGA
TAGTAAAAGATAGGTCACGTTGG
CATCGTAACAAAAGAAGTTTT
CGAGAGGCTTTTGCCGTGCAT
GGGGACGACGACAGTACGACGAT
TTTACCAGATCGGCCTCAGGAAGAAGGCGCAT
TACAGACCTCGCACTCCAGCCAGCAGAGCAAC

GCATAGTATTTCCGGCACCGCTTCTTGAAAGA GACCAACTTGGTGCCGGAAACCAGCATAACGC TGCAGATAGCAAAGCGCCATTCGCGGTCAATC GCGCAGACCATTCAGGCTGCGCAATTTAGGAA AGTTGAGACTGTTGGGAAGGGCGATCCATGTT CGACCTGCTCGGTGCGGGCCTCTTTTATTACA GAACAACACGCTATTACGCCAGC

GATGTGCTAATCTACGTTAAT
GTTGGGAAGAAAGCAAGGCG
GTATCAACGTAA
CAAGAGTAATTG
GGCTCGCCTGAT
TATACCAAGGGG
ACGACCAGTCAGG
CTCATTATCCAGGGTTTTCCCAGTTTGACCCCCAGCG
ACTCATCTCACGACGTTGTAAAACACCTTATG
TGTGAATTGACGGCCAGTGCCAAGAGAGGCAA
AAAACGAACTTGCATGCCTGCAGGTGGTTTAA
GCTTGAGATCGACTCTAGAGGATCATGCCACT
AATACGTACCCGGGTACCGAGCTCACACCAGA
GACGAGAAGAATTCGTAATCATGGAGGAAGTT
ACGAAGGCTGTTTGATGGTGGTTCACAACTTT
AAAGCTGCTTGTGA
CACACAACATATTCATTACCCAAAGATGGGCG
CTGCCAGTTCTTGACAAGAACCGGATACGAGC
TGGGGTGACCTTCA
AGGCTGGCTGCCTAATGAGTGAGCAAGGCCGCTTTTGC
GGGAGTTATAACTCACATTAATTGGAACGGTG
GGACAGATCGTTGCGCTCACTGCCTATATTCG

ATAACCGACGCTTTCCAGTCGGGAACCGAACT ATAAGGGAAACCTGTCGTGCCAGCAATGACAA GCGCCGACTGCATTAATGAATCGGGGAACGAG ACTTAGCCCCAACGCGCGGGGAGATTAAACAG TCGAGGTGAATTTCGGCGGTTTGCGTATTGGAAATCCG

AATTGTGTCGGCGC

AGTGAGACACGGAGATTTGTATCAGAAAGGGG
ATTAAGTTCGCGAAACAAAGTACAGGGCAACA
GCCCTGAGAGAATT
CGAATAATAGTTGCAGCAAGCGGTACTAAAAC
AAGAATACCCACGCTGGTTTGCCCAGAAAGGA
ATTTTCTGACGTATAACGTGCT
TCCATTAACCTTATAAATCAAAAGGTAAATGA
GTTAAATAGCCCG
GATAGGGTTGACT
ATTGTTATCCGCTCTACAGAGGCTTTGAGGAGTGTTG
GAGTCCACACGAGGGTAGCAACGGCACAATTC
CGGAAGCAGAAAGACAGCATCGGATATTAAAG
TCAAAGGGCGTCACCCTCAGCAGCTAAAGTGTAAAGC
GGATCGAAAAACC
CGTAACACGCGATGGCCCACTACGGGCTTGCA
GTCGCTGATGAACCATCACCCAAACAAGCCCA AGGGATAGTCAAGTTTTTTGGGGTGCCCACGC

CAACCATCCGAGGTGCCGTAAAGCCTCAGAGC
CCGCCACCACTAAATCGGAACCCTCGATAGTT
CTTGATACAAAGGGAGCCCCCGATCCCTCAGA
ACGGGGAAATGCT
AGGGTGGTTTTTCTATCGGTTTATCAGCTGCCGGCGA
AGGGAAGAAAGGAGCCTTTAATTGTTTTCACC

106
107
108
109

GCTGATTGAAAAAAAAGGCTCCAAAAGCGAAA CGCTGGCACACGTTGAAAATCTCCCCCTTCACCGCC TTTTAGTGTAGCG ACTCCTCACGCTTAATGCGCCGCTTCAGCGGA AAGACTTTTTCATGTCATAGCTGTTTCCTGCATTCAGT TCTATCAGGTGAG GCCATTAGAGCTT CACGCTGCGCGTAAGGAATTG ACAACTAAACCACCACACCCGCCGAGAGAAGG GTGAGAATCAGCAGGCGAAAATCCACCAACCT CAACAGTTACAGGGCGCGTACTATACATGAAA TTTGCTAACGAAATCGGCAAAATCACGGGTAA ATTCTGAAGGTTGCTTTGACGAGCTATGGGAT TCAGAGCGGTCGTCTTTCCAGA TTCCAGTTAACGATCTAAAGTTTTGGAGCTAA AGGGATTTCCCTCATAGTTAGCGTTGGAACAA AACGTGGAAGCATTCCACAGACAGTAGACAGG CCTGAGAAAAACTACAACGCCTGTCTCCAACG TTCGTCACCAGTACGTGTTTTT CCACCGAGTAAAAGCCATGTAC

ATAGGAACAGTCTGTCCATCACGCTGGAAAGC AGCCAGAAAAATTAACCGTTGTAGTCATTTTC CACCACCCCAATACTTCTTTGATTCACAAACA TTGATATTAGTAATAACATCACTTCCTCAGAA
ACCGCCACGCCTGAGTAGAAGAGCCTTGCTAGGAGGTTTAGTACACGTGGCGGTGTATCACCGTACTCGGTAATATGCCAGCCAGTATAGCCCGGAATAGAGAAAGGAGGAGCGGGGAGAGGGTTGATATAATTGCAACA

AAATACCTGCGGATAAGTGCCGTCCGCTAGGG
TGCTCAGTACCAGACATTTTG
TCCTTGCCCCCTG
CGTTCCAGTATGAG
CTCAAGGTTGAGG
CCGCCTCCTCGT
GATAGCGGGGT
ATTAGGATAATGGATTATTTACATAGAGCCACCACC
CCGGAACCTGGCAGATTCACCAGTAGGCTGAG
GTATTAAGCACACGACCAGTAATAGCCATCTT
CTTATTAGCGTTTAAAGGGACATTCTGGCAACCTATT
CTATTTCGGCAAC
AAAGCGTACCGTATAAACAGTTAACGTTAGAA
ACAGGAGGCCTTGAGTAACAGTGCAGAATACG
TTTGAATGTTTAACGGGGTCAGTGCCGATTAA
AACGGTACTGTACTGGTAATAAGTGCTATTAG
TGATAGCCTTTGATGATACAGGAGGCCAGAAT
ATAATCAGAGCGTCATACATGGCTCTAAAACA
ACCATGAATTTAC
GCAGTCTCCCAGCAGAAGATAAAAAAAATCACCAGTA
GAGCCAGCCAGAGGTGAGGCGGTCCTCATTAA
AATAAATCAGTATTAACACCGCCTCCGACTTG
ATTATCACCGTCAGCAACAGTGCCACGCTGATTGGCC
AGGTCAGACGAGA
AAGCATCACGCCAGCATTGACAGGAACTATCG
CCAGAACACCACCACCAGAGCCGCCCTTGCTG
CCCTCAATAGAGCCGCCACCAGAAATATTACC
GGAAAAACCAGAGCCACCACCCTCCAATATCT
AACAGTTGTCAGAACCGCCACCCTGCTCATGG

ACGCTCAACTCAGAGCCGCCACCCAAAGGAAT AAGAAACGACTAACAACTAATAGACAAAATCA

TTCATAATTTAGAGCCGTCAATAGATACATAA TGAGGATTTAGCCC

GAGATAGAACCCTTCGGCATTTTCGGTCATAGAAGTAT
TTCGACAATGTAGCGCGTTTTCATCTGACCTG TGGCACAGGCCTTTAGCGTCAGACCTCGTATT CGTTATTACGACAGAATCAAGTTTACAATATT TCTTTAATGCACCGTAATCAGTAGATTTTAAA

TCATTTTGGAAACCATCGATAGCAGCGCGAAC
TCGCCATTCGGAAACGTCACCAATCGGAACAA
AGCGGAATTTACCATTAGCAAGGCAAAAATACCGAACG
CACCATATCATCAT
ACAATGAAATCAGATGATGGCAATGGGAATTA
AGCCATTTTCATCAATATAATCCTTAAGCCCA
ATTATACTTAGGTG
CCAGCAGCAAATGAGGAAATTATTCATTAACTGAATAA
TACCATATGAAGGTAAATATTGACAAAATCTA
AACCTCAAAACCGATTGAGGGAGGCAAAATTA
AAATAAAGCAAAAGGGCGACATTCATATCAAA
GGTCAGTTTTACCAGCGCCAAAGAAAATTGCG
ACGTCAGAAGAAAATTCATATGGTGGCAAATC
TGAGGAAGTTTTGTCACAATCAATTGAATATA
TACATCGGCCACGGAATAAGTTTAGTTATCTAAAATA
AGACAGAGAAACA
TTTAGGAGCCAA
TACATAATACAT
TTCCTGATTATA
AGTGATTGTTTG

CGGATTCGCCTGACATATAA
AGGTGGCAATTGCTTTGAATA
CGCGCAGATAGCAAACGTAGAAA
TAGACTTTTTATTACGCAGTATGTGGCGAATT
TGAGCAAAGCATGATTAAGACTCCACAAACAA
AAATCCTTATACCCAAAAGAACTGAGAAGATG
GAAAACAAACGCAATAATAACGGATGCCCGAA AGTTTGAGGAAGGAAACCGAGGAAAATTAATT

TTTGAATTCCGAACAAAGTTACCATAACATTA
AGAAACCAAAAAGTAAGCAGATAGACCTTTTT
TAAATCAACGAAGCCCTTTTTAAGCCAGAAGG
CAATAGCTATCTTACTATATGTG
CTTCTGTAAATCGAGCAAGAA
ATAATAAGTCGCTATTAATTA
TCCTTGAATAACCCACAAGAATT
TGGAAGGGGCTAATATCAGAGAGAAACATAGC
ACGCTGAGCAGAGGGTAATTGAGCTTAGAACC
TTTGCACGACACCCTGAACAAAGTAAGAGTCA
AATCATAGCGGGAGAATTAACTGATAAAACAG
TAGATTTTAGGGAAGCGCATTAGAGTCTGAGA
TCCGGCTTAGAATAACATAAAAACCAGGTTTA
CAGTAACAAGCAGCCTTTACAGAGAGGTTGGG
AAATGCTGCGTCAAAAATGAAAATGTACCTTT
GATTTTTTGTTTAAATGCAAAT
CAAGTTATTATTTAT
TCTAAGAACGACCTT
TTTTCAATCAGATAT
GAAAAATAATAAAG
AAAAATAAG

CCAATCCAGAA
GCGAGAAAACTTTTTCAAATATA
TTTTAGTTACAAAATAAACAGCCATACAAAAT
ATTCATTTGCCTAATTTGCCAGTTAATTTCATCTTCTGAC
CTAAATTTAATGGTTTCGAGCGTCTTTCCAGACAATTACC
ATGAAACAATCTTACCAACGCTAAGAAATACCGACCGTGT
GATAAATAAGGCGTTATACAATTTTATCCTGAAACATCAA
ACATTTAACTATTTTGCACCCAGCAATAAGAATAAACACC
GGAATCATAATTACTAAAATCAAGATTAGTTGCAATTTCA
TAATGGAAGAGGTTTTGAAGCCTTGAAAAAGCCTGTTTAG
TATCATATGCGTTATAACCTCCCGACTTGCGGACAGTACA
AGTGAATACGAGGCGTTTTAGCGACAAATTCT
TACCAGTATAAAGCCAACGCTCA
CCAATCGCTCCCATCCTAATTTACCTGTTTAT
CAGATCCGGTA
GAAGGCTTTAG
GCTTAATTGAGAATCGCCATATT
TAACAACGCGCCCAATAGCAAGCACCTTAGAA
GCAGAGGCATTTTCGACGTTTTTATTTTCATCAGATTAAG
ATAGTGAATCGAGAACAAGCAAGCGCCAGTAATAAGAGAA
TATAAAGTACCGACAACCAAGTACCGCACTCATTTATCAA
GACTACCTAAGAACGGGTATTAAAAAGGTAAAGTAATTCT GTCCAGACGACGACAACTTTCCTTATCATTCCTTTTAACC

TTATATAAATCAATAATCGGCTGTTAAACAACATGTTCAG
CTAATGCAGAACGCGCGAGCATGTAGAAACCACTATATGT
GATAGCTTGTAGGAATCATTACCGCCAACATGTAATTTAG
CAACAATAGATAAGTCCTGAAC

