Vanadium Octacyanoniobate-based magnet with a Curie Temperature of 138 K

Wataru Kosaka, Kenta Imoto, Yoshihide Tsunobuchi, and Shin-ichi Ohkoshi*
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

SUPPORTING INFORMATION

EPR spectrum:

Figure S1. EPR spectrum measured at 300 K .

χ_{M} T-T plots:

The $\chi_{\mathrm{M}} T$ value at 300 K is $6.2 \mathrm{~K} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, which is much larger than the expected spin-only value of $2.5 \mathrm{~K} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for one $\mathrm{Nb}^{\text {IV }}\left(S_{\mathrm{Nb}}=1 / 2\right), 1.24 \mathrm{~V}^{\text {III }}\left(S_{\mathrm{V}}{ }^{\text {III }}=1\right)$, and $0.54 \mathrm{~V}^{\mathrm{II}}\left(S_{\mathrm{V}}{ }^{\text {II }}=3 / 2\right)$ with g value of 2.0. This is because T_{C} value of this compound is high and the contribution of the magnetic ordering remains even at room temperature. In addition, a minimum in the $\chi_{\mathrm{M}} T-T$ plots, which is characteristic in ferrimagnet, was not observed below 300 K . The minimum $\chi_{\mathrm{M}} T$ will be located above 300 K .

Figure S2. $\chi_{\mathrm{M}} T$ - T plots in an external magnetic field of 5000 Oe.

Estimation of superexchange constant based on molecular-field theory:

The values of the superexchange interaction constants ($J_{i j}, \hat{H}=-J_{i j} S_{i} \cdot S_{j}$) between the i site and the nearest neighbor j site in $\mathrm{V}^{\mathrm{II}}{ }_{V} V^{\mathrm{III}}{ }_{y}\left[\mathrm{Nb}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]$ are related to the T_{C} value via the following equation: ${ }^{\text {S1 }}$
where S_{i} is the spin quantum number ($S_{\mathrm{Nb}}=1 / 2, S_{\mathrm{v}^{\mathrm{II}}}=3 / 2$, and $S_{\mathrm{vVII}^{\text {II }}}=1$), $Z_{i j}$ is the number of the nearest neighbor j site around i site, and k_{B} is the Boltzmann constant. In the case of $\mathrm{K}_{0.10} \mathrm{~V}^{\mathrm{II}}{ }_{0.54} \mathrm{~V}^{\mathrm{II}}{ }_{1.24}\left[\mathrm{Nb}^{\mathrm{IV}}(\mathrm{CN})_{8}\right] \cdot\left(\mathrm{SO}_{4}\right)_{0.45} \cdot 6.8 \mathrm{H}_{2} \mathrm{O}, Z_{i j}$ is as follows: $Z_{\mathrm{v}^{\mathrm{II}}}=Z_{\mathrm{v}^{\mathrm{II}} \mathrm{Nb}}=4, Z_{\mathrm{Nbv}^{\mathrm{II}}}=8 \times(x / 2)$, $Z_{\mathrm{Nbv} \text { III }}=8 \times(y / 2), x=0.54, y=1.24$. In addition to the present compound, we used $\mathrm{V}^{\mathrm{II}}{ }_{0.20} \mathrm{~V}^{\mathrm{III}}{ }_{1.20}\left[\mathrm{Nb}^{\mathrm{IV}}(\mathrm{CN})_{8}\right] \cdot 9.4 \mathrm{H}_{2} \mathrm{O}\left(T_{\mathrm{C}}=98 \mathrm{~K}\right)$ to calculate $J_{\mathrm{V}^{\mathrm{II}} \mathrm{Nb}}$ and $J_{\mathrm{V}^{\mathrm{II}} \mathrm{Nb}}$. This another compound was prepared by mixing an aqueous solution of $\mathrm{K}_{4}\left[\mathrm{Nb}(\mathrm{CN})_{8}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with that of VCl_{2}. Calcd. $\mathrm{V}, 13.2$; Nb, 17.1. Found: $\mathrm{V}, 13.3 ; \mathrm{Nb}, 17.0$. Consequently, $J_{\mathrm{V}^{\mathrm{I}} \mathrm{Nb}}$ and $J_{\mathrm{V}^{\mathrm{II}} \mathrm{Nb}}$ are estimated to be $-51 \mathrm{~cm}^{-1}$ and $-25 \mathrm{~cm}^{-1}$, respectively.

In contrast, the $J_{\text {VII }_{\text {IIII }}}$ value in a Prussian blue analog, $\mathrm{KV}^{\mathrm{II}}\left[\mathrm{Cr}^{\mathrm{II}}(\mathrm{CN})_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 0.1\left(\mathrm{KOSO}_{2} \mathrm{CF}_{3}\right)$, reported by Holmes ${ }^{\mathrm{S} 2}$ is related to the T_{C} value via the following equation: ${ }^{\mathrm{S} 1}$
where $Z_{\mathrm{CrII}^{\text {IIII }}}=Z_{\mathrm{v}^{\mathrm{II}} \mathrm{Cr}}=6, S_{\mathrm{Cr}^{\text {III }}}=3 / 2, S_{\mathrm{v}^{\mathrm{II}}}=3 / 2$, and $T_{\mathrm{C}}=376 \mathrm{~K}$. From equation (2), $J_{\mathrm{v}^{\text {II }} \mathrm{Cr}^{\text {III }}}$ is estimated to be $-35 \mathrm{~cm}^{-1}$.

S1) Ohkoshi, S.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Phys. Rev. B 1997, 56, 11642.
S2) Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593.

