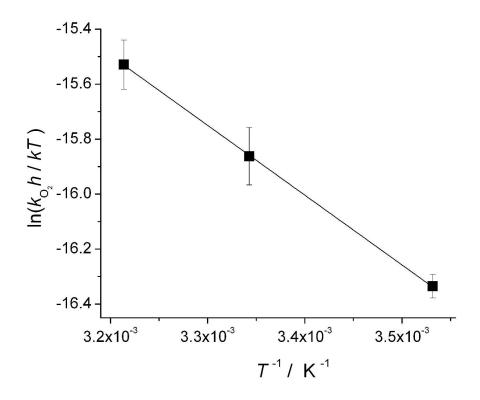

Supporting Information


Kinetic and theoretical comprehension of diverse rate laws and reactivity gaps in *Coriolus hirsutus* laccase-catalyzed oxidation of acido and cyclometalated Ru^{II} complexes

Sergey A. Kurzeev,^{a,b} Alexander S. Vilesov,^a Tatyana V. Fedorova,^a Elena V. Stepanova,^a Olga V. Koroleva,^a Igor V. Kurnikov,^d Christian Bukh,^c Morten J. Bjerrum,^c and Alexander D. Ryabov^d*

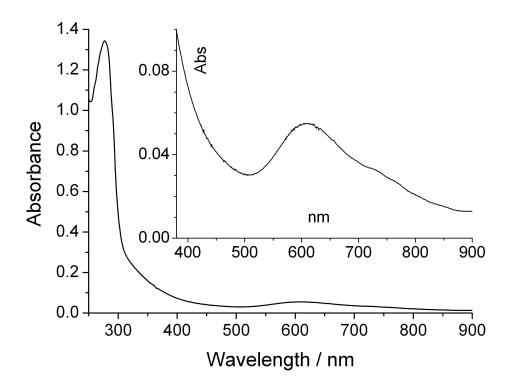

^{*a*}A. N. Bach Institute of Biochemistry Russian Academy of Science, Leninskii pr. 33, Moscow, 117071 Russia; ^{*b*}Department of Chemistry, Moscow State University, Moscow, 119899 Russia; ^{*c*}Department of Basic Sciences and Environment, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; ^{*d*}Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA

Figure 1S. (A) EPR spectrum of the reaction mixture obtained after reaction of complex **2a** (0.5 mM) with laccase $(7.4 \times 10^{-8} \text{ M})$ in 0.01 M phosphate buffer containing 10% methanol indicating generating of a major Ru^{III} species with *g* values 1.901, 2.240, and 2.373. There is a minor product with *g* values 1.935, 2.224, and 2.315. (B) EPR spectrum of the minor product obtained by irradiating of **2a** in MeOH for 10 min followed by dissolving the solution in in 0.01 M phosphate buffer. The irradiation leads to the dissociation of both MeCN ligands of **2a** suggesting the minor product in (A) to be [Ru^{III}(*o*-C₆H₄-2-py)(phen)(H₂O/OH)₂]ⁿ⁺, the major product being [Ru^{III}(*o*-C₆H₄-2-py)(phen)(MeCN)₂]²⁺. The presence of tiny amount of [Ru^{III}(*o*-C₆H₄-2-py)(phen)(H₂O/OH)]ⁿ⁺ cannot be excluded.

Figure 2S. Determination of the activation entropy and enthalpy for the reaction between reduced laccase and dioxygen by a secondary plot of $\ln (k_{O_2}h/k \cdot T)$ versus T^{-1} . The second order rate constants at three temperatures for the reaction between reduced laccase and dioxygen, k_{O_2} , were derived from the slopes in Figure 5; *k* is Boltzmann constant and *h* is Planck's constant.

Figure 3S. UV-Vis spectrum of *C. hirsutus* laccase at pH 6.2. The stock solution of laccase was diluted 40 times in a buffer containing 50 mM citrate, 50 mM sodium phosphate and 50 mM boric acid adjusted to pH 6.2 with NaOH.