Supporting Information for
Water Overcomes Methyl Group Directing Effects in Epoxide-Opening Cascades

Christopher J. Morten and Timothy F. Jamison*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Schematic Summary of Synthetic Operations. S2-S6

Experimental Procedures and Data for Compounds 2-44. S7-S46
Crystallographic Data for Compound 6.S47-S54
Assignment of Connectivity and Relative Stereochemistry in Compounds 3b, 3c, 8, 10, and 12 by gCOSY and NOESY Spectroscopy of These Compounds or Their Acetate Derivatives. S55-S66
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra for Compounds 2-44. S67-S153
Supporting Information References. S154

Schematic Summary of Synthetic Operations

Preparation of bishomopropargylic alcohol 16:

Reagents and conditions: (a) nBuLi, TMEDA; THF; $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathbf{6 8 \%}$; (b) $\mathrm{BH}_{3} \cdot \mathrm{DMS}$, THF; TMANO• $2 \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2 7 \%}$ over 2 steps; (d) vinyl acetate, AMANO lipase PS-C I, hexanes/THF, 44\%; (e) LiCCH•EDA, THF/DMPU, 47\%.

Preparation of proximally Me-substituted epoxy alcohol alcohol 2b:

Reagents and conditions: (a) $\mathrm{TiCl}_{4}, \mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; I_{2}; (b) TESCl, imid., DMF, 47\% over 2 steps; (c) $\mathrm{Me}_{2} \mathrm{Zn}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{THF} / \mathrm{PhMe}, \mathbf{8 5 \%}$; (d) Shi asymmetric epoxidation ${ }^{\mathrm{Sl}}$: 20, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, $\mathrm{DMM} / \mathrm{MeCN}, 71 \%$, 2.8:1 dr; (e) TBAF, THF, 94%.

Epoxide-opening cyclization reactions of proximally Me-substituted epoxy alcohol 2b:

Preparation of distally Me-substituted epoxy alcohol alcohol 2c:

Reagents and conditions: (a) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$; (b) $\mathrm{TiCl}_{4}, \mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; $\mathrm{MeOH}, \mathbf{6 7 \%}$ over 2 steps; (c) TESCl, imid., DMF, 74\%; (d) Shi asymmetric epoxidation ${ }^{\text {S1 }}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, $\mathrm{DMM} / \mathrm{MeCN}, \mathbf{7 8 \%}$, 5.8:1 dr; (e) TBAF, THF, 98%.

Epoxide-opening cyclization reactions of distally Me-substituted epoxy alcohol 2c:

Acetylation of bis-THP diad 3c:

Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{8 7 \%}$.

Preparation of diepoxy alcohol 5:

Reagents and conditions: (a) $\mathrm{Li}^{0}, \mathrm{NH}_{3}, \mathrm{MeOH}$, THF; (b) TBDPSCl, imid., DMF; (c) Shi asymmetric epoxidation ${ }^{\text {S1 }}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, DMM/MeCN, $\mathbf{2 8 \%}$ over 3 steps, 2.5:1 overall dr; (d) TBAF, THF, 99%.

Epoxide-opening cyclization reactions of diepoxy alcohol 5:

Preparation of diepoxy alcohol 7:

Reagents and conditions: (a) LiCCH•EDA, THF/DMPU; (b) TBDPSCl, imid., 51\% over 2 steps; (c) allyl bromide, $\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}, \mathrm{NaHCO}_{3}, \mathrm{THF}, \mathbf{8 8 \%}\right.$; (d) $\mathrm{Me}_{2} \mathrm{Zn}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{THF} / \mathrm{PhMe}$; (e) Shi asymmetric epoxidation ${ }^{\mathrm{S1}}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, DMM/MeCN, $\mathbf{4 8 \%}$ over 2 steps, $4: 1 \mathrm{dr}$; (f) cis-2-butene, Grubbs-Hoveyda $2^{\text {nd }}$ gen. catalyst 33, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.1: 1 \mathrm{E} / \mathrm{Z}$; (g) Shi asymmetric epoxidation ${ }^{\mathrm{S1}}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, DMM/MeCN, $\mathbf{9 0 \%}$ over 2 steps, 2.7:1 overall dr; (h) TBAF, THF, $\mathbf{9 8 \%}$.

Epoxide-opening cyclization reactions of diepoxy alcohol 7:

Acetylation of tris-THP diad 8:

Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{8 3 \%}$.

Preparation of diepoxy alcohol 9:

Reagents and conditions: (a) nBuLi, THF; MeI, 99\%; (b) HBpin, $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, 29\%; (c) allyl bromide, $\mathrm{PdCl}_{2}(\mathrm{dppf}), \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{O}$, THF; (d) Shi asymmetric epoxidation ${ }^{\text {S1 }}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, $\mathrm{DMM} / \mathrm{MeCN}, \mathbf{5 3 \%}$ over 2 steps, 3:1 dr; (e) cis-2-butene, Grubbs-Hoveyda $2^{\text {nd }}$ gen. catalyst $33, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.2: 1$ E / Z; (f) Shi asymmetric epoxidation ${ }^{\text {S1 }}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, DMM/MeCN, $\mathbf{8 5 \%}$ over 2 steps, 1.5:1 overall dr; (g) TBAF, THF, $\mathbf{9 5 \%}$.

Epoxide-opening cyclization reactions of diepoxy alcohol 9:

Acetylation of tris-THP diad 10:

Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{9 2 \%}$.

Preparation of diepoxy alcohol 11:

Reagents and conditions: (a) prenyl bromide, PdCl_{2} (dppf), $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathbf{7 5 \%}$, 2.5:1 $\mathrm{S}_{\mathrm{N}} 2: \mathrm{S}_{\mathrm{N}} 2^{\prime}$; (b) Shi asymmetric epoxidation ${ }^{\mathrm{S1}}: \mathbf{2 0}$, Oxone, $\mathrm{nBu}_{4} \mathrm{NHSO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer, DMM/MeCN, $\mathbf{6 5 \%}$, 3.5:1 overall dr; (c) TBAF, THF, $\mathbf{9 2 \%}$.

Epoxide-opening cyclization reactions of diepoxy alcohol 11:

Acetylation of tris-THP diad 12:

Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{8 8 \%}$.

Experimental Section

General Information. Unless otherwise noted, all non-aqueous reactions were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware. Reactions were magnetically stirred unless otherwise stated. All temperatures are reported in ${ }^{\circ} \mathrm{C}$.
Except were noted, dichloromethane was either distilled from calcium hydride or purified via an SG Water USA solvent column system. Except were noted, tetrahydrofuran (THF) and $\mathrm{Et}_{2} \mathrm{O}$ were either distilled from a blue solution of benzophenone ketyl or purified via an SG Water USA solvent column system. Triethylamine was purified via an SG Water USA solvent column system. 1,3-Dimethyl-3,4,6,5-tetrahydro-2(1H)-pyrimidinone (DMPU) and tetramethylethylenediamine (TMEDA) were distilled from calcium hydride under argon. Reactions in water used deionized water without further purification. The pH of all aqueous buffers was checked within 24 hours of use.
$\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was pumped on under high vacuum for at least 15 minutes before use, to remove some water. Methyl iodide and allyl bromide were purified by filtration through basic alumina before use. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{NaI}$, and $\mathrm{K}_{3} \mathrm{PO}_{4}$ were oven-dried overnight before use. Chiral ketone 20, used in Shi asymmetric epoxidation ${ }^{\text {Sla }}$ was prepared from D-fructose according to the procedure of Vidal-Ferran and coworkers. ${ }^{\text {Slb }}$
All other reagents and solvents were used as obtained, without further purification.
Analytical thin layer chromatography (TLC) was performed using EM Science silica gel 60 F254 plates. The developed chromatogram was analyzed by UV lamp (254 nm) and ceric ammonium molybdate (CAM). Liquid chromatography was performed using a forced flow (flash chromatography) of the indicated solvent system on Silicycle Silica Gel (230-400 mesh). Analytical HPLC was performed on the column phase indicated on a Hewlett-Packard 1100 Series HPLC. Preparative HPLC was performed on the column phase indicated on an Agilent 1200 Series HPLC.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, unless otherwise noted, on a Varian Inova- 500 MHz spectrometer, a Bruker AVANCE- 400 MHz spectrometer, or a Bruker AVANCE- 600 MHz spectrometer. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) on the δ scale from an internal standard of residual CHCl_{3} in CDCl_{3} (7.27 ppm), $\mathrm{C}_{6} \mathrm{HD}_{5}$ in $\mathrm{C}_{6} \mathrm{H}_{6}(7.15 \mathrm{ppm})$, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.32 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{app}=$ apparent), coupling constant in hertz (Hz), and integration. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm from the central peak of $\mathrm{CDCl}_{3}(77.2 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}(128.6 \mathrm{ppm})$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}(54.0 \mathrm{ppm})$ on the δ scale. Infrared (IR) spectra were recorded on a Perkin-Elmer Model 2000 FT-IR. High Resolution mass spectra (HR-MS) were obtained on a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer by Li Li of the Massachusetts Institute of Technology Department of Chemistry Instrumentation Facility. Optical rotations were measured on a Jasco Model 1010 polarimeter at 589 nm . An X-ray structure of $\mathbf{6}$ was collected on a Siemens three-circle Platform Diffractometer coupled to a Bruker-APEX CCD detector at the MIT Department of Chemistry X-Ray Diffraction Facility.

General Procedures for Cascade Reactions of 5, 7, 9, and 11.

Representative procedure for reaction in water:
A sample of diepoxy alcohol was dissolved in deionized water to 0.02 M in a glass vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was heated to 60° under air for 3 d . The solution was then cooled to rt and concentrated in vacuo (10 torr, 40°). The crude product mixture was chromatographed $(30 \%$ EtOAc in hexanes or 50% EtOAc in hexanes, depending on product polarity, see individual procedures vide infra) to separate the desired tris-THP product (always the least polar and therefore the first off the column) from undesired cyclization products.

Representative procedure for reaction promoted by $\mathbf{C s}_{2} \mathbf{C O}_{3}$:
A sample of diepoxy alcohol was dissolved in a solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (30 equiv) in anhydrous MeOH to 0.02 M in a glass vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was stirred under air at rt for 3 d . The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were concentrated in vacuo without drying, and the crude product mixture was chromatographed ($30 \% \mathrm{EtOAc}$ in hexanes or 50% EtOAc in hexanes, depending on product polarity, see individual procedures vide infra) to separate the desired tris-THP product (always the least polar and therefore the first off the column) from undesired cyclization products.

Representative procedure for reaction promoted by CSA:
A sample of diepoxy alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 0.02 M in an oven-dried roundbottom flask. To this was added (+/-)-CSA (1 equiv), and the solution was stirred under argon at rt for 4 h . The solution was then quenched with sat. NaHCO_{3}, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were concentrated in vacuo without drying, and the crude product mixture was chromatographed (30% EtOAc in hexanes or 50% EtOAc in hexanes, depending on product polarity, see individual procedures vide infra) to separate the desired tris-THP product (always the least polar and therefore the first off the column) from undesired cyclization products.

Representative procedure for reaction promoted by $\underline{\mathbf{B F}}_{\mathbf{3}}$:
A sample of diepoxy alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 0.02 M in an oven-dried roundbottom flask and cooled to -78°. To this was added, dropwise, a 0.1 M solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.25 equiv), and the solution was stirred at -78° under argon for 30 min . The solution was then allowed to warm gradually to rt over 5 min . and quenched with sat. NaHCO_{3}. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were concentrated in vacuo without drying. The crude product mixture was chromatographed $(30 \%$ EtOAc in hexanes or 50% EtOAc in hexanes, depending on product polarity, see individual procedures vide infra) to separate the desired tris-THP product (always the least polar and therefore the first off the column) from undesired cyclization products.

13
Allylic alcohol 13: Allylic alcohol 13 was prepared according to a procedure modified from that developed by Lebouc, Delaunay, and Riobé. ${ }^{\text {S2 }}$ 3,4-Dihydro-2H-pyran (120 mL , $112 \mathrm{~g}, 1.32 \mathrm{~mol}$) was added to a 2 L round-bottom flask, followed by TMEDA (138 mL , $107 \mathrm{~g}, 0.92 \mathrm{~mol})$. We have found that the reaction works even with undistilled TMEDA directly from the bottle, although yields are approximately 5% higher with TMEDA freshly distilled from CaH_{2}. After cooling to 0°, a 2.5 M solution of $n \mathrm{BuLi}$ in hexane ($370 \mathrm{~mL}, 0.92 \mathrm{~mol}$) was added slowly, over 15 min . Over the course of addition, the clear, pale yellow solution became cloudier as white solid precipitated, and the color evolved through darker yellow to orange. The reaction was stirred 45 minutes more at 0°, over which time the solution turned a vivid, opaque orange. The reaction was then warmed to room temperature and stirred 20 h . Dry THF (600 mL) was then added, at which point the solution turned red-brown. After cooling again to 0°, paraformaldehyde $\left(\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}\right)(90 \mathrm{~g}, 2.96 \mathrm{~mol})$ was added slowly, portionwise, with vigorous stirring, beginning with $\sim 1 \mathrm{~g}$, then $\sim 2 \mathrm{~g}$, then $\sim 4 \mathrm{~g}$, etc., pausing approximately 5 minutes between additions to prevent exotherm. After the addition of paraformaldehyde was complete, the reaction was allowed to warm gradually to room temperature over 20 h ., at which point the solution had become a milky, opaque, pale yellow. The reaction was quenched slowly, at room temperature, with sat. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and stirred 15 minutes. The mixture was then diluted with 500 mL of $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, poured over an aqueous solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(250 \mathrm{~g}\right.$ in $\left.700 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$, and stirred vigorously for 30 minutes. The organic layer was then decanted off, washed with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{x}$ 50 mL), dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by vacuum distillation (5 torr, $\mathrm{bp}=65-71^{\circ}$), and $\mathbf{1 3}$ was collected as a clear, colorless oil with an aromatic, woodsy aroma ($72 \mathrm{~g}, 630 \mathrm{mmol}, 68 \%$). Allylic alcohol 13 appears unstable to CDCl_{3} (Cambridge Isotope Laboratories), even after treatment of CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$. It is therefore recommended that NMR spectra be recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ or another solvent. $\mathrm{R}_{\mathrm{f}}=0.61(50 \% \mathrm{EtOAc}$ in hexanes). Spectral data was consistent with the sample prepared by Riobé and coworkers. ${ }^{\text {S2 }}$

IR (thin film, NaCl) 3412, 2934, 2874, 1678, 1449, 1239, 1089, 1063, 1025, 893, cm^{-1}
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.74(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94$ (broad s, 3H), 3.76 (app $\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\operatorname{appq}, J=6.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ (app quintet, $J=5.2 \mathrm{~Hz}, 4.4$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 154.7, 97.1, 66.7, 63.6, 23.3, 20.8.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 137.0573$, found 137.0579.

14
Tosylate 14: To a stirred solution of allylic alcohol 13 (51.4 g, 450 mmol) in THF (1100 mL , used directly from the bottle, without drying) maintained at 0° was added neat $\mathrm{BH}_{3} \cdot \mathrm{DMS}(135 \mathrm{~mL}, 1350 \mathrm{mmol})$ gradually, over 20 min . The reaction was stirred 1.5 h . at 0° and then warmed to room temperature for 30 min . After recooling to 0°, trimethylamine N-oxide dihydrate (TMANO $\left.\cdot 2 \mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{S} 3}(130 \mathrm{~g}, 1170 \mathrm{mmol})$ was added slowly, portionwise, with vigorous stirring, beginning with $\sim 3-5 \mathrm{~g}$ portions, pausing approximately 5 minutes between additions to prevent exotherm. The reaction was heated to vigorous reflux for 5 h .; over this period white solid clumped along the sides of the flask. The reaction was vacuum filtered while hot to remove all solids; these solids were washed with acetone ($4 \times 100 \mathrm{~mL}$), and the combined acetone washes and reaction solution were concentrated in vacuo. The crude 1,3-diol was used without further purification ($\mathrm{R}_{\mathrm{f}}=0.23$ in 100% EtOAc $)$.
To a solution of crude diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (500 mL , used directly from the bottle, without drying) was added $\mathrm{Et}_{3} \mathrm{~N}(115 \mathrm{~g}, 158 \mathrm{~mL}, 1125 \mathrm{mmol})$. After cooling to $0^{\circ}, \mathrm{TsCl}(44 \mathrm{~g}$, $230 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}^{\mathrm{S}}(4.3 \mathrm{~g}, 45 \mathrm{mmol})$ were added. The solution was maintained at 0° for 1 h ., at which point TLC analysis (50% EtOAc in hexanes) implied that conversion was approx. 40-50\%, with evidence of a trace of ditosylation (R_{f} of 1,3-diol starting material $=0.07, \mathrm{R}_{\mathrm{f}}$ of tosylate $\mathbf{1 4}=0.35, \mathrm{R}_{\mathrm{f}}$ of ditosylate $=0.62$). Further TsCl $(15 \mathrm{~g}, 79 \mathrm{mmol})$ was added and the reaction was maintained at 0° for 1 h . TLC analysis implied conversion of approx. $60-70 \%$. Further $\mathrm{TsCl}(10 \mathrm{~g}, 53 \mathrm{mmol})$ was added and the reaction was maintained at 0° for 1 h . TLC analysis implied conversion of approx. 75$90 \%$. At this point, TLC should show the 1,3 -diol starting material more strongly than distosylate; larger quantities of ditosylate complicate purification. The reaction was quenched at 0° with sat. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined organics were washed with sat. $\mathrm{NaCl}(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude 14, a foul-odored, thin yellow-brown oil, was purified by column chromatography (gradient 30% to 50% to 100% EtOAc in hexanes) to yield tosylate $\mathbf{1 4}$ as an odorless, heavy, pale yellow oil that crystallized on standing ($35 \mathrm{~g}, 122 \mathrm{mmol}, 27 \%$ over 2 steps): $\mathrm{R}_{\mathrm{f}}=0.35(50 \%$ EtOAc in hexanes). Spectral data were consistent with that reported for an enantioenriched sample prepared by Delgado and Martin. ${ }^{\text {S5 }}$

IR (KBr pellet) $3532,3376,3058,2948,2856,1599,1342,1178,1099,961,931 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34$ (dd, $J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.53$ (m, 1H), 3.33-3.27 (m, 1H), $3.22(\mathrm{ddd}, J=9.3,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,132.9,130.0,128.1,80.3,70.1,68.0,65.9,32.5,25.3,21.8$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 309.0767$, found 309.0777.

15
Acetate 15: To a vigorously stirred solution of alcohol 14 ($32 \mathrm{~g}, 112 \mathrm{mmol}$) in vinyl acetate ($48 \mathrm{~g}, 51 \mathrm{~mL}, 560 \mathrm{mmol}$) was added 100 mL of a $3: 1 \mathrm{v} / \mathrm{v}$ hexanes:THF solution (both directly from the bottle, without drying), followed by Amano lipase PS-C I ${ }^{\text {S6 }}$ (immobilized on ceramic, Aldrich catalog \#534897) (4.8 g). After having stirred 7 h . at room temperature, the solid beads were filtered off ${ }^{\mathrm{S} 7}$ and the filtrate concentrated in vacuo. Acetate 15 was separated from 14 via column chromatography (gradient 25% to 30% to 50% to 100% EtOAc in hexanes) to yield enantioenriched acetate 15 as a heavy, pale yellow oil that crystallized on standing ($16.2 \mathrm{~g}, 49 \mathrm{mmol}, 44 \%$): $\mathrm{R}_{\mathrm{f}}=0.67(50 \%$ EtOAc in hexanes); $[\alpha]^{22}{ }_{\mathrm{D}}=-42.9\left(c=8.4, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess of 15 was determined to be $>95 \%$ by chiral analytical HPLC analysis (Chiracel OD-H; $12 \% i \operatorname{PrOH}$ in hexanes, $1.30 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{R}($ major $)=12.10 \mathrm{~min} ., \mathrm{t}_{R}($ minor $)=13.36 \mathrm{~min}$. $)$.

IR (KBr pellet) 3053, 2978, 2954, 2851, 1733, 1597, 1459, 1360, 1246, 1176, 1062, 1045, $973 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58$ (ddd, $J=10.8,9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.7,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.8,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\operatorname{app} \mathrm{td}, J=11.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.0,145.0,132.9,129.9,128.2,76.9,69.1$, 68.1, 68.0, 29.2, 24.8, 21.8, 21.1.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 351.0873$, found 351.0873.

16
Alkyne 16: This compound has been synthesized in racemic form by Bowman and McDonald ${ }^{\text {S8a }}$ and in antipodal form by Nakata and coworkers. ${ }^{\text {S8b,c }}$ Our group previously reported a longer but higher-yielding synthesis of the desired $(2 S, 3 R)$ enantiomer. ${ }^{\text {S8d }}$
To a flame-dried flask containing fresh lithium acetylide-ethylenediamine complex (10 g ,
$109 \mathrm{mmol})$ was added dry THF (210 mL) and freshly distilled DMPU $(25 \mathrm{~mL})$ to afford a dusty gray-brown slurry. ${ }^{59}$ After cooling to 0°, to this solution was added slowly tosylate $\mathbf{1 5}(5.9 \mathrm{~g}, 18.1 \mathrm{mmol})$, over 5 minutes, as a solution in 30 mL DMPU. Any remaining $\mathbf{1 5}$ was dissolved with a further 10 mL THF and added via syringe. After stirring 1 h . at 0°, the reaction was warmed to room temperature for 34 h . Over time, the solution developed a bright cherry red color, which matured into a rich burgundy red color. Upon recooling to 0°, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the combined organics were washed with sat. $\mathrm{NaCl}(100$ mL), dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography (gradient 20% to 40% EtOAc in hexanes) to remove most DMPU and afford bishomopropargylic alcohol 16 as a pale orange oil ($1.20 \mathrm{~g}, 8.6 \mathrm{mmol}$, $47 \%)$: R_{f} of $16=0.55(50 \%$ EtOAc in hexanes $) ;[\alpha]^{22}{ }_{\mathrm{D}}=-16.8\left(c=1.9, \mathrm{CDCl}_{3}\right)$.
Residual DMPU may be removed by further aqueous washes, but $\mathbf{1 6}$ is moderately water soluble, and isolated yield will therefore be reduced. Prior to chromatography, crude $\mathbf{1 6}$ can be protected as a silyl ether without purification away from DMPU. Residual DMPU promotes silylation, and purification of the much less polar silyl ether is straightforward, resulting in improved yield over this 2 -step process; see the synthesis of $\mathbf{2 9}$, vide infra.

Spectral data for $\mathbf{1 6}$ were consistent with that reported by Bowman and McDonald. ${ }^{\text {S8a }}$

17
Alkenyl iodide 17: To a solution of bishomopropargylic alcohol 16 ($265 \mathrm{mg}, 1.89 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at -78° was added slowly a 2 M solution of AlMe_{3} in hexanes (2.08 $\mathrm{mL}, 4.16 \mathrm{mmol}) .{ }^{\text {S10 }}$ This solution was warmed for 3 min . by removing the flask from its cold bath to ensure complete deprotonation. After recooling to -78°, a 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.08 \mathrm{~mL}, 2.08 \mathrm{mmol})$ was added dropwise, during which time the solution turned maroon, then a deep red. The solution was stirred 2 h . at -78° and then quenched with a solution of $\mathrm{I}_{2}(2.4 \mathrm{~g}, 9.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction flask was then wrapped in foil and allowed to warm to room temperature for 10 h ., at which point $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. The quenched reaction solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (100 mL) and washed with aqueous $3 \mathrm{M} \mathrm{NaHSO} 3(40 \mathrm{~mL}$) until the organic layer was colorless. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 40 \mathrm{~mL}$), and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo. The crude alkenyl iodide was carried forward without purification; $\mathrm{R}_{\mathrm{f}}=0.72(50 \% \mathrm{EtOAc}$ in hexanes), UV active.
Upon dissolution of this crude alkenyl iodide in DMF (1 mL), imidazole ($322 \mathrm{mg}, 4.73$ $\mathrm{mmol})$ and $\mathrm{TESCl}(380 \mu \mathrm{~L}, 342 \mathrm{mg}, 2.27 \mathrm{mmol})$ were added, and the solution was stirred 2 h . at room temperature. The reaction was applied directly to column of SiO_{2} and
chromatographed (2% EtOAc in hexanes) to afford protected alkenyl iodide 17 (310 mg , $0.78 \mathrm{mmol}, 41 \%$ over 2 steps), which was isolated along with some silylated bishomopropargylic alcohol ($43 \mathrm{mg}, 0.17 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}$ of $\mathbf{1 7}=0.60(10 \% \mathrm{EtOAc}$ in hexanes), UV active; $[\alpha]^{22}{ }_{\mathrm{D}}=-19.2\left(c=4.0, \mathrm{CHCl}_{3}\right)$.

IR (thin film, NaCl) 2955, 2876, 1461, 1415, 1274, 1239, 1127, 1102, $1004 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64(\mathrm{app} \mathrm{qt}, J=6.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H})$, 3.39-3.28 (m, 3H), $3.04(\operatorname{app~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=14.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.5,107.3,81.3$, 70.8, 68.1, 47.8, 33.8, 25.8, 22.5, 7.1, 5.3.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{IO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 419.0874$, found 419.0893.

18
Trisubstituted alkene 18: To a sealed tube charged with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(60 \mathrm{mg}, 0.045 \mathrm{mmol})$ was added 5 mL THF to provide a clear lemon yellow solution. Upon cooling to 0°, alkenyl iodide $\mathbf{1 7}(410 \mathrm{mg}, 1.03 \mathrm{mmol})$ was added as a solution in THF $(2 \mathrm{~mL})$, followed immediately by a 2.0 M solution of $\mathrm{Me}_{2} \mathrm{Zn}$ in $\mathrm{PhMe}(1.55 \mathrm{~mL}, 3.10 \mathrm{mmol})$ to provide a paler yellow solution. The tube was sealed and the temperature was maintained at 0° for 1 h. and then warmed to room temperature for 12 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL) and quenched by pouring slowly over $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to give an orange-brown crude oil. This crude product was purified by column chromatography (gradient 1% to 2.5% to 10% EtOAc in hexanes) to afford 18 as a colorless oil ($250 \mathrm{mg}, 0.88 \mathrm{mmol}, 85 \%$): $\mathrm{R}_{\mathrm{f}}=0.66(10 \%$ EtOAc in hexanes $) ;[\alpha]^{22}{ }_{\mathrm{D}}=-17.8\left(c=0.38, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 2952, 2924, 2876, 1460, 1127, 1098, $1017 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.29(\operatorname{appq}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.26$ (m, 2H), 3.19 (ddd, $J=10.4,8.7,2.2,1 \mathrm{H}), 2.62(\operatorname{app} \mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{dd}, J=14.4,10.1,1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.6,120.4,81.2,71.7,68.0,42.7,33.9,25.9,15.8,13.8,7.1,5.3$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 307.2064$, found 307.2067 .

19
Epoxide 19: To a solution of alkene 19 ($224 \mathrm{mg}, 0.79 \mathrm{mmol}$) in $2: 1 \mathrm{v} / \mathrm{v}$ DMM:MeCN $(25.7 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (16.6 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}(54 \mathrm{mg}, 0.16 \mathrm{mmol}$), and chiral ketone $20(405 \mathrm{mg}, 1.57 \mathrm{mmol})$. This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 30 min . via syringe pump, a solution of Oxone ($1.94 \mathrm{~g}, 3.16 \mathrm{mmol}$) in 4×10^{-4} Na_{2} EDTA (13.1 mL) and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(13.1 \mathrm{~mL}, 11.7 \mathrm{mmol})$. After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 25 min ., at which point it was diluted with EtOAc (40 mL). The aqueous layer was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to provide 19 in a 2.8:1 diastereomeric mixture. The desired diastereomer ($\mathrm{R}_{\mathrm{f}}=0.55,20 \%$ EtOAc in hexanes $)$ was separated from the undesired diastereomer ($\mathrm{R}_{\mathrm{f}}=0.59,20 \%$ EtOAc in hexanes) and ketone catalyst 20 by patient column chromatography (gradient 2% to 3% to $5 \% \mathrm{EtOAc}$ in hexanes) to afford $19 \mathrm{in}>15: 1 \mathrm{dr}$ as a colorless oil ($159 \mathrm{mg}, 0.53 \mathrm{mmol}, 67 \%$): $\mathrm{R}_{\mathrm{f}}=$ $0.55(20 \%$ EtOAc in hexanes $) ;[\alpha]^{22}=-37.8\left(c=0.45, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 2956, 2877, 1458, 1127, 1099, $1009 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{app} \mathrm{td}, J=$ $8.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=14.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{dd}, J=14.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.4,71.1,67.7,59.8,58.2,40.6,33.8,25.8,17.6,14.3,7.1,5.3$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 323.2013$, found 323.2010 .

2b
Epoxy alcohol 2b: To a solution of TES-protected epoxy alcohol 19 ($17.5 \mathrm{mg}, 0.058$ mmol , in $>20: 1 \mathrm{dr}$) in THF (1.0 mL) cooled to 0° was added a 1 M THF solution of TBAF $(70 \mu \mathrm{~L}, 0.070 \mathrm{mmol})$. The reaction was stirred for 20 min . at 0°. While still cold,
the crude product in THF was applied directly to a SiO_{2} column $\left(\mathrm{SiO}_{2}\right.$ packed in $2 \% \mathrm{Et}_{3} \mathrm{~N}$ dissolved in $20 \% \mathrm{EtOAc}$ in hexanes, run with a gradient from $2 \% \mathrm{Et}_{3} \mathrm{~N}$ dissolved in 20% EtOAc in hexanes to 50% EtOAc in hexanes) and concentrated in vacuo to afford epoxy alcohol $\mathbf{2 b}$ as a colorless oil ($9.8 \mathrm{mg}, 0.053 \mathrm{mmol}, 90 \%$): $\mathrm{R}_{\mathrm{f}}=0.54$ ($100 \% \mathrm{EtOAc}$); $[\alpha]^{22}{ }_{\mathrm{D}}$ $=-9.7\left(c=0.20, \mathrm{CDCl}_{3}\right)$. This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. 2b cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or EtOAc/hexanes) and somewhat faster on standing at -4° as a neat oil. For extended periods, 2b is best stored frozen in benzene at -4°.

IR (thin film, NaCl) 3417, 2926, 2851, 1723, 1462, 1381, 1274, $1096 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{app} \mathrm{td}, J=9.9,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.13$ (ddd, $J=9.3,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (broad s, 1H), 2.20-2.09 (m, 2H), 1.77-1.65 (m, 3H), 1.45-1.33 (m, 4H), 1.31 (d, $J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 80.5,69.8,68.1,60.1,59.0,40.5,32.6,26.0$, 17.6, 14.0.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1148$, found 209.1153.

2b cyclization products 3 b and 4 b :

Representative procedure for reaction in aqueous media:
Epoxy alcohol $\mathbf{2 b}$ ($1 \mathrm{mg}, 0.0054 \mathrm{mmol}$) was dissolved either in deionized water ($270 \mu \mathrm{~L}$) or 1 M solution of potassium phosphate buffer in deionized water $(270 \mu \mathrm{~L})$ and stirred at rt under air for 3 d . At this point the crude product mixture was extracted with EtOAc $(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3 b}$ to $\mathbf{4 b}$. For reactions in deionized water, $\mathbf{3 b}: \mathbf{4 b}$ was found to be 4.9:1 (average of 6 experiments).

Table S1. Dependence of Regioselectivity on pH in Reactions of 2b		
entry	$\mathrm{pH}\left(1 \mathrm{M} \mathrm{KP}_{\mathrm{i}}\right.$ buffer $)$	$\mathbf{3 b}: \mathbf{4 b}$ observed
1	1.8	$0.11: 1$
2	3.9	$0.14: 1$
3	6.0	$0.51: 1$
4	7.0	$1.9: 1$
5	7.2	$2.0: 1$
6	7.2	$1.9: 1$

7	8.0	$4.3: 1$
8	8.0	$4.4: 1$
9	8.5	$5.3: 1$
10	9.0	$3.4: 1$
11	9.4	$5.9: 1$
12	9.5	$5.8: 1$
13	10.0	$4.3: 1$
14	10.7	$3.0: 1$
15	11.0	$4.0: 1$
16	11.8	$2.3: 1$
17	12.0	$3.6: 1$
18	12.5	$2.1: 1$
19	12.5	$2.9: 1$

Procedure for reaction under $\mathbf{C s}_{2} \mathbf{C O}_{3}$ promotion:
To a solution of epoxy alcohol $\mathbf{2 b}(1 \mathrm{mg}, 0.0054 \mathrm{mmol})$ in $\mathrm{MeOH}(270 \mu \mathrm{~L})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.16 \mathrm{mmol})$ and stirred at rt under air for 3 d . At this point the crude product mixture was diluted with deionized water ($500 \mu \mathrm{~L}$), extracted with EtOAc (5 x 2 mL) and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3} \mathbf{b}$ to $\mathbf{4 b}$ to be 3.0:1.

Procedure for reaction under CSA promotion:
To a solution of epoxy alcohol $\mathbf{2 b}(1 \mathrm{mg}, 0.0054 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mu \mathrm{~L})$ was added $(+/-)-\mathrm{CSA}(1.3 \mathrm{mg}, 0.0056 \mathrm{mmol})$ and stirred at rt under argon for 4 h . At this point the crude product mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and washed with sat. NaHCO_{3} $(500 \mu \mathrm{~L})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3 b}$ to $\mathbf{4 b}$ to be 1:5.2.

Procedure for reaction under $\mathbf{B F}_{3}$ _promotion:
To a solution of epoxy alcohol $\mathbf{2 b}(1 \mathrm{mg}, 0.0054 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mu \mathrm{~L})$ cooled to 78° was added, dropwise, a stock solution of $0.1 \mathrm{M} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mu \mathrm{~L}, 0.0014$ mmol) and stirred at -78° under argon for 30 min . At this point the reaction was allowed to warm gradually to rt over 5 min ., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and quenched with sat. $\mathrm{NaHCO}_{3}(500 \mu \mathrm{~L})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3} \mathbf{b}$ to $\mathbf{4 b}$ to be $1: 11$.

bis-THP 3b: The connectivity of 3b was confirmed by gCOSY (see p. S55-56).
$\mathrm{R}_{\mathrm{f}}=0.55(100 \% \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}^{22}=-12.7\left(c=0.87, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) 3434, 2941, 2867, 1717, 1457, 1377, 1354, 1286, 1106, 1077, 1031, 964, $943 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94-3.88(\mathrm{~m}, 1 \mathrm{H})$, 3.41-3.34 (m, 2H), 3.07-2.97 (m, 2H), $2.12(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.57($ app $\mathrm{t}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.5,78.9,77.2,71.5,68.1,45.9,29.6,25.8,21.3,14.4$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}:$209.1148, found 209.1157.

4b
6,5-fused 4b: $\mathrm{R}_{\mathrm{f}}=0.45(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=-29.0\left(c=0.03, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) 3436, 2923, 2850, 1728, 1463, 1377, 1261, 1126, $1068 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.00(\operatorname{app} \mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{qd}, J=6.5,3.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.48 (app td, $J=11.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (ddd, $J=11.1,9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (ddd, $J=11.1,9.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ $(\mathrm{dd}, J=11.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 84.7,81.0,80.0,73.6,69.0,35.1,30.4$, 25.7, 24.8, 17.7.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1154$, found 209.1153.

21
Internal alkyne 21: This compound was prepared via a previously published 2-step
procedure from $16 .{ }^{\text {S } 11}$

22
Trisubstituted alkene 22: To a solution of TMS ether $21(207 \mathrm{mg}, 0.92 \mathrm{mmol})$ in THF (9 mL) was added a 1 M aqueous solution of $\mathrm{HCl}(7 \mathrm{~mL}, 7 \mathrm{mmol})$. The mixture was stirred at room temperature for 15 min ., diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and then quenched with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$, and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo. The crude free alcohol $\left(\mathrm{R}_{\mathrm{f}}=0.56\right.$ in $50 \% \mathrm{EtOAc}$ in hexanes $)$ was pumped on under high vacuum for 2 h . to remove residual TMSOH and then carried forward without further purification.
To a solution of this crude bishomopropargylic alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at 0° was added slowly a 2 M solution of AlMe_{3} in hexanes $(0.96 \mathrm{~mL}, 1.93 \mathrm{mmol}) .{ }^{\mathrm{S} 10}$ This solution was stirred for 3 min . and then recooled to -78°. A 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.96$ $\mathrm{mL}, 0.96 \mathrm{mmol}$) was added dropwise, during which time the solution turned maroon, then a deep red. The solution was stirred 2 h . at -78° and then quenched with cold MeOH (1 mL), upon which the solution turned pale yellow. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and washed with a saturated solution of Rochelle's salt $(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, dried over MgSO_{4}, and concentrated in vacuo, and this crude product was purified by column chromatography ($25 \% \mathrm{EtOAc}$ in hexanes) to afford trisubstituted alkene 22 as a colorless oil ($105 \mathrm{mg}, 0.62 \mathrm{mmol}, 67 \%$ over 2 steps $): \mathrm{R}_{\mathrm{f}}=0.38(30 \%$ EtOAc in hexanes $) ;[\alpha]^{22}{ }_{\mathrm{D}}=-19.4\left(c=1.2, \mathrm{CDCl}_{3}\right)$. Some unreacted bishomopropargylic alcohol ($16 \mathrm{mg}, 0.10 \mathrm{mmol}, 12 \%$) was also recovered.

IR (thin film, NaCl) $3412,2928,2855,1451,1376,1340,1277,1095,1036,944 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.29(\mathrm{app} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.30$ (m, 2H), 3.08 (ddd, $J=8.7,7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (app dt, $J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (app dt, $J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.40$ (dddd, $J=17.4,11.3,6.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1,120.5,82.4,70.9$, 67.9, 32.8, 31.6, 26.1, 25.7, 18.2.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 193.1199$, found 193.1194.

23
Epoxide 23: Upon dissolution of bishomoallylic alcohol 22 in DMF (1 mL), imidazole $(105 \mathrm{mg}, 1.54 \mathrm{mmol})$ and $\mathrm{TESCl}(130 \mu \mathrm{~L}, 116 \mathrm{mg}, 0.77 \mathrm{mmol})$ were added, and the solution was stirred 6 h . at room temperature. The reaction was applied directly to a plug of SiO_{2} and quickly flushed ($3 \% \mathrm{EtOAc}$ in hexanes) to afford the bishomopropargylic silyl ether ($128 \mathrm{mg}, 0.45 \mathrm{mmol}, 74 \%$), which was carried forward without further purification.
To a solution of this protected bishomopropargylic silyl ether ($125 \mathrm{mg}, 0.45 \mathrm{mmol}$) in 2:1 v / v DMM: $\mathrm{MeCN}(14.7 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in 4×10^{-4} $\mathrm{Na}_{2} \mathrm{EDTA}(9.5 \mathrm{~mL}), n \mathrm{Bu}_{4} \mathrm{HSO}_{4}(31 \mathrm{mg}, 0.09 \mathrm{mmol})$, and chiral ketone $20(232 \mathrm{mg}, 0.91$ mmol). This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 30 min . via syringe pump, a solution of Oxone ($1.12 \mathrm{~g}, 1.82 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (7.5 mL) and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(7.5 \mathrm{~mL}, 6.7 \mathrm{mmol})$. After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 25 min ., at which point it was diluted with EtOAc (25 mL). The aqueous layer was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to provide a 5.8:1 diastereomeric mixture of epoxides. The desired epoxide diastereomer was inseparable from the undesired, but the combined epoxide diastereomers were separated from ketone catalyst 23 by column chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) to afford epoxide 23 in $5.8: 1 \mathrm{dr}$ as a colorless oil ($110 \mathrm{mg}, 0.37 \mathrm{mmol}, 73 \%$ combined $)$: $\mathrm{R}_{\mathrm{f}}=0.66(20 \% \mathrm{EtOAc}$ in hexanes).
All characterization was obtained on this 5.8:1 mixture of diastereomers: $[\alpha]^{22}{ }_{D}=-44.6$ ($c=2.85, \mathrm{CDCl}_{3}$).

IR (thin film, NaCl) 2956, 2877, 1458, 1377, 1240, 1099, $1016 \mathrm{~cm}^{-1}$
Tabulated ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts and coupling constants are reported for the major diastereomer:
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.93-3.87 (m, 1H), 3.38-3.29 (m, 2H), 3.14 (app td, $J=$ $8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\operatorname{app} \mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 3 \mathrm{H})$, $1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 81.6,71.3,67.9,62.0,57.5,33.8,32.2,25.8,25.1$, 18.9, 7.0, 5.3.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 323.2013$, found 323.2023.

2c
Epoxy alcohol 2c: To a solution of TES-protected epoxy alcohol 23 ($33 \mathrm{mg}, 0.11 \mathrm{mmol}$, in a 5.8:1 diastereomeric mixture) in THF (1.5 mL) cooled to 0° was added a 1 M THF solution of TBAF $(130 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$. The reaction was stirred for 10 min . at 0°. While still cold, the crude product in THF was applied directly to a SiO_{2} column (SiO_{2} packed in $2 \% \mathrm{Et}_{3} \mathrm{~N}$ dissolved in $20 \% \mathrm{EtOAc}$ in hexanes, run with a gradient from $2 \% \mathrm{Et}_{3} \mathrm{~N}$ dissolved in 20% EtOAc in hexanes to 50% EtOAc in hexanes) and concentrated in vacuo to afford epoxy alcohol 2 c as a colorless oil ($20 \mathrm{mg}, 0.11 \mathrm{mmol}, 98 \%$) as an inseparable 5.8:1 mixture of diastereomers: $\mathrm{R}_{\mathrm{f}}=0.54$ (100% EtOAc in hexanes). This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. Epoxy alcohol 2c cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or $\mathrm{EtOAc} /$ hexanes $)$ and somewhat faster on standing at -4° as a neat oil. For extended periods, $\mathbf{2 c}$ is best stored frozen in benzene at -4°.
All characterization for epoxy alcohol 2c was obtained on this 5.8:1 mixture of diastereomers: $[\alpha]^{22}{ }_{\mathrm{D}}=-2.1\left(c=1.0, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3427, 2930, 2854, 1656, 1461, 1379, 1347, 1273, 1097, 1042, 971 cm^{-1}.

Tabulated ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts and coupling constants are reported for the major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.96-3.90 $(\mathrm{m}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{app} \mathrm{td}, J=$ $11.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (ddd, $J=9.0,5.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.33 (m, 1H), 2.15-2.05 (m, 2H), 1.80-1.66 (m, 4H), 1.48-1.38 (m, 1H), $1.33(\mathrm{~s}$, 3 H), $1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 81.2,69.7,68.2,61.2,58.3,32.4,31.7$, 26.0, 25.0, 19.0.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1148$, found 209.1155.

2 c cyclization products $3 \mathrm{c}, 4 \mathrm{c}$, and 2 c rearrangement product 24: Representative procedure for reaction in aqueous media:

Epoxy alcohol 2c ($1.5 \mathrm{mg}, 0.0080 \mathrm{mmol}$) was dissolved either in deionized water (420 $\mu \mathrm{L}$) or 1 M solution of potassium phosphate buffer in deionized water $(420 \mu \mathrm{~L})$ and stirred at rt under air for 3 d . At this point the crude product mixture was extracted with EtOAc $(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3 c}$ to $\mathbf{4 c}$. For reactions in deionized water, $\mathbf{3 c}: 4 \mathbf{c}$ was found to be $25: 1,30: 1$, and $34: 1$ in separate experiments, with no 24 observed.

Table S2. Dependence of Regioselectivity on pH in Reactions of 2c		
entry	$\mathrm{pH}\left(1 \mathrm{M} \mathrm{KP}_{\mathrm{i}}\right.$ buffer $)$	$\mathbf{3 c}: \mathbf{4 c}: \mathbf{2 4}$
1	1.8	$22: 1: 1$
2	3.9	$24: 1: 1$
3	6.0	$32: 1: 1$
4	7.1	$19: 1: 0$
5	7.2	$37: 1: 0$
6	8.0	$26: 1: 0$
7	8.1	$25: 1: 0$
8	9.0	$14: 1: 0$
9	9.9	$3.5: 1: 0$
10	10.0	$2.8: 1: 0$
11	10.5	$1.0: 1: 0$
12	10.9	$0.49: 1: 0$
13	11.8	$0.14: 1: 0$
14	12.0	$0.29: 1: 0$

Procedure for reaction under $\mathbf{C s}_{2} \mathbf{C O}_{3}$ promotion:
To a solution of epoxy alcohol $\mathbf{2 c}(1.5 \mathrm{mg}, 0.0080 \mathrm{mmol})$ in $\mathrm{MeOH}(420 \mu \mathrm{~L})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(78 \mathrm{mg}, 0.24 \mathrm{mmol})$ and stirred at rt under air for 3 d . At this point the crude product mixture was diluted with deionized water $(500 \mu \mathrm{~L})$, extracted with EtOAc (5x2 mL) and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3 c}$ to $\mathbf{4 c}$ to be $1: 17$, with no trace of 24.

Procedure for reaction under CSA promotion:
To a solution of epoxy alcohol $\mathbf{2 c}(1.5 \mathrm{mg}, 0.0080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(420 \mu \mathrm{~L})$ was added $(+/-)-\mathrm{CSA}(1.9 \mathrm{mg}, 0.0080 \mathrm{mmol})$ and stirred at rt under argon for 4 h . At this point the crude product mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and washed with sat. NaHCO_{3} $(500 \mu \mathrm{~L})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio $\mathbf{3 c}: \mathbf{4 c}: 24$ to be 5.8:1:0.5.

Procedure for reaction under $\underline{\mathbf{B F}}_{3}$ promotion:
To a solution of epoxy alcohol $\mathbf{2 c}(1.5 \mathrm{mg}, 0.0080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(420 \mu \mathrm{~L})$ cooled to 78° was added, dropwise, a stock solution of $0.1 \mathrm{M} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mu \mathrm{~L}, 0.0020$ mmol) and stirred at -78° under argon for 30 min . At this point the reaction was allowed
to warm gradually to rt over 5 min ., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and quenched with sat. $\mathrm{NaHCO}_{3}(500 \mu \mathrm{~L})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$ and concentrated in vacuo without drying. The crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the ratio of $\mathbf{3 c}$ to $\mathbf{2 4}$ to be 2.2:1, with no trace of $\mathbf{4 c}$.

3c
bis-THP 3c: The connectivity of $\mathbf{3 c}$ was confirmed via gCOSY of its acetate derivative 25 (see pp. S57-S58). $\mathrm{R}_{\mathrm{f}}=0.54(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=+15.8\left(c=0.85, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3440, 2943, 2868, 1711, 1464, 1377, 1281, 1217, 1159, 1068, 1030, $998,940 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{app} \mathrm{dt}, J=11.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=11.0,9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=11.6,9.2,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13$ (app dt, $J=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 78.0,75.9,73.5,70.7,68.2$, 35.1, 29.9, 28.0, 25.9, 16.8.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1148$, found 209.1152.

4c
6,5-fused 4c: $\mathrm{R}_{\mathrm{f}}=0.50(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=-5.8\left(c=0.41, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) $3447,2945,2871,1465,1382,1278,1127,1085,1068,967 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (app td, $J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13(\operatorname{app} \mathrm{dt}, J=$ $11.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\operatorname{broad~s}, 1 \mathrm{H}), 1.90(\operatorname{app~q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{appqq}, J=11.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 83.6,81.4,79.0,72.5,68.9,31.2,30.0,26.6,24.7,24.1$.
HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1148$, found 209.1156.

24
Isopropyl ketone 24: $\mathrm{R}_{\mathrm{f}}=0.56(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=-15.3\left(c=0.08, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) $3415,2925,2853,1708,1466,1383,1273,1096,1028,947 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=9.1,6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.29 (m, 2H), $2.90(\mathrm{dd}, J=16.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18-2.12 (m, 1H), $1.98(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H})$, 1.46-1.38 (m, 1H), $1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.4,78.8$, 71.1, 68.0, 44.5, 41.8, 33.5, 29.9, 25.8, 18.1.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 209.1148$, found 209.1156.

25
Acetylated bis-THP 25: To a solution of alcohol 3c ($7.9 \mathrm{mg}, 0.042 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(300 \mu \mathrm{~L})$ was added $\mathrm{Et}_{3} \mathrm{~N}(48 \mu \mathrm{~L}, 35 \mathrm{mg}, 0.35 \mathrm{mmol})$, DMAP ($0.8 \mathrm{mg}, 0.007 \mathrm{mmol}$), and $\mathrm{Ac}_{2} \mathrm{O}(13 \mu \mathrm{~L}, 14 \mathrm{mg}, 0.14 \mathrm{mmol})$. The resulting solution was stirred at rt for 2 h . and quenched with sat. NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were concentrated in vacuo. This wet, crude acetate 25 was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford clean acetate $\mathbf{2 5}$ $(8.4 \mathrm{mg}, 0.037 \mathrm{mmol}, 87 \%): \mathrm{R}_{\mathrm{f}}=0.60(30 \% \mathrm{EtOAc}$ in hexanes $) ;[\alpha]_{\mathrm{D}}^{22}=-8.6(c=0.40$, CDCl_{3}). The connectivity of $\mathbf{2 5}$ was confirmed by gCOSY (see pp. S57-58).

IR (thin film, NaCl) 2943, 2851, 1744, 1465, 1370, 1237, 1166, 1103, 1048, 1030, 942 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.71(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.42-$ $3.34(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=11.9,9.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\operatorname{app~dt}, J=$ $11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.60(\operatorname{app~q}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\operatorname{appq} q \mathrm{~d}, J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.3,77.5,74.3,74.2,70.9,68.2,31.7,29.9,27.9,25.8,21.4,18.0$.

HR-MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 229.1440$, found 229.1436.

26
Diyne 26: This compound was prepared via a previously published 1-step procedure from terminal alkyne 16. ${ }^{\text {S11 }}$

27
Diepoxide 27: A solution of diyne $26(540 \mathrm{mg}, 2.81 \mathrm{mmol})$ in THF (5 mL) was cooled to -40°, into which flask NH_{3} gas was condensed ($\sim 60 \mathrm{~mL}$). To this solution was added dry $\mathrm{MeOH}(2.3 \mathrm{~mL}, 1.8 \mathrm{~g}, 56 \mathrm{mmol})$. Lithium metal ($120 \mathrm{mg}, 18.6 \mathrm{mmol}$, cut into $10-20 \mathrm{mg}$ pieces from Li^{0} wire washed with hexanes) was added portionwise, allowing one minute between additions. With each addition, a blue "tail" developed behind each piece of Li^{0} as the metal swirled and dissolved into solution. The blue color gradually disappeared as the metal was consumed, at which point the next piece of Li^{0} was added. With the addition of the last piece, the blue was more persistent, lasting 3-5 min. before disappearing, at which point the reaction was quenched (vide infra). At no point did the reaction solution become a completely homogenous deep blue color. We believe that overreduction of the diene can be a major problem, resulting in low or even 0% yields, and that it is therefore critical to use a smaller excess of Li^{0} than is typically used in dissolving metal reductions. The reaction was quenched at -40^{0} via slow addition of solid $\mathrm{NH}_{4} \mathrm{Cl}(\sim 20 \mathrm{~g})$ and allowed to warm gradually to room temperature. The resulting solid residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water $(25 \mathrm{~mL})$. The aqueous layer was
separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to afford a crude mixture of 1,4diene as well as some monoene overreduction products as a colorless oil: R_{f} for all $=0.68$ (50% EtOAc in hexanes). This moderately unstable material was carried forward into silyl protection without further purification.
To a solution of this crude diene in DMF (3 mL) was added imidazole ($478 \mathrm{mg}, 7.0$ $\mathrm{mmol})$ and $\mathrm{TBDPSCl}(860 \mu \mathrm{~L}, 920 \mathrm{mg}, 3.37 \mathrm{mmol})$, and the resulting solution was stirred at rt for 1 h ., at which point it was quenched with sat. $\mathrm{NaHCO}_{3}(\sim 3 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(\sim 10 \mathrm{~mL})$ and water $(\sim 10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, and combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to afford the moderately unstable crude silyl-protected 1,4-diene: $\mathrm{R}_{\mathrm{f}}=0.70$ (10% EtOAc in hexanes), which was carried forward into Shi epoxidation without further purification.
To this crude mixture in $2: 1 \mathrm{v} / \mathrm{v}$ DMM: $\mathrm{MeCN}(237 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (158 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}(238 \mathrm{mg}, 0.70 \mathrm{mmol})$, and chiral ketone 20 ($1.45 \mathrm{~g}, 5.6 \mathrm{mmol}$). This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 30 min . via syringe pump, a solution of Oxone ($17.3 \mathrm{~g}, 28 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2} \operatorname{EDTA}(79 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($79 \mathrm{~mL}, 70 \mathrm{mmol}$). After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 30 min ., at which point it was diluted with EtOAc $(\sim 400 \mathrm{~mL})$ and water $(\sim 100 \mathrm{~mL})$. The aqueous layer was separated and extracted with EtOAc ($3 \times 500 \mathrm{~mL}$), and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. NMR and TLC evidence at this point indicated approx. 75% conversion of the diene. This partially oxidized reaction mixture was then subjected again to identical epoxidation conditions and worked up as before. After resubjection, crude diepoxide 27 was chromatographed (gradient 10% to 20% to 30% EtOAc in hexanes) to provide 27, a colorless oil, as an inseparable mixture of diastereomers (371 mg of a $2.5: 1$ overall diastereomeric mixture, 0.79 mmol combined, 28% over 3 steps): $\mathrm{R}_{\mathrm{f}}=0.29$ (20% EtOAc in hexanes). Diepoxide 27 was further purified via preparative HPLC (Supelco SUPELCOSIL LC-SI, 20 mm diameter achiral SiO_{2} column, $5 \mu \mathrm{~m}$ particle size, 25 cm length; $0.6 \% i \mathrm{PrOH}$ in hexanes, $30 \mathrm{~mL} / \mathrm{min}$.; t_{R} of desired diastereomer $=9.0 \mathrm{~min}$. $)$ to afford 27 in $20: 1$ overall dr: $[\alpha]^{22}{ }_{\mathrm{D}}=+4.2(c=2.4$, CDCl_{3}).

IR (thin film, NaCl) $3072,2958,2931,2857,1472,1428,1380,1361,1103 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.70-7.65 (m, 4H), 7.47-7.36 (m, 6H), 3.84-3.78 (m, 1H), $3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{ddd}, J=14.4,5.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,136.1,134.7,133.6,130.0$, $129.8,127.9,127.6,80.8,72.2,67.8,56.9,56.5,55.0,54.6,35.4,34.7,33.5,27.2,25.6$, 19.5, 17.8.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 489.2432$, found 489.2447.

5
Diepoxy alcohol 5: To a solution of silyl ether 27 ($66 \mathrm{mg}, 0.14 \mathrm{mmol}$, in $20: 1$ overall dr) in THF $(900 \mu \mathrm{~L})$ was added a 1 M solution of TBAF in THF ($280 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$). The reaction was warmed to 30° for 2 h ., cooled, and filtered through a pad of SiO_{2} (gradient 20% to 50% to 100% EtOAc in hexanes) to yield free diepoxy alcohol 5 as a colorless oil ($32.8 \mathrm{mg}, 0.14 \mathrm{mmol}, 99 \%$): $\mathrm{R}_{\mathrm{f}}=0.41$ ($100 \% \mathrm{EtOAc}$); $[\alpha]^{22}{ }_{\mathrm{D}}=+39.4$ ($c=1.6$, CDCl_{3}). ${ }^{\mathrm{S} 12}$ This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. 5 cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or EtOAc/hexanes) and somewhat faster on standing at -4° as a neat oil. For extended periods, $\mathbf{5}$ is best stored frozen in benzene at -4°.

IR data was consistent with that previously reported. ${ }^{\text {S11 }}$
${ }^{1} \mathrm{H}$ NMR data was consistent with that previously reported. ${ }^{\text {S11 }}$ We nevertheless retabulate ${ }^{1}$ H NMR data here, as the improved diastereopurity of 5 has enabled the determination of coupling constants not previously measurable: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.93-3.88 (m, 1H), 3.52 (ddd, $J=10.8,9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.31$ (m, 1H), 3.18 (ddd, $J=9.2,5.9$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (ddd, $J=7.7,3.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (ddd, $J=6.8,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83-2.78 (m, 2H), 2.28 (broad s, 1H), 2.16-2.07 (m, 2H), 1.82-1.65 (m, 5H), 1.41 (dddd, $J=12.2,11.6,11.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data was consistent with that previously reported. ${ }^{\text {S11 }}$ However, all ${ }^{13} \mathrm{C}$ shift values for 5 in ref. S12 are off by $0.4-0.5 \mathrm{ppm}$ due to an incorrectly referenced CDCl_{3} center peak. We therefore retabulate ${ }^{13} \mathrm{C}$ NMR data here: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 80.6,69.9,68.1,56.7,55.8,55.4$, 54.7, 35.1, 34.9, 32.6, 26.0, 17.7.

Cascade of diepoxy alcohol 5 to tris-THP 6:
Reaction in water: Diepoxy alcohol $5(22.8 \mathrm{mg}, 0.100 \mathrm{mmol}$, in $20: 1 \mathrm{dr})$ was dissolved in deionized water $(5.0 \mathrm{~mL})$ in a 20 mL vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was heated to 60° under air for 3 d . The solution was then cooled to rt and concentrated in vacuo (10 torr,
40°). The crude product mixture was chromatographed (50% EtOAc in hexanes) to separate the desired tris-THP $6(16.8 \mathrm{mg}, 0.074 \mathrm{mmol}, 74 \%$ (78% adjusted for $20: 1 \mathrm{dr}$), a white crystalline solid) from tentatively assigned 6,5 -fused structure 28 ($\sim 15 \%$). The tentatively assigned 28 could not be isolated cleanly, as it was contaminated with traces of another exo cyclization product.

6
tris-THP 6: Spectral data were consistent with that previously reported. ${ }^{511, S 13}$ We have corroborated the connectivity and the relative and absolute configurations of this compound via X-ray structure (see pp. S47-S54). A sample of the solid (c. 15 mg) was crystallized using slow vapor diffusion of hexanes into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A .cif file of the X-ray structure is included with this Supporting Information.

29
Silyl-protected bishomopropargylic alcohol 29: To a flame-dried flask containing fresh lithium acetylide-ethylenediamine complex ($23.2 \mathrm{~g}, 252 \mathrm{mmol}$) was added dry THF (450 mL) and freshly distilled DMPU (80 mL) to afford a dusty gray-brown slurry. ${ }^{\text {S9 }}$ After cooling to 0°, to this solution was added slowly tosylate 15 ($13.8 \mathrm{~g}, 42 \mathrm{mmol}$), over 5 minutes, as a solution in 40 mL DMPU and 20 mL THF. Any remaining $\mathbf{1 5}$ was dissolved with a further 10 mL THF and added via syringe. After stirring 1 h . at 0°, the reaction was warmed to room temperature for 41 h . Over time, the solution developed a bright cherry red color, which matured into a rich burgundy red color. After recooling to $0^{\circ}, \mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{~mL}, 36.3 \mathrm{~g}, 358 \mathrm{mmol})$ was added, followed immediately by slow addition of a 1 M solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(270 \mathrm{~mL}, 270 \mathrm{mmol})$. The solution was stirred 10 minutes and vacuum filtered to remove solids; these solids were washed with $\mathrm{Et}_{2} \mathrm{O}$ (4 x 100 mL). The combined washes and filtrate were concentrated in vacuo to yield a dark red-brown, viscous solution of crude bishomopropargylic alcohol 16 in DMPU, which was used without further purification; R_{f} of $\mathbf{1 6}=0.55(50 \% \mathrm{EtOAc}$ in hexanes).

To this solution of alcohol 16 in DMPU was added imidazole ($8.6 \mathrm{~g}, 126 \mathrm{mmol}$) and TBDPSCl ($16.1 \mathrm{~mL}, 17.3 \mathrm{~g}, 63 \mathrm{mmol}$). After warming to 40° and stirring for 5 h ., the red-brown solution was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, and washed with water (400 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$, and the combined organics were washed with sat. $\mathrm{NaCl}(100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The crude product was separated from TBDPSOH by column chromatography (gradient 3% to 5% to 10% to 15% EtOAc in hexanes) to afford silyl ether 29 as a pale yellow oil ($8.10 \mathrm{~g}, 21.4 \mathrm{mmol}, 51 \%$ over 2 steps $)$: $\mathrm{R}_{\mathrm{f}}=0.45(10 \%$ EtOAc in hexanes); $[\alpha]^{22}{ }_{\mathrm{D}}=-27.4\left(c=1.3, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) $3310,2931,2856,1428,1100,1047 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.74-7.68 (m, 4H), 7.47-7.42 (m, 2H), 7.39 (app t, $J=7.1$ $\mathrm{Hz}, 4 \mathrm{H}$), 3.91-3.86 (m, 1H), 3.55 (ddd, $J=9.6,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38-3.31 (m, 2H), 2.77 (app dt, $J=16.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=16.9,6.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (app t, $J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.1,136.1,134.7,133.4,130.0,129.8,127.9,127.6,81.6,80.8,71.4,69.7$, 68.2, 33.3, 27.2, 25.5, 22.5, 19.5.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 401.1907$, found 401.1924 .

30
Alkenyl bromide 30: $\mathrm{To}_{\mathrm{PdCl}}^{2}$ (PhCN$)_{2}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(880 \mathrm{mg}, 10.5$ mmol) was added allyl bromide ($9 \mathrm{~mL}, 105 \mathrm{mmol}$). The resulting solution was stirred 15 minutes at room temperature, over which time the color changed from an initial yelloworange to a deeper red-brown. Alkyne $29(795 \mathrm{mg}, 2.1 \mathrm{mmol}$) as a solution in THF (2 mL) was then added dropwise at ambient temperature via syringe pump over $90 \mathrm{~min} .^{\text {S }}{ }^{8}$ After addition the reaction was stirred a further 30 min ., directly concentrated in vacuo, and chromatographed (gradient 2% to 3% to 5% EtOAc in hexanes) to afford alkenyl bromide $30(920 \mathrm{mg}, 1.84 \mathrm{mmol}, 88 \%)$: $\mathrm{R}_{\mathrm{f}}=0.54\left(10 \% \mathrm{EtOAc}\right.$ in hexanes); $[\alpha]_{\mathrm{D}}^{22}=-$ $11.5\left(c=27.0, \mathrm{CDCl}_{3}\right)$. We have found that the presence of silanol impurities (ie t butyldiphenylsilanol, TBDPSOH) in starting material 29 does not adversely affect the bromoallylation reaction, and, in fact, purification away from TBDPSOH is easier after this step than after the synthesis of $\mathbf{2 9}$.

IR (thin film, NaCl) 3072, 3011, 2933, 2858, 1639, 1472, 1428, 1362, 1218, 1127, 1103, $1048 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87$ (app t, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.56-7.46 (m, 6H), 5.92 (dddd, $J=16.5,10.1,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85($ app t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=17.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{app} \mathrm{td}, J=9.2,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, J=10.2,9.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\operatorname{app} \mathrm{td}, J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (app d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=14.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 135.9,135.9,134.9,134.3,133.5,129.9,129.7,127.8,127.6,126.0,115.5$, $80.0,71.9,67.6,44.5,35.8,33.5,27.1,25.5,19.3$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 521.1482$, found 521.1489.

31
Epoxide 31: To a dried, cooled sealed tube was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(218 \mathrm{mg}, 0.19 \mathrm{mmol})$. The tube was pumped out under high vacuum and backfilled with argon three times. A 2.0 M solution of dimethylzinc in toluene $(6.75 \mathrm{~mL}, 13.5 \mathrm{mmol})$ was then added to afford a lemon yellow solution, which was cooled to 0°. Alkenyl bromide $30(1.35 \mathrm{~g}, 2.7 \mathrm{mmol})$ was then added gradually as a solution in THF (10 mL). The tube was then capped and heated to 85° for 48 h . After cooling, the reaction was quenched by pouring over a mixture of $\sim 60 \mathrm{~g}$ of ice and $\sim 20 \mathrm{~g}$ of NaCl . The aqueous layer was separated and extracted $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$, and the combined organics were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude diene product, a vivid yellow-orange oil containing the desired methylated, trisubstituted alkene along with traces of triphenylphosphine and a proton-quenched, disubstituted alkene impurity, was carried forward without further purification $\left(\mathrm{R}_{\mathrm{f}}\right.$ of trisubstituted and disubstituted alkenes $=0.60$ (10% EtOAc in hexanes)).
To this crude mixture in $2: 1 \mathrm{v} / \mathrm{v}$ DMM:MeCN $(34 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (23 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}(153 \mathrm{mg}, 0.45 \mathrm{mmol}$), and chiral ketone 20 ($613 \mathrm{mg}, 2.37 \mathrm{mmol}$). This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 30 min . via syringe pump, a solution of Oxone ($1.46 \mathrm{~g}, 2.37 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA $(11.4 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($11.4 \mathrm{~mL}, 10.2 \mathrm{mmol}$). After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 20 min ., at which point it was diluted with $\operatorname{EtOAc}(50 \mathrm{~mL})$. The aqueous layer was separated and extracted with EtOAc ($3 \times 120 \mathrm{~mL}$), and the combined organics were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. NMR and TLC evidence indicated only partial conversion of starting material. This partially oxidized reaction mixture was then subjected again to identical epoxidation conditions and worked up as before. For reasons unknown, attempting to force full conversion in a single subjection by using greater than 1-1.05 equivalents of Oxone
appears to lead to epoxidation of the disubstituted alkene side product as well, forming an undesired disubstituted epoxide side product difficult to remove from the desired product. The desired trisubstituted epoxide $31\left(\mathrm{R}_{\mathrm{f}}=0.39(10 \%\right.$ EtOAc in hexanes)) was partially separated from its undesired diastereomer (crude $\mathrm{dr} \cong 2: 1, \mathrm{R}_{\mathrm{f}}$ of undesired diastereomer $=$ 0.45 (10% EtOAc in hexanes)) via column chromatography (gradient 2% to 3% to 5% to 10% EtOAc in hexanes) to afford epoxy alkene 31 (580 mg of a $4: 1$ diastereomeric mixture, 1.29 mmol combined, 48% over 2 steps (38% over 2 steps for desired diastereomer) $:[\alpha]^{22}{ }_{\mathrm{D}}$ of desired diastereomer in 20:1 dr $=-9.4\left(c=0.19, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3070, 2931, 2857, 1471, 1428, $1100 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.69-7.65 (m, 4H), 7.46-7.41 (m, 2H), 7.41-7.36 (m, 4H), 5.88 (dddd, $J=16.8,10.3,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (app dq, $J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (app dq, $J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81-3.76 (m, 1H), 3.35-3.22 (m, 3H), 2.84 (app t, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.38 (dddd, $J=15.3,15.3,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.79$ (m, $1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1$, 136.1, 134.7, 134.2, 133.7, 130.0, 129.8, 127.9, 127.7, 117.0, 79.9, 72.1, 67.5, 61.0, 59.7, $40.3,33.5,33.3,27.2,25.6,19.5,17.9$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 473.2482$, found 473.2476 .

32
Diepoxide 32: To a solution of Grubbs-Hoveyda $2^{\text {nd }}$ generation catalyst ${ }^{15} 33$ (80 mg , 0.13 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at -78° was added condensed cis-2-butene ${ }^{\mathrm{S} 16}$ (approx. 3.5 mL , approx. 2.2 g , approx. 39 mmol). The resulting bright green solution was warmed to -15°, and epoxy alkene $31(580 \mathrm{mg}, 1.29 \mathrm{mmol}$, in $4: 1 \mathrm{dr}$) was added as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$. The reaction turned brown and then black over the course of a few minutes. After stirring for 4 h ., the reaction was quenched at -15° with ethyl vinyl ether ($8 \mathrm{~mL}, 6 \mathrm{~g}, 84 \mathrm{mmol}$), stirred 15 min. , and then allowed to warm gradually to room temperature. After concentration in vacuo to yield a heavy black tar, the crude product was purified via filtration through a short pad of SiO_{2} ($10 \% \mathrm{EtOAc}$ in hexanes) to afford the crude disubstituted alkene product, a mixture of E and Z alkene isomers in $\sim 4.1: 1 E: Z$ stereoisomeric ratio, as a pale gray oil ($600 \mathrm{mg}, 99 \%$): $\mathrm{R}_{\mathrm{f}}=0.39(10 \% \mathrm{EtOAc}$ in hexanes). This crude mixture was carried forward without further purification.
To this crude mixture in $2: 1 \mathrm{v} / \mathrm{v}$ DMM: $\mathrm{MeCN}(48 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (24 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}$ ($221 \mathrm{mg}, 0.65 \mathrm{mmol}$), and chiral ketone 20 ($503 \mathrm{mg}, 1.95 \mathrm{mmol}$). This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 45 min . via syringe pump, a solution of

Oxone ($4.8 \mathrm{~g}, 7.8 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA $(16.1 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($16.1 \mathrm{~mL}, 14.3 \mathrm{mmol}$). After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 30 min ., at which point it was diluted with EtOAc (50 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 75 \mathrm{~mL}$), and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and chromatographed ($15 \% \mathrm{EtOAc}$ in hexanes) to achieve some separation of diepoxide diastereomers. Diepoxide 32, a colorless oil, was obtained as a mixture of diastereomers (560 mg of a $2.7: 1$ overall diastereomeric mixture, 1.17 mmol combined, $90 \%\left(66 \%\right.$ of desired diastereomer)): $\mathrm{R}_{\mathrm{f}}=0.36$ (20% EtOAc in hexanes). The diastereomeric enrichment of this mixture was determined by achiral analytical HPLC analysis (Supelco SUPELCOSIL LC-SI, $5 \mu \mathrm{~m}$ particle size, 25 cm length; $0.5 \% i \operatorname{PrOH}$ in hexanes, $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{R}($ major $)=12.14 \mathrm{~min} ., \mathrm{t}_{R}($ minor $)=10.64 \mathrm{~min} ., 13.13 \mathrm{~min} ., 14.20$ min .). Diepoxide 32 was further purified via preparative HPLC (Supelco SUPELCOSIL LC-SI, 20 mm diameter achiral SiO_{2} column, $5 \mu \mathrm{~m}$ particle size, 25 cm length; 0.5% $i \mathrm{PrOH}$ in hexanes, $20 \mathrm{~mL} / \mathrm{min}$.; t_{R} of desired diastereomer $=10.6 \mathrm{~min}$.) to afford $\mathbf{3 2} \mathrm{in}$ 20:1 overall dr: $[\alpha]^{22}{ }_{\mathrm{D}}=-1.4\left(c=6.6, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) $3071,2932,2858,1473,1428,1381,1102 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H})$, $3.35-3.24(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{dd}, J=14.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75$ (ddd, $J=14.5,7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 4 \mathrm{H})$, $1.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1$, $136.1,134.6,133.7,130.0,129.8,127.9,127.6,79.8,72.2,67.5,59.6,58.9,57.3,54.7$, 40.3, 33.5, 32.0, 27.2, 25.6, 19.5, 18.0, 17.8.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 503.2588$, found 503.2580.

7
Diepoxy alcohol 7: To a solution of silyl ether $32(130 \mathrm{mg}, 0.27 \mathrm{mmol}$, in $20: 1$ overall dr) in THF (2 mL) was added a 1 M solution of TBAF in THF ($540 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$). The reaction was warmed to 40° for 3 h ., cooled, and filtered through a pad of SiO_{2} (gradient 20% to 50% to 100% EtOAc in hexanes) to yield free diepoxy alcohol 7 as a colorless oil $(64 \mathrm{mg}, 0.26 \mathrm{mmol}, 98 \%): \mathrm{R}_{\mathrm{f}}=0.49(100 \% \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}^{22}=+29.0\left(c=1.55, \mathrm{CDCl}_{3}\right)$. This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. Diepoxy alcohol 7 cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or EtOAc/hexanes) and somewhat faster on standing at -4° as a neat oil.

For extended periods, 7 is best stored frozen in benzene at -4°.
IR (thin film, NaCl) 3429, 2924, 2852, 1443, 1382, $1094 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H})$, 3.14 (ddd, $J=9.6,7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.81$ (m, 2H), 2.48 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.16(\mathrm{dd}, J=15.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.64$ $(\mathrm{m}, 5 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.3,69.9,68.0$, $60.0,60.0,57.1,54.8,40.6,32.7,31.8,25.9,17.9,17.7$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1406 .

Cascade of diepoxy alcohol 7 to tris-THP 8:
Reaction in water: Diepoxy alcohol $7(15.0 \mathrm{mg}, 0.062 \mathrm{mmol}$, in $20: 1 \mathrm{dr})$ was dissolved in deionized water (3.1 mL) in a 20 mL vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was heated to 60° under air for 3 d . The solution was then cooled to rt and concentrated in vacuo (10 torr , 40°). The crude product mixture was chromatographed (30% EtOAc in hexanes) to separate the desired tris-THP $8(4.7 \mathrm{mg}, 0.0194 \mathrm{mmol}, 31 \%(33 \%$ adjusted for $20: 1 \mathrm{dr})$, a white solid) from 6,5 -fused side product $34(4.4 \mathrm{mg}, 0.0182 \mathrm{mmol}, 29 \%)$.

8
bis-THP 8: The connectivity and relative stereochemistry of $\mathbf{8}$ were confirmed via gCOSY and NOESY of its acetate derivative 35 (see pp. S59-61). $\mathrm{R}_{\mathrm{f}}=0.51$ (100% EtOAC $) ;[\alpha]^{22}{ }_{\mathrm{D}}=-34.0\left(c=0.44, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3434, 2944, 2871, 1463, 1378, 1337, 1284, 1110, 1077, 1053, 1040, $1008 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dq}, J=9.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-$
$3.31(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{ddd}, J=11.6,4.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 80.3,79.3,77.6,73.2,72.8,70.3,68.4,43.8$, 34.0, 29.7, 25.9, 18.7, 16.2.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1416 .

34
6,5-fused 34: $\mathrm{R}_{\mathrm{f}}=0.48(100 \% \mathrm{EtOAC}) ;[\alpha]^{22}{ }_{\mathrm{D}}=-8.9\left(c=0.065, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) $3417,2956,2921,2863,1465,1373,1119,1104,1063,858 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.47$ (app td, $J=$ $11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (ddd, $J=11.0,9.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (ddd, $J=11.0,9.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{ddd}, J=6.4,4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{qd}, J=5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.24-2.18 (m, 1H), 2.10 (app t, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (dd, $J=11.1,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 83.7,80.9,79.8,74.9,69.0,57.9,55.1,36.4,33.8,30.3,25.1,24.8,17.8$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1415.

35
Acetate 35: To a solution of alcohol $8(10.3 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added $\mathrm{Et}_{3} \mathrm{~N}(59 \mu \mathrm{~L}, 43 \mathrm{mg}, 0.43 \mathrm{mmol})$, DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}$), and $\mathrm{Ac}_{2} \mathrm{O}(12 \mu \mathrm{~L}$, $13 \mathrm{mg}, 0.13 \mathrm{mmol}$). The resulting solution was stirred at rt for 2 h . and quenched with sat. NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were concentrated in vacuo. This wet, crude acetate 35 was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford clean acetate 35, a white solid (10.1 $\mathrm{mg}, 0.036 \mathrm{mmol}, 87 \%): \mathrm{R}_{\mathrm{f}}=0.62(50 \%$ EtOAc in hexanes $) ;[\alpha]_{\mathrm{D}}^{22}=-66.2(c=0.55$, CDCl_{3}). The connectivity and relative stereochemistry of $\mathbf{3 5}$ were confirmed by gCOSY and NOESY (see pp. S59-61).

IR (thin film, NaCl) 2962, 2946, 2919, 2849, 1742, 1471, 1376, 1247, 1107, 1090, 1076, 1042, $1027 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.51(\mathrm{ddd}, J=11.1,9.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H})$, 3.73 (dq, $J=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\operatorname{app} \mathrm{td}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=12.6,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.23$ (ddd, $J=11.4,4.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 5 \mathrm{H})$, $1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61(\operatorname{app} \mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.14$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,80.4,78.8,77.6,73.5,73.3$, 68.4, 67.4, 43.7, 30.5, 29.6, 25.9, 21.3, 18.6, 16.1

HR-MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 307.1516$, found 307.1516.

36
Internal alkyne 36: To a cooled flame-dried 50 mL round-bottomed flask was added terminal alkyne 29 ($600 \mathrm{mg}, 1.58 \mathrm{mmol}$). The flask was pumped down under high vacuum and backfilled with argon, and this procedure was repeated once. Dry THF (16 mL) was then added, and the solution was cooled to -78°. A 2.5 M solution of nBuLi in hexanes ($710 \mu \mathrm{~L}, 1.77 \mathrm{mmol}$) was added slowly, dropwise. As equivalence was approached, the solution turned from a very pale yellow to a slightly deeper yellow. Within one minute after the addition of the last drop of $n \mathrm{BuLi}$, the solution changed color more dramatically to a deeper orange. The authors advise that $n B u L i ~ a d d i t i o n ~ p r o c e e d ~$ very gradually towards the end, as any excess equivalents of nBuLi result in a proportionate amount of decomposition. nBuLi addition should end immediately upon evolution of an orange color. After nBuLi addition, the solution was warmed for 5 min . by removing it from the -78° bath, during which time it developed an orange-brown color. After recooling to -78°, $\mathrm{MeI}(490 \mu \mathrm{~L}, 7.9 \mathrm{mmol})$ was added dropwise, over 2 min . The reaction was allowed to warm gradually to room temperature over 14 h. , at which point it was quenched with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo. The nearly pure crude oil was pulled through a short pad of $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc}$ in hexanes) to yield internal alkyne 36 as a colorless oil ($615 \mathrm{mg}, 1.56 \mathrm{mmol}, 99 \%$): $\mathrm{R}_{\mathrm{f}}=0.45(10 \% \mathrm{EtOAc}$ in hexanes); $[\alpha]^{22}{ }_{\mathrm{D}}=-17.0\left(c=2.6, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) $3072,2932,2857,1590,1472,1428,1362,1099,1047 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{app} \mathrm{t}, J=7.4$
$\mathrm{Hz}, 4 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{ddd}, J=9.3$, $6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\operatorname{app} \mathrm{dp}, J=16.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddq}, J=16.8,6.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{app} \mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,136.1,134.9,133.5,129.9,129.7,127.8,127.6,81.2$, 77.1, 76.0, 71.3, 68.2, 33.3, 27.1, 25.5, 22.8, 19.5, 4.1.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$: 415.2064, found 415.2065.

37
Alkenyl boronate ester 37: Internal alkyne 36 ($616 \mathrm{mg}, 1.56 \mathrm{mmol}$) was added to a dry, cooled sealed tube. The tube was pumped under high vacuum and then backfilled with argon, and this cycle repeated two times more. Pinacolborane ($287 \mu \mathrm{~L}, 253 \mathrm{mg}, 1.98$ $\mathrm{mmol})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(22 \mu \mathrm{~L}, 16 \mathrm{mg}, 0.16 \mathrm{mmol})$ and Schwartz's reagent $(41 \mathrm{mg}, 0.16 \mathrm{mmol}))^{\mathrm{S} 17}$ The resulting beige slurry was heated to 60° and stirred vigorously for 28 h . while protected from light. On heating, the solid dissolves to afford a clear orange solution. After cooling, the crude reaction mixture was filtered through a short pad of $\mathrm{SiO}_{2}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$ and concentrated in vacuo to a very pale yellow heavy oil containing a $2: 1$ mixture of pinacolate $37\left(\mathrm{R}_{\mathrm{f}}=0.36,10 \%\right.$ EtOAc in hexanes) and its regioisomer ($\mathrm{R}_{\mathrm{f}}=0.38,10 \%$ EtOAc in hexanes), along with unreacted 36, traces of a proton quench product, and borate and other impurities. These were separated via careful column chromatography (gradient 3% to 5% EtOAc in hexanes) to afford $37(235 \mathrm{mg}$, $0.45 \mathrm{mmol}, 29 \%$ (39% based on recovered $\mathbf{3 6}$) in $>20: 1$ regioisomeric purity along with unreacted $36(163 \mathrm{mg}, 26 \%):[\alpha]^{22}{ }_{\mathrm{D}}=-2.1\left(c=1.9, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3072, 2932, 2246, 1632, 1472, 1428, 1371, 1301, $1103 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71-7.67 (m, 4H), 7.45-7.36 (m, 6H), $6.43(\mathrm{apptq}, J=$ $6.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.75(\mathrm{~m}$, $1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 3 \mathrm{H})$, $1.27(\operatorname{app~s}, 12 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.43,136.1,136.1$, $134.9,133.9,129.9,129.7,127.9,127.6,83.3,82.4,72.6,67.9,33.6,32.1,27.2,25.8$, $25.1,25.0,19.5,14.5$ (no signal was observed for the boron-bound carbon).

HR-MS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{BO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 543.3089$, found 543.3089.

38
Epoxy alkene 38: [1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II) $\left(\mathrm{PdCl}_{2}(\mathrm{dppf})\right)(35 \mathrm{mg}, 0.048 \mathrm{mmol})$ was added to a flame-dried, cooled sealed tube. Oven-dried potassium phosphate $(1.53 \mathrm{~g}, 7.2 \mathrm{mmol})$ was added, and the tube was pumped on vacuum and backfilled with argon. This cycle was repeated two further times, and then alkenyl boronate ester $37(500 \mathrm{mg}, 0.96 \mathrm{mmol})$ was added as a solution in dry THF (1.5 mL). The mixture was allowed to stir under Ar for 5 min . to afford a heterogeneous orange solution. Degassed water ($35 \mathrm{mg}, 35 \mu \mathrm{~L}, 1.9 \mathrm{mmol}$, degassed via sparging) was then added, followed immediately by allyl bromide ($581 \mathrm{mg}, 415 \mu \mathrm{~L}, 4.8$ mmol). The sealed tub was capped, and the mixture was heated to 80° and stirred vigorously for 44 h ., at which point it had become a chunky, pale yellow slurry. After cooling and dilution with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, the crude product was filtered through SiO_{2} (washed with $\mathrm{Et}_{2} \mathrm{O}$) and concentrated in vacuo to yield the crude 1,4-diene as a yellow oil $\left(\mathrm{R}_{\mathrm{f}}=0.60,10 \%\right.$ EtOAc in hexanes). This material was carried forward into Shi epoxidation without further purification.
To this crude diene in $2: 1 \mathrm{v} / \mathrm{v}$ DMM: $\mathrm{MeCN}(14.2 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (9.5 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}$ ($64 \mathrm{mg}, 0.19 \mathrm{mmol}$), and chiral ketone 20 ($248 \mathrm{mg}, 0.96 \mathrm{mmol}$). This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 25 min . via syringe pump, a solution of Oxone ($652 \mathrm{mg}, 1.06 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA $(4.75 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(4.75 \mathrm{~mL}, 4.22 \mathrm{mmol})$. After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 30 min ., at which point it was diluted with EtOAc (20 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the combined organics were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. NMR and TLC evidence indicated $\sim 90 \%$ conversion of the starting material. The desired trisubstituted epoxide $38\left(\mathrm{R}_{\mathrm{f}}=0.31(10 \% \mathrm{EtOAc}\right.$ in hexanes $)$) was separated from unreacted diene via column chromatography (gradient 5\% to 10\% EtOAc in hexanes) to afford recovered diene ($35 \mathrm{mg}, 0.08 \mathrm{mmol}, 8 \%$) and epoxy alkene 38 (230 mg of an inseparable $3: 1$ diastereomeric mixture, $0.51 \mathrm{mmol}, 53 \%$ over 2 steps (58% based on recovered starting material)). A small portion of this sample of $\mathbf{3 7}$ was purified further via preparative HPLC (Supelco SUPELCOSIL LC-SI, 20 mm diameter achiral SiO_{2} column, $5 \mu \mathrm{~m}$ particle size, 25 cm length; $0.5 \% i \mathrm{PrOH}$ in hexanes, $20 \mathrm{~mL} / \mathrm{min}$.; t_{R} of desired diastereomer $=5.8 \mathrm{~min}$.): $\mathrm{R}_{\mathrm{f}}=0.31(10 \%$ EtOAc in hexanes $),[\alpha]^{22}{ }_{\mathrm{D}}$ of desired diastereomer in $>20: 1 \mathrm{dr}=-25.6\left(c=0.60, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) $3072,2931,2857,1473,1428,1382,1100 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H})$, 5.80 (dddd, $J=17.2,10.3,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.46-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.93(\operatorname{app} \mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (app dd, $J=14.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\operatorname{app} \mathrm{dd}, J=14.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=14.4,6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-$
$1.76(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ 136.1, 136.1, 134.7, 134.0, 133.6, 130.0, 129.8, 127.9, 127.6, 117.8, 81.6, 72.5, 67.9, $60.9,59.5,43.4,33.5,32.0,27.2,25.6,19.5,16.9$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 473.2482$, found 473.2485 .

39
Diepoxide 39: To a solution of Grubbs-Hoveyda $2^{\text {nd }}$ generation catalyst 3^{515} (23 mg , 0.037 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at -78° was added condensed cis-2-butene ${ }^{\text {S16 }}$ (approx. 3 mL , approx. 1.9 g , approx. 33 mmol). The resulting bright green solution was warmed to -15°, and epoxy alkene $38(335 \mathrm{mg}, 0.74 \mathrm{mmol}$, in $3: 1 \mathrm{dr})$ was added dropwise as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ over 5 minutes. The reaction turned brown and then black over the course of the addition. After stirring for 5 additional min., a further portion of cis-2butene was added (approx. 2 mL , approx. 1.2 g , approx. 22 mmol) and the reaction was stirred for 1.5 h . at -10° to -5°. The reaction was quenched at -15° with ethyl vinyl ether ($10 \mathrm{~mL}, 7.5 \mathrm{~g}, 100 \mathrm{mmol}$), stirred 15 min. , and then allowed to warm gradually to room temperature. After concentration in vacuo to yield a heavy black tar, the crude disubstituted alkene product was purified via filtration through a short pad of $\mathrm{SiO}_{2}(10 \%$ EtOAc in hexanes) to afford an inseparable mixture of E and Z alkene isomers in $\sim 4.2: 1$ $E: Z$ stereoisomeric ratio, as a colorless oil ($245 \mathrm{mg}, 71 \%$): $\mathrm{R}_{\mathrm{f}}=0.34(10 \% \mathrm{EtOAc}$ in hexanes). This mixture was carried forward without further purification.
To this crude mixture in $2: 1 \mathrm{v} / \mathrm{v}$ DMM: $\mathrm{MeCN}(19.7 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (9.8 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}(44 \mathrm{mg}, 0.13 \mathrm{mmol}$), and chiral ketone $20(207 \mathrm{mg}, 0.80 \mathrm{mmol})$. This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 45 min . via syringe pump, a solution of Oxone ($1.97 \mathrm{~g}, 3.2 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA $(6.55 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(6.55 \mathrm{~mL}, 5.83 \mathrm{mmol})$. After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 30 min ., at which point it was diluted with EtOAc (30 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and chromatographed (15% EtOAc in hexanes) to provide diepoxide 39, a colorless oil, as an inseparable mixture of diastereomers (220 mg of a $1.5: 1$ overall diastereomeric mixture, 0.46 mmol combined, $86 \%)$: $\mathrm{R}_{\mathrm{f}}=0.37$ ($20 \% \mathrm{EtOAc}$ in hexanes). Diepoxide 39 was further purified via preparative HPLC (Supelco SUPELCOSIL LC-SI, 20 mm diameter achiral SiO_{2} column, $5 \mu \mathrm{~m}$ particle size, 25 cm length; $0.4 \% \mathrm{iPrOH}$ in hexanes, $30 \mathrm{~mL} / \mathrm{min}$.; t_{R} of desired diastereomer $=13.5 \mathrm{~min}$.) to afford 39 in 7.5:1 to 10:1 overall dr (depending on the batch): $[\alpha]^{22}{ }_{D}$ of a 9:1 mixture $=-2.5\left(c=4.6, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 2932, 2857, 1589, 1473, 1428, 1382, 1362, $1101 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.43 (app td, $J=8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.91(\operatorname{app} \mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-$ $2.75(\mathrm{~m}, 2 \mathrm{H}), 2.12$ (ddd, $J=14.4,6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.58(\mathrm{ddd}, J=14.6,9.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,136.1,134.6,133.5,130.0,129.8,127.9$, 127.6, $81.4,72.5,67.9,61.3,58.4,56.7,54.3,41.6,33.4,31.8,27.2,25.6,19.5,17.7,17.3$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 503.2588$, found 503.2600.

9
Diepoxy alcohol 9: To a solution of silyl ether $39(113 \mathrm{mg}, 0.24 \mathrm{mmol}$, in $7.5: 1$ overall $\mathrm{dr})$ in THF (1 mL) was added a 1 M solution of TBAF in THF ($470 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$. The reaction was warmed to 30° for 2 h ., cooled, and filtered through a pad of SiO_{2} (gradient 20% to 50% to 100% EtOAc in hexanes) to yield free diepoxy alcohol 9 as a colorless oil $(54 \mathrm{mg}, 0.22 \mathrm{mmol}, 95 \%): \mathrm{R}_{\mathrm{f}}=0.55(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}$ of a $9: 1$ mixture of diastereomers $=+25.0\left(c=2.0, \mathrm{CDCl}_{3}\right)$. This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. 9 cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or EtOAc/hexanes) and somewhat faster on standing at -4° as a neat oil. For extended periods, 9 is best stored frozen in benzene at -4°.

IR (thin film, NaCl) $3431,2932,2855,1441,1384,1272,1096 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.35(\operatorname{app} \mathrm{td}, J=$ $11.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (ddd, $J=9.3,6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{dd}, J=8.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.73 (m, 2H), $2.37(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.74-$ $1.61(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 81.0,69.8,68.1,60.6,59.1,56.5,54.4,41.6,32.6,31.5,25.9,17.6,17.2$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1413 .

Cascades of diepoxy alcohol 9 to tris-THP 10:

Reaction in water: Diepoxy alcohol $9(14.5 \mathrm{mg}, 0.060 \mathrm{mmol}$, in $9: 1 \mathrm{dr})$ was dissolved in deionized water (3.0 mL) in a 20 mL vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was heated to 60° under air for 3 d . The solution was then cooled to rt and concentrated in vacuo (10 torr, 40°). The crude product mixture was chromatographed (30% EtOAc in hexanes) to separate the desired tris-THP $10(8.0 \mathrm{mg}, 0.033 \mathrm{mmol}, 55 \%(61 \%$ adjusted for $9: 1 \mathrm{dr})$, a white solid) from 6,5 -fused side product $40(4.1 \mathrm{mg}, 0.017 \mathrm{mmol}, 28 \%)$.

Reaction promoted by CSA: To a solution of diepoxy alcohol $9(9.8 \mathrm{mg}, 0.040 \mathrm{mmol}$, in $7.5: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added ($+/-$)-CSA $(9.4 \mathrm{mg}, 0.040 \mathrm{mmol})$ and stirred at rt under argon for 4 h . At this point the crude product mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and transferred to a separatory funnel. The reaction flask was washed out with EtOAc ($3 \times 6 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, and these combined washes were added to the separatory funnel. The organic layer was washed with sat. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the combined aqueous layers were extracted with EtOAc ($3 x 40 \mathrm{~mL}$). The combined organics were concentrated in vacuo without drying, and the crude product mixture was chromatographed (30% EtOAc in hexanes) to afford the desired tris-THP $10(4.3 \mathrm{mg}$, $0.018 \mathrm{mmol}, 44 \%$ (50% adjusted for 7.5:1 dr), a white solid).

Reaction promoted by $\underline{\mathbf{B F}}_{\mathbf{3}}$: To a solution of diepoxy alcohol $\mathbf{1 0}(10.8 \mathrm{mg}, 0.045 \mathrm{mmol}$, in 7.5:1 dr) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.24 \mathrm{~mL})$ cooled to -78° was added, dropwise, a stock solution of $0.1 \mathrm{M} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(111 \mu \mathrm{~L}, 0.0011 \mathrm{mmol})$ and stirred at -78° under argon for 30 min . At this point the reaction was allowed to warm gradually to rt over 5 min ., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and quenched with sat. $\mathrm{NaHCO}_{3}(800 \mu \mathrm{~L})$. The resulting biphasic mixture was transferred to a separatory funnel. The reaction flask was washed out with EtOAc ($3 \times 6 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, and these combined washes were added to the separatory funnel. The aqueous layer was separated and extracted with EtOAc ($3 x 40$ mL), and the combined organics were concentrated in vacuo without drying. The crude product mixture was chromatographed (30% EtOAc in hexanes) to afford the desired trisTHP 10 ($6.3 \mathrm{mg}, 0.026 \mathrm{mmol}, 58 \%$ (66% adjusted for $7.5: 1 \mathrm{dr}$), a white solid).

tris-THP 10: The connectivity of $\mathbf{1 0}$ was confirmed via gCOSY of its acetate derivative 41 (see pp. S62-63). $\mathrm{R}_{\mathrm{f}}=0.51(100 \% \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}^{22}=+16.1\left(c=0.38, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3466, 2971, 2947, 2862, 1371, 1266, 1131, 1096, 1070, 1050, 1032, $947 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.96-3.90 $(\mathrm{m}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H})$, 3.27 (dq, $J=9.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (ddd, $J=11.4,9.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{app} \mathrm{td}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{app} \mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.33$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.1,79.3,78.9,73.7$, 71.6, 70.5, 68.4, 47.0, 31.3, 30.0, 26.0, 18.4, 16.2.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1421 .

40
6,5-fused 40: $\mathrm{R}_{\mathrm{f}}=0.45(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=+19.1\left(c=0.14, \mathrm{CDCl}_{3}\right)$.
IR (thin film, NaCl) $3451,2925,2853,1738,1452,1381,1250,1126,1081,966 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.47$ (app td, $J=11.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30-3.22 (m, 2H), 2.90 (ddd, $J=8.0,3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (qd, $J=5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25-2.09 (m, 3H), 1.97-1.87 (m, 2H), 1.76-1.46 (m, 4H), $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 82.9,81.4,79.1,74.3,68.9,56.2,54.3,39.6$, 30.8, 30.0, 24.7, 24.0, 17.7.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 265.1410$, found 265.1438 .

41

Acetate 41: To a solution of alcohol $10(8.7 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added $\mathrm{Et}_{3} \mathrm{~N}(74 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.53 \mathrm{mmol})$, DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}$), and $\mathrm{Ac}_{2} \mathrm{O}(25 \mu \mathrm{~L}$, $27 \mathrm{mg}, 0.26 \mathrm{mmol})$. The resulting solution was stirred at rt for 2 h . and quenched with sat. NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were concentrated in vacuo. This wet, crude acetate 41 was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford clean acetate 41, a white solid (9.5 $\mathrm{mg}, 0.033 \mathrm{mmol}, 92 \%): \mathrm{R}_{\mathrm{f}}=0.52(30 \%$ EtOAc in hexanes $) ;[\alpha]_{\mathrm{D}}^{22}=-18.4(c=0.45$, CDCl_{3}). The connectivity of 41 was confirmed by gCOSY (see pp. S62-63).

IR (thin film, NaCl) 2939, 2851, 1743, 1463, 1377, 1238, 1100, 1077, 1045, 1032, 947 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.70(\mathrm{ddd}, J=11.3,9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.46(\mathrm{dq}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (ddd, $J=11.4,9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{app} \mathrm{dt}, J=11.4$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65(\operatorname{app~q}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.49(\operatorname{app} \mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\operatorname{app~qd}, J=12.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.21$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,79.5,78.9,77.2,73.4,72.5$, 70.5, 68.5, 43.2, 31.3, 29.9, 26.0, 21.3, 18.4, 16.0.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 307.1516$, found 307.1519.

42
Diepoxide 42: [1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II) $\left(\mathrm{PdCl}_{2}(\mathrm{dppf})\right)(73 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added to a flame-dried, cooled sealed tube. Ovendried potassium phosphate $(1.83 \mathrm{~g}, 8.63 \mathrm{mmol})$ was added, and the tube was pumped on vacuum and backfilled with argon. This cycle was repeated two further times, and then alkenyl boronate $37(600 \mathrm{mg}, 1.15 \mathrm{mmol})$ was added as a solution in dry THF (2 mL). The mixture was allowed to stir under Ar for 5 min . to afford a heterogeneous orange solution. Degassed water ($42 \mathrm{mg}, 42 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$, degassed via sparging) was then added, followed immediately by prenyl bromide ($859 \mathrm{mg}, 666 \mu \mathrm{~L}, 5.76 \mathrm{mmol}$). The sealed tub was capped, and the mixture was heated to 80° and stirred vigorously for 42 h ., at which point it had become a chunky, pale yellow slurry. After cooling and dilution with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, the crude product was filtered through SiO_{2} (washed with $\mathrm{Et}_{2} \mathrm{O}$) and concentrated in vacuo to yield a mixture of the desired $\mathrm{S}_{\mathrm{N}} 2$ product as well as an undesired $\mathrm{S}_{\mathrm{N}} 2$ ' product, as a yellow oil. These inseparable skipped diene isomers were purified away from phosphine and other impurities via column chromatography (gradient
2% to 3% EtOAc in hexanes) to give a $2.5: 1\left(\mathrm{~S}_{\mathrm{N}} 2: \mathrm{S}_{\mathrm{N}} 2\right.$) mixture of diene isomers (400 $\mathrm{mg}, 0.86 \mathrm{mmol}, 75 \%$ combined yield, $\mathrm{R}_{\mathrm{f}}=0.63,10 \%$ EtOAc in hexanes). This mixture was carried forward into Shi epoxidation without further purification.
To a solution of these dienes ($400 \mathrm{mg}, 0.86 \mathrm{mmol}$) in 2:1 v/v DMM:MeCN (23.2 mL) was added a 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA (15.5 mL), $n \mathrm{Bu}_{4} \mathrm{HSO}_{4}$ ($75 \mathrm{mg}, 0.22 \mathrm{mmol}$), and chiral ketone $20(222 \mathrm{mg}, 0.86 \mathrm{mmol})$. This biphasic mixture was stirred vigorously at 0°. To this mixture was added, simultaneously over 30 min . via syringe pump, a solution of Oxone ($1.06 \mathrm{~g}, 1.73 \mathrm{mmol}$) in $4 \times 10^{-4} \mathrm{Na}_{2}$ EDTA $(7.75 \mathrm{~mL})$ and a 0.89 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(7.75 \mathrm{~mL}, 6.9 \mathrm{mmol})$. After the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and Oxone solutions had been added, the resulting mixture was stirred an additional 20 min ., at which point it was diluted with EtOAc $(25 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), and the combined organics were washed with sat. NaCl , dried over MgSO_{4}, and concentrated in vacuo to provide desired diepoxide $\mathbf{4 2}$ and diastereomers. The undesired $\mathrm{S}_{\mathrm{N}} 2$ ' cross-coupling product formed in the previous step, which contains a monosubstituted alkene, is only partially oxidized under these conditions, to a monoepoxide ($\mathrm{R}_{\mathrm{f}}=0.77,20 \%$ EtOAc in hexanes) that is readily separable from the desired diepoxide 42. Column chromatography (15% EtOAc in hexanes) afforded diepoxide 42 in $3.5: 1$ overall dr as a colorless oil ($276 \mathrm{mg}, 0.56 \mathrm{mmol}, 65 \%$ (49% yield over 2 steps), $\mathrm{R}_{\mathrm{f}}=0.54$ (20% EtOAc in hexanes)) contaminated with a small quantity of ketone 20. Diepoxide 42 was further purified via preparative HPLC (Supelco SUPELCOSIL LC-SI 20 mm achiral SiO_{2} column, $5 \mu \mathrm{~m}$ particle size; 99.5:0.5 hexanes: $\mathrm{iPrOH}, 20 \mathrm{~mL} / \mathrm{min} . ; \mathrm{t}_{\mathrm{R}}$ of desired diastereomer $=11.9 \mathrm{~min}$.) to afford 42 free of 20 and in 15:1 to 20:1 overall dr (depending on batch): $[\alpha]^{22}$ D for a sample in 20:1 dr = $7.5\left(c=3.3, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) $3072,2958,2930,2857,1590,1472,1462,1428,1379,1102 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.71-7.66 (m, 4H), 7.46-7.41 (m, 2H), 7.40-7.36 (m, 4H), $3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (ddd, $J=9.3,4.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{app} \mathrm{td}, J=9.3,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\operatorname{app} \mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\operatorname{app} \mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=14.4,6.4$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.9,9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.51-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{app} \mathrm{s}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 136.1,136.1,134.7,133.6,130.0,129.8,127.9,127.7,81.4,72.5,67.9,61.3$, $61.2,58.8,58.0,38.2,33.5,31.8,27.2,25.6,24.9,19.5,19.0,17.3$.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 517.2745$, found 517.2751.

11

Diepoxy alcohol 11: To a solution of silyl ether $42(64 \mathrm{mg}, 0.13 \mathrm{mmol}$, in $20: 1$ overall dr) in dry THF (2 mL) was added a 1 M THF solution of TBAF ($520 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$). The reaction was warmed to 40° and stirred for 2 h . After cooling, the crude product was pulled directly through a SiO_{2} plug (gradient 20% to 50% EtOAc in hexanes) and concentrated in vacuo to afford diepoxy alcohol 11 as a pale yellow oil ($31 \mathrm{mg}, 0.12$ $\mathrm{mmol}, 92 \%): \mathrm{R}_{\mathrm{f}}=0.58(100 \%$ EtOAc $) ;[\alpha]^{22}{ }_{\mathrm{D}}=+17.8\left(c=2.0, \mathrm{CDCl}_{3}\right)$. This material is highly sensitive to acid. Exposure to even traces of acid will induce cyclization. We found it essential to neutralize CDCl_{3} with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before collecting NMR data. 11 cyclizes very slowly on standing at -4° in aprotic organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or $\mathrm{EtOAc} /$ hexanes) and somewhat faster on standing at -4° as a neat oil. For extended periods, $\mathbf{1 1}$ is best stored frozen in benzene at -4°.

IR (thin film, NaCl) $3439,2928,2854,1459,1379,1251,1096,1043 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, J=10.9,9.2,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.22$ (ddd, $J=9.3,6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (broad s, 1H), 2.14-2.05 (m, 2H), 1.84-1.77 (m, 2H), 1.74-1.65 (m, 3H), 1.47-1.38 (m, 1H), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 81.0,69.9,68.1,61.1,60.7,59.4,58.1,38.3,32.6,31.5,25.9,24.9$, 19.0, 17.2.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 279.1567$, found 279.1566.

Cascades of diepoxy alcohol 11 to tris-THP 12:

Reaction in water: Diepoxy alcohol $11(13.7 \mathrm{mg}, 0.053 \mathrm{mmol}$, in $15: 1 \mathrm{dr})$ was dissolved in deionized water $(2.7 \mathrm{~mL})$ in a 20 mL vial. The threads of the vial were lined with Teflon tape, the cap was sealed and covered with parafilm, and the solution was heated to 60° under air for 3 d . The solution was then cooled to rt and concentrated in vacuo (10 torr, 40°). The crude product mixture was chromatographed ($50 \% \mathrm{EtOAc}$ in hexanes) to separate the desired tris-THP $12(6.9 \mathrm{mg}, 0.027 \mathrm{mmol}, 50 \%$ (54% adjusted for $15: 1 \mathrm{dr}$), a white solid) from 6,5 -fused side product 43 ($5.4 \mathrm{mg}, 0.021 \mathrm{mmol}, 39 \%$).

Reaction promoted by CSA: To a solution of diepoxy alcohol $11(13.1 \mathrm{mg}, 0.051 \mathrm{mmol}$, in $20: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added ($+/-$-CSA $(11.8 \mathrm{mg}, 0.051 \mathrm{mmol})$ and stirred at rt under argon for 4 h . At this point the crude product mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and transferred to a separatory funnel. The reaction flask was washed out with

EtOAc ($3 \times 6 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, and these combined washes were added to the separatory funnel. The organic layer was washed with sat. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the combined aqueous layers were extracted with EtOAc ($3 x 40 \mathrm{~mL}$). The combined organics were concentrated in vacuo without drying, and the crude product mixture was chromatographed (50% EtOAc in hexanes) to afford the desired tris-THP 12 (3.5 mg , $0.018 \mathrm{mmol}, 27 \%$ (29% adjusted for $20: 1 \mathrm{dr}$), a white solid).

Reaction promoted by $\mathbf{B F}_{3}$: To a solution of diepoxy alcohol $\mathbf{1 1}(15.1 \mathrm{mg}, 0.059 \mathrm{mmol}$, in $15: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ cooled to -78° was added, dropwise, a stock solution of $0.1 \mathrm{M} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(147 \mu \mathrm{~L}, 0.015 \mathrm{mmol})$ and stirred at -78° under argon for 30 min . At this point the reaction was allowed to warm gradually to rt over 5 min ., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and quenched with sat. $\mathrm{NaHCO}_{3}(800 \mu \mathrm{~L})$. The resulting biphasic mixture was transferred to a separatory funnel. The reaction flask was washed out with EtOAc ($3 \times 6 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, and these combined washes were added to the separatory funnel. The aqueous layer was separated and extracted with EtOAc (3x40 mL), and the combined organics were concentrated in vacuo without drying. The crude product mixture was chromatographed (50% EtOAc in hexanes) to afford the desired trisTHP 12 ($8.0 \mathrm{mg}, 0.031 \mathrm{mmol}, 53 \%$ (57% adjusted for $15: 1 \mathrm{dr}$), a white solid) along with 6,5 -fused side product 43 ($3.8 \mathrm{mg}, 0.015 \mathrm{mmol}, 25 \%$).

12
tris-THP 12: The connectivity and relative stereochemistry of $\mathbf{1 2}$ were confirmed via gCOSY and NOESY of its acetate derivative 44 (see pp. S64-66). $\mathrm{R}_{\mathrm{f}}=0.61$ (100% EtOAc $) ;[\alpha]^{22}{ }_{\mathrm{D}}=+54.8\left(c=1.0, \mathrm{CDCl}_{3}\right)$.

IR (thin film, NaCl) 3449, 2968, 2934, 2877, 1419, 1379, 1354, 1268, 1218, 1128, 1097, 1069, 1026, 949, $940 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-$ $3.34(\mathrm{~m}, 3 \mathrm{H}), 3.03(\mathrm{ddd}, J=11.3,9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.42$ (ddd, $J=11.9,11.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.2,76.8,74.3,73.1,71.7,70.5,68.5,43.4$, 31.5, 30.0, 28.4, 26.0, 17.0, 15.6.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 279.1567$, found 279.1574.

43
6,5-fused 43: $\mathrm{R}_{\mathrm{f}}=0.56(100 \% \mathrm{EtOAc}) ;[\alpha]^{22}{ }_{\mathrm{D}}=-41.7\left(c=0.48, \mathrm{CHCl}_{3}\right)$.
IR (thin film, NaCl) 3366, 2964, 2935, 2850, 1453, 1371, 1277, 1141, 1117, 1068, 1059, 1040, 1021, $974 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.01-3.96 (m, 1H), $3.82(\mathrm{dd}, J=11.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{ddd}, J=$ $11.2,9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.52$ (m, 4H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 85.3,85.0,83.2$, 80.3, 79.5, 78.1, 68.9, 40.9, 33.6, 29.7, 27.8, 26.8, 24.6, 23.2.

HR-MS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 279.1567$, found 279.1571.

44
Acetate 44: To a solution of alcohol $12(25.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.80 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L}, 51 \mathrm{mg}, 0.50 \mathrm{mmol})$, DMAP ($1.0 \mathrm{mg}, 0.008 \mathrm{mmol}$), and $\mathrm{Ac}_{2} \mathrm{O}(24 \mu \mathrm{~L}$, $25 \mathrm{mg}, 0.25 \mathrm{mmol}$). The resulting solution was stirred at rt for 8 h . and quenched with sat. NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were concentrated in vacuo. This wet, crude acetate 44 was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford clean acetate 44, a white solid (26.4 $\mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%) \mathrm{R}_{\mathrm{f}}=0.68(50 \%$ EtOAc in hexanes $) ;[\alpha]_{\mathrm{D}}^{22}=+5.5(c=1.3$, CDCl_{3}). The connectivity and relative stereochemistry of $\mathbf{4 4}$ were confirmed by gCOSY and NOESY (see pp. S64-66).

IR (thin film, NaCl) 2974, 2946, 2882, 2859, 1736, 1464, 1384, 1374, 1366, 1283, 1235, 1129, 1099, 1077, $1025 \mathrm{~cm}^{-1}$.

[^0]HR-MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 321.1672$, found 321.1677.

X-Ray Crystallographic Data for tris-THP 6:

All thermal ellipsoid images were generated using Ortep-3 for Windows v. 2.02.

Figure 1. "Overhead" view of 6. Displacement ellipsoids are scaled to 50% probability.

Figure 2. "Side-on" view A of 6. Displacement ellipsoids are scaled to 50\% probability.

Figure 3. "Side-on" view B of 6. Displacement ellipsoids are scaled to 50% probability.

Table 3. Crystal data and structure refinement for d09014.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.66^{\circ}$
d09014
C12 H20 O4
228.28

100(2) K
$1.54178 \AA$
Monoclinic
P2(1)
$\mathrm{a}=10.4928(3) \AA \quad \mathrm{a}=90^{\circ}$.
$b=5.17550(10) \AA \quad b=112.4120(10)^{\circ}$.
$\mathrm{c}=11.2885(3) \AA$
$\mathrm{g}=90^{\circ}$.
$566.72(2) \AA^{3}$
2
$1.338 \mathrm{Mg} / \mathrm{m}^{3}$
$0.814 \mathrm{~mm}^{-1}$
248
$0.48 \times 0.12 \times 0.10 \mathrm{~mm}^{3}$
4.24 to 67.66°.
$-12<=\mathrm{h}<=12,-6<=\mathrm{k}<=6,-13<=1<=13$
10799
$2028[\mathrm{R}(\mathrm{int})=0.0185]$
99.7 \%

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

Semi-empirical from equivalents 0.9230 and 0.6959

Full-matrix least-squares on F^{2}
2028 / 2 / 150
1.102
$\mathrm{R} 1=0.0281, \mathrm{wR} 2=0.0839$
$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0842$
0.07(13)
$0.0103(11)$
0.251 and -0.176 e. \AA^{-3}

Table 4. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for d09014. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$				
$\mathrm{O}(2)$	$3624(1)$	$4664(2)$	$7603(1)$	$17(1)$
$\mathrm{O}(3)$	$3314(1)$	$8093(2)$	$4647(1)$	$15(1)$
$\mathrm{O}(4)$	$-30(1)$	$4731(2)$	$3433(1)$	$14(1)$
$\mathrm{C}(1)$	$-272(1)$	$7648(2)$	$409(1)$	$18(1)$
$\mathrm{C}(2)$	$5069(1)$	$5023(3)$	$8330(1)$	$19(1)$
$\mathrm{C}(3)$	$5558(1)$	$7711(3)$	$8131(1)$	$19(1)$
$\mathrm{C}(4)$	$5197(1)$	$8208(2)$	$6701(1)$	$17(1)$
$\mathrm{C}(5)$	$3664(1)$	$7752(2)$	$5994(1)$	$15(1)$
$\mathrm{C}(6)$	$3284(1)$	$5011(2)$	$6263(1)$	$14(1)$
$\mathrm{C}(7)$	$1745(1)$	$4540(3)$	$5554(1)$	$15(1)$
$\mathrm{C}(8)$	$1420(1)$	$5017(2)$	$4144(1)$	$13(1)$
$\mathrm{C}(9)$	$1870(1)$	$7744(2)$	$3937(1)$	$14(1)$
$\mathrm{C}(10)$	$1561(1)$	$8150(2)$	$2527(1)$	$15(1)$
$\mathrm{C}(11)$	$32(1)$	$7624(2)$	$1757(1)$	$15(1)$
$\mathrm{C}(12)$	$-381(1)$	$4944(2)$	$2078(1)$	$14(1)$
	$-1914(1)$	$4438(3)$	$1412(1)$	$19(1)$

Table 5. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for d09014.

$\mathrm{O}(1)-\mathrm{C}(5)$	$1.4274(12)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.4351(13)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.4295(12)$

$\mathrm{O}(2)-\mathrm{C}(4)$	$1.4325(13)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.4320(12)$
$\mathrm{O}(3)-\mathrm{C}(11)$	$1.4345(12)$
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.4308(13)$
$\mathrm{O}(4)-\mathrm{H}(4)$	$0.814(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5284(17)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5322(16)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5172(14)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5346(16)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	1.0000
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5241(14)$
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.5154(14)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.5342(15)$
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5128(15)$
$\mathrm{C}(8)-\mathrm{H}(8)$	1.0000
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5298(14)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.5367(16)$
$\mathrm{C}(10)-\mathrm{H}(10)$	1.0000
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5159(15)$
$\mathrm{C}(11)-\mathrm{H}(11)$	1.0000
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$111.82(8)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(4)$	$111.57(8)$
$\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(11)$	$112.09(8)$
$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{H}(4)$	$107.9(10)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.01(9)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.2
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	H
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110.20(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.6
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.6
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.6
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$108.36(9)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.0
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.0
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.4
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$109.33(9)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.05(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.05(10)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.1
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$108.80(8)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.31(9)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.31(9)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	109.1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	109.1
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	109.1
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$107.10(9)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.3
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.3
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.5
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$109.74(8)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$109.42(9)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.53(9)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{H}(7)$	109.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	109.0
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	109.0
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$109.18(8)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$110.66(9)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$109.46(9)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8)$	109.2
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	109.2
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	109.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$109.33(9)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.8
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.8
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.8

$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.8
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.3
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.29(9)$
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(11)$	$106.83(9)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$110.82(9)$
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{H}(10)$	109.3
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	109.3
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	109.3
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$107.92(8)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$109.85(9)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$112.35(9)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	108.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	108.9
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	108.9
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 6. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for d09014. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	U^{22}	U33	U23	U13	U12
O(1)	16(1)	20(1)	13(1)	3(1)	3(1)	-1(1)
$\mathrm{O}(2)$	15(1)	18(1)	12(1)	1(1)	5(1)	-2(1)
$\mathrm{O}(3)$	13(1)	18(1)	12(1)	1(1)	4(1)	-1(1)
$\mathrm{O}(4)$	25(1)	16(1)	13(1)	2(1)	7(1)	-2(1)
C(1)	17(1)	19(1)	16(1)	1(1)	2(1)	0 (1)
C(2)	16(1)	20(1)	19(1)	$0(1)$	3(1)	-2(1)
C(3)	16(1)	16(1)	18(1)	0(1)	6(1)	-1(1)
C(4)	16(1)	15(1)	14(1)	1(1)	6(1)	1(1)
C(5)	17(1)	13(1)	13(1)	0(1)	6(1)	1(1)
C(6)	15(1)	15(1)	15(1)	1(1)	6(1)	$0(1)$
C(7)	13(1)	12(1)	15(1)	-1(1)	5(1)	$0(1)$
C(8)	13(1)	14(1)	16(1)	0(1)	6(1)	$0(1)$
C(9)	18(1)	13(1)	16(1)	1(1)	8(1)	-1(1)
C(10)	17(1)	15(1)	13(1)	1(1)	7(1)	2(1)
C(11)	17(1)	14(1)	12(1)	-1(1)	6(1)	1(1)

$\mathrm{C}(12)$	$17(1)$	$22(1)$	$16(1)$	$2(1)$	$6(1)$	$-2(1)$

Table 7. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for d09014.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(4)	-149(15)	9110(30)	209(14)	22
H(1A)	5596	3702	8071	23
H(1B)	5259	4773	9251	23
H(2A)	6568	7844	8600	23
H(2B)	5113	9034	8477	23
H(3A)	5433	10008	6568	21
H(3B)	5729	7026	6373	21
$\mathrm{H}(4 \mathrm{~A})$	3140	9033	6295	18
$\mathrm{H}(5)$	3810	3730	5964	17
H(6A)	1509	2742	5690	18
H(6B)	1207	5731	5871	18
H(7)	1926	3722	3830	16
H(8)	1346	9042	4229	17
H(9A)	2131	6966	2245	18
H(9B)	1788	9947	2380	18
$\mathrm{H}(10)$	-534	8974	1964	18
H(11)	135	3596	1807	17
$\mathrm{H}(12 \mathrm{~A})$	-2138	2764	1689	28
$\mathrm{H}(12 \mathrm{~B})$	-2164	4418	482	28
$\mathrm{H}(12 \mathrm{C})$	-2429	5806	1634	28

\qquad

Table 8. Hydrogen bonds for d09014 [\AA and ${ }^{\circ}$].

$\overline{\mathrm{D}-\mathrm{H} \ldots \mathrm{A}}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\overline{\mathrm{O}(4)-\mathrm{H}(4) \ldots \mathrm{O}(4) \# 1}$	$0.814(13)$	$2.066(13)$	$2.8772(7)$	$174.0(14)$

Symmetry transformations used to generate equivalent atoms:
\#1-x,y+1/2,-z

Assignment of bis-THP Diad 3b by ${ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}$ gCOSY:

chemical shift ($\mathbf{\delta}$)
3.94-3.88 (m, 1H)
3.41-3.34 (m, 2H)
3.07-2.97 (m, 2H)
2.12 (dd, $J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$
2.10-2.04 (m, 1H)
1.75-1.68 (m, 2H)
$1.57(\operatorname{appt}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$
$1.50-1.41(\mathrm{~m}, 2 \mathrm{H})$
$1.23(\mathrm{~s}, 3 \mathrm{H})$
$1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY assignment
1eq
1ax, 8 ax
4ax, 5ax
6 eq
3 eq
2eq, 2 ax
6ax
3ax, OH
10 Me
9 Me
gCOSY of 3b

Assignment of acetylated bis-THP Diad 25 by ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ gCOSY:

chemical shift ($\mathbf{\delta}$)
4.71 (dd, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H})$
3.93-3.88 (m, 1H)
3.42-3.34 (m, 1H)
3.29-3.23 (m, 1H)
3.02 (ddd, $J=11.9,9.3,4.4 \mathrm{~Hz}, 1 \mathrm{H})$
$2.18(\operatorname{app~dt}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$
2.07 ($\mathrm{s}, 3 \mathrm{H}$)
1.99-1.93 (m, 1H)
1.79-1.69 (m, 2H)
$1.60(\operatorname{app} \mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$
$1.40($ app dq, $J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H})$
$1.26(\mathrm{~s}, 3 \mathrm{H}) ; 1.18(\mathrm{~s}, 3 \mathrm{H})$

25
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY assignment
7ax
1eq
1ax
4ax
5ax
6 eq
12 Me
3 eq
2eq, 2ax
6 ax
3ax
9 Me and 10 Me
gCOSY of 25

Assignment of acetylated bis-THP Diad 35 by ${ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}$ gCOSY:

35
chemical shift (δ)
4.51 (ddd, $J=11.1,9.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$
3.95-3.90 (m, 1H)
3.73 (dq, $J=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$
$3.38(\operatorname{app~dt}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$
3.24 (dd, $J=12.6,3.9 \mathrm{~Hz}, 1 \mathrm{H})$
3.18-3.09 (m, 2H)
2.23 (ddd, $J=11.4,4.8,4.3 \mathrm{~Hz}, 1 \mathrm{H})$
2.13-2.04 (m, 5H)
1.81-1.68 (m, 2H)
$1.61(\operatorname{app} \mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$
1.57-1.43 (m, 2H)
$1.30(\mathrm{~s}, 3 \mathrm{H})$
$1.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ gCOSY assignment
10ax
1 eq
11ax
1ax
8ax
4ax, 5ax
9 eq
$3 \mathrm{eq}, 6 \mathrm{eq}, 15 \mathrm{Me}$
$2 \mathrm{ax}, 2 \mathrm{eq}$
9 ax
3ax, 6ax
13 Me
12 Me
gCOSY of 35

Corroboration of the relative stereochemistry of tri-THP triad 35 by NOESY

Assignment of acetylated tris-THP Triad 41 by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY:

41
chemical shift ($\mathbf{\delta}$)
4.70 (ddd, $J=11.3,9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H})$
3.96-3.90 (m, 1H)
$3.46(\mathrm{dq}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H})$
3.42-3.34 (m, 2H)
$3.22(\mathrm{dd}, J=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H})$
3.01 (ddd, $J=11.4,9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$
2.25 (dd, $J=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H})$
$2.10(\operatorname{app~dt}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$
2.06 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY assignment
10ax
1 eq
11ax
1ax, 4ax
7 ax
5ax
2.00-1.94 (m, 1H)
1.82-1.70 (m, 2H)
$1.65(\operatorname{app} \mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$
9 eq
6 eq
15 Me
$1.49(\operatorname{appt}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$
3 eq
$1.41(\operatorname{app} \mathrm{dq}, J=12.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$
2ax, 2eq
6ax
$1.32(\mathrm{~s}, 3 \mathrm{H})$
$1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$
9ax
3ax
13 Me
12 Me
gCOSY of 41

Assignment of acetylated tris-THP Triad 44 by ${ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}$ gCOSY:

44
chemical shift (δ)
4.88 (dd, $J=12.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$
3.95-3.90 (m, 1H)
3.45-3.35 (m, 3H)
3.04 (ddd, $J=11.4,9.3,4.6,1 \mathrm{H})$
2.06-2.01 (m, 4H)
2.00-1.94 (m, 2H)
1.81-1.68 (m, 2H)
1.66-1.55 (m, 2H)
1.47-1.37 (m, 1H)
$1.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY assignment
10ax
1eq
1ax, 4ax, 7ax
5ax
$9 \mathrm{eq}, 16 \mathrm{Me}$
$6 \mathrm{eq}, 3 \mathrm{eq}$
$2 \mathrm{ax}, 2 \mathrm{eq}$
6ax, 9ax
3ax
$12 \mathrm{Me}, 13 \mathrm{Me}$, and 14 Me
gCOSY of 44

Corroboration of the relative stereochemistry of tri-THP triad 35 by NOESY

coses)

en

10

(1)

13

13

正

cosen

$\stackrel{0}{0} 1$

30

A

31

S132

\qquad

36

\qquad
\qquad

$-\infty$

- σ $-$

40

43

References

${ }^{\text {S1 (a) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, }}$ 11224-11235. (b) Nieto, N.; Molas, P.; Benet-Buchholz, J.; Vidal-Ferran, A. J. Org. Chem. 2005, 70, 10143-10146.
${ }^{\text {S2 }}$ Lebouc, A.; Delaunay, J.; Riobé, O. Synthesis 1979, 8, 610-613.
${ }^{\text {S3 }}$ original reference: (a) Kabalka, G. W.; Hedgecock, H. C. J. Org. Chem. 1975, 40, 1776-1779. sample procedure: (b) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3592-3596.
${ }^{\text {S4 }}$ Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Tetrahedron 1999, 55, 2183-2192.
${ }^{\text {S5 }}$ Delgado, M.; Martin, J. D. J. Org. Chem. 1999, 64, 4798-4816.
${ }^{\text {S6 Hong, B.-C.; Chen, Z.-Y.; Nagarajan, A.; Rudresha, K.; Chavan, V.; Chen, W.-H.; }}$ Jiang, Y.-F.; Zhang, S.-C.; Lee, G.-H.; Sarshar, S. Tetrahedron Lett. 2005, 46, 12811285.
${ }^{\text {S7 }}$ These lipase beads can be reused, as they retain most of their catalytic activity. See: Magnan, E.; Catarino, I.; Paolucci-Jeanjean, D.; Preziosi-Belloy, L.; Belleville, M. P. J. Membr. Sci. 2004, 241, 161-166.
${ }^{\text {S8 }}$ (a) Bowman, J. L.; McDonald, F. L. J. Org. Chem. 1998, 63, 3680-3682. (b) Matsuo, G.; Hinou, H.; Koshino, H.; Suenaga, T.; Nakata, T. Tetrahedron Lett. 2000, 41, 903-906.
(c) Suzuki, K.; Nakata, T. Org. Lett. 2002, 4, 2739-2741. (d) Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339-2342.
${ }^{\text {S9 }}$ We have found that the yield of this reaction suffers when older lithium acetylideethylenediamine complex is used, even if it was stored in a glove box or in a dessicator under argon. Multiple samples of lithium acetylide-ethylenediamine complex sourced from both Alfa Aesar and Sigma-Aldrich have proved adequate, so long as they are used immediately after opening.
${ }^{\text {S10 }}$ (a) Schiavelli, M. D.; Plunkett, J. J.; Thompson, D. W. J. Org. Chem. 1981, 46, 807808. (b) Ewing, J. C.; Ferguson, G. S.; Moore, D. W.; Shultz, F. W.; Thompson, D. W. J. Org. Chem. 1985, 50, 2124-2128.
${ }^{\text {S11 }}$ Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189-1192.
${ }^{512}$ This specific rotation $\left([\alpha]^{22}=+39.4\left(c=1.6, \mathrm{CDCl}_{3}\right)\right)$, measured on a sample of material in 20:1 diastereopurity, differs from the value reported earlier by our group, which was measured on a sample in $4: 1 \mathrm{dr}\left([\alpha]^{25}=+2.3\left(\mathrm{c}=0.7, \mathrm{CDCl}_{3}\right)\right) .{ }^{\mathrm{S} 11}$
${ }^{513}$ Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339-2342.
${ }^{\text {S14 (a) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.; Teranishi, S. J. Org. Chem. }}$ 1979, 44, 55-63. (b) Thadani, A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4317-4320.
${ }^{\text {s15 }}$ Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
${ }^{\text {S16 }}$ Patel, J.; Mujcinovic, S.; Jackson, W. R.; Robinson, A. J.; Serelis, A. K.; Such, C. Green Chem. 2006, 8, 450-454.
${ }^{\text {S17 }}$ Wang, Y. D.; Kimball, G.; Prashad, A. S.; Wang, Y. Tetrahedron Lett. 2005, 46, 8777-8780.

[^0]: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.88(\mathrm{dd}, J=12.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.45-$ $3.35(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{ddd}, J=11.4,9.3,4.6,1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{app} \mathrm{qd}, J=12.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,79.2,75.2,74.0,74.0$, 71.9, 70.6, 68.5, 39.7, 31.4, 30.0, 28.4, 26.0, 21.4, 18.3, 15.5.

