Supporting Information

Structure Proof and Synthesis of Kotalanol and De-O-sulfonated Kotalanol, Glycosidase Inhibitors Isolated from an Herbal Remedy for the Treatment of Type-2 Diabetes

Kumarasamy Jayakanthan, Sankar Mohan and B. Mario Pinto*

Table of Contents	Page
Experimental Procedures for Compounds 20, 25-45	S4-S15
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 26	S16
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 26	S17
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 27	S18
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 27	S19
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 28	S20
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 28	S21
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 29	S22
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 29	S23
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{3 0}$	S24
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 30	S25
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 31	S26
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 31	S27
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 32	S28
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 32	S29
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 33	S30
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 33	S31
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 34	S32
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 34	S33
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 37	S34
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 37	S35
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 38	S36
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 38	S37
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 40	S38
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 40	S39
Bar graph comparison for compounds 38,5 and 40	S40

${ }^{\text {I }} \mathrm{H}$ NMR Spectrum of Compound 41	S 41
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 41	S 42
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 42	S 43
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 42	S 44
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 43	S 45
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 43	S 46
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 44	S 47
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{4 4}$	S 48
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 45	S 49
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 45	S 50
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 20	S 51
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 20	S 52
References	S 53

Experimental Section

General. Optical rotations were measured at $23{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 600 and 150 MHz , respectively. All assignments were confirmed with the aid of two-dimensional ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ (COSYDFTP) or ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (INVBTP) experiments using standard pulse programs. Column chromatography was performed with Silica gel 60 (230-400 mesh). High resolution mass spectra were obtained by the electrospray ionization method, using an Agilent 6210 TOF LC/MS high resolution magnetic sector mass spectrometer.

1,3-O-Benzylidene-2,5-O-methylene-D-mannitol (25) ${ }^{1}$. Compound 25 was prepared from 1,3:4,6-di-O-benzylidene-D-mannitol (24) by using the literature methods with some variations. Thus, compound $\mathbf{2 4}^{2}$ was converted into 1,3:4,6-di- O-benzylidene-2,5-O-methylene-D-mannitol as described. ${ }^{3}$ The product was then treated with PTSA to yield compound 25 as described below. To a solution of 1,3:4,6-di- O-benzylidene-2,5- O -methylene-D-mannitol ($5.00 \mathrm{~g}, 13.51 \mathrm{mmol}$) in $\mathrm{MeOH}(250 \mathrm{~mL})$ was added PTSA (200 mg), and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, and the solvents were removed under vacuum to give a colorless solid. The solids were dissolved in ethyl acetate (75 mL) and filtered, and the filtrate was concentrated to give the crude 1,3-O-Benzylidene-2,5-O-methylene-D-mannitol. The undissolved solids $(\sim 1.1 \mathrm{~g}, 5.67 \mathrm{mmol}$, of $2,5-O$-methylene-Dmannitol) were mixed with dry DMF (20 mL), benzaldehyde dimethylacetal (0.849 mL , 5.67 mmol), and PTSA (50 mg). The resulting reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ under a rotary evaporator vacuum for 2 h . The reaction was neutralized by the addition of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$, and the solvents were evaporated to give a crude product. The combined crude products were diluted with ethyl acetate (200 mL) and washed with water (150 mL) and brine $(150 \mathrm{~mL})$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and the crude product was purified by flash column chromatography (hexanes/EtOAc 3:7) to give $\mathbf{2 5}{ }^{19}$ in $65 \%(2.47 \mathrm{~g})$ over the two steps.

4-O-Benzyl-1,3- O-benzylidene-2,5- O-methylene-D-mannitol (26). To a mixture of 25 ($2.50 \mathrm{~g}, 8.86 \mathrm{mmol}$), and imidazole ($1.45 \mathrm{~g}, 21.3 \mathrm{mmol}$), in dry DMF (30 mL) was added portionwise $\operatorname{TBDMSCl}(1.46 \mathrm{~g}, 9.70 \mathrm{mmol})$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under nitrogen for 2 h . The reaction was quenched by the addition of ice-cold water (25 mL), and the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and water (100 mL). The separated organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated on a rotary evaporator to give a crude product which was directly treated in the next step without further purification. The crude product was kept under high vacuum for 1 h , then dissolved in dry DMF (50 mL), the reaction mixture was cooled with an ice bath, and $60 \% \mathrm{NaH}(1.06 \mathrm{~g}, 26.5 \mathrm{mmol})$ was added. A solution of benzyl bromide ($3.16 \mathrm{~mL}, 26.5$ mmol) was added, and the solution was stirred at room temprature for 1 h . The mixture was added to ice-water (150 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude product. The crude residue was dissolved in THF (50 mL) and then TBAF (1.0 M solution in THF, $8.9 \mathrm{~mL}, 9.0$ mmol) was added. After 20 h at rt , the reaction mixture was concentrated and the residue was purified by flash chromatography (hexanes/EtOAc $2: 3$) to yield 26 as a colorless solid ($2.04 \mathrm{~g}, 62 \%$). Mp 150-152 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=-26.5^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.54-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.95$ and $4.71\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, \mathrm{Ph}-\right.$ $\left.\mathrm{CH}_{2}\right), 4.90$ and $4.83\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=10.8, J_{1 \mathrm{a}, 2}=\right.$ $5.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.3, J_{3,4}=7.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.81(1 \mathrm{H}$, td, H-2), 3.77-3.73 (3H, m, H-1b, H-5, H-6b), $3.69\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, \mathrm{H}-4\right), 2.01(1 \mathrm{H}$, $\left.\mathrm{t}, J_{1 \mathrm{ab}, \mathrm{OH}}=6.6 \mathrm{~Hz},-\mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.0-126.0(\mathrm{~m}, \mathrm{Ar}), 100.7(\mathrm{Ph}-\mathrm{CH}), 93.2$ $\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 86.3(\mathrm{C}-3), 79.7(\mathrm{C}-4), 75.1\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 75.0(\mathrm{C}-5), 69.3(\mathrm{C}-1), 64.2(\mathrm{C}-2)$, 63.1 (C-6). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})$: 373.1651. Found: 373.1653.

4- \boldsymbol{O}-Benzyl-1,3- \boldsymbol{O}-benzylidene-2,5- \boldsymbol{O}-methylene-D-manno-hep-6-enitol

Compound 26 ($2.00 \mathrm{~g}, 5.37 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, Dess Martin periodinane ($2.48 \mathrm{~g}, 5.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(2.03 \mathrm{~g}, 24.16 \mathrm{mmol})$ were added, and the reaction mixture was stirred at rt for 15 min , then diluted with ether $(100 \mathrm{~mL})$ and poured into saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ containing a sevenfold excess of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was stirred to dissolve the solid, and the layers were separated. The ether
layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents were removed under vacuum to give the aldehyde that was further dried under high vacuum for $1 \mathrm{~h} . n-\mathrm{BuLi}$ (n-hexane solution, $8.0 \mathrm{mmol}, 1.5$ equiv) was added dropwise to a solution of methyltriphenylphosphonium bromide ($2.3 \mathrm{~g}, 6.44 \mathrm{mmol}$) in dry THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 1 h at the same temperature. A solution of the previously made aldehyde in dry THF (10 mL) was introduced into the solution at $-78^{\circ} \mathrm{C}$, and the resulting solution was allowed to warm to rt and stirred overnight. The reaction mixture was quenched by adding acetone (1 mL), and extracted with ether ($3 \times 100 \mathrm{~mL}$). The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Purification by column chromatography on silica gel (hexanes/EtOAc 4:1) gave $27(1.1 \mathrm{~g}, 56 \%)$ as a colorless solid. Mp 133-135 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=-48.5^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.54-7.28$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.10\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6}=6.0, J_{6,7 \mathrm{~b}}=10.8, J_{6,7 \mathrm{a}}=17.0 \mathrm{~Hz}, \mathrm{H}-6\right), 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-$ $\mathrm{CH}), 5.46\left(1 \mathrm{H}\right.$, dd $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=1.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 5.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7 \mathrm{~b}), 4.92$ and $4.84\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}\right.$ $\left.=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.88$ and $4.67\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}\right.$ $\left.=10.2, J_{1 \mathrm{a}, 2}=4.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.6 \mathrm{~Hz}, \mathrm{H}-5\right), 3.88-3.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-$ 3), $3.75\left(1 \mathrm{H}, \mathrm{t}, J_{1 \mathrm{~b}, 2}=9.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.2-126.0(\mathrm{~m}, \mathrm{Ar}), 135.5(\mathrm{C}-6), 116.9(\mathrm{C}-7), 100.7(\mathrm{Ph}-\mathrm{CH}), 92.9\left(\mathrm{O}-\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{O}), 86.1$ (C-3), 83.2 (C-4), 75.6 (C-5), 75.3 ($\mathrm{Ph}-\mathrm{CH}_{2}$), 69.3 (C-1), 64.1 (C-2). HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})$: 369.1702. Found: 369.1697.

4-O-Benzyl-1,3-O-benzylidene-2,5-O-methylene-D-glycero-D-manno-heptitol

(28).

To a solution of $27(1.0 \mathrm{~g}, 2.71 \mathrm{mmol})$ in acetone:water $(9: 1,20 \mathrm{~mL})$ at rt were added NMO (N-methylmorpholine- N-oxide) ($348 \mathrm{mg}, 2.97 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(3.4 \mathrm{mg}, 0.01$ mmol, $2.5 \mathrm{wt} \%$ solution in 2-methyl-2-propanol). The reaction mixture was stirred at room temperature for 30 h before it was quenched with a saturated solution of NaHSO_{3} $(5 \mathrm{~mL})$. After being stirred for an additional 15 min the reaction mixture was concentrated under reduced pressure, then extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), and the organic layer was washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Chromatographic purification of the crude product $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 97: 3\right)$ afforded $28(0.91 \mathrm{~g}, 84 \%)$ and $31(0.13 \mathrm{~g}, 12 \%)$ as colorless solids. Data for 28: Mp $154-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=-25.0^{\circ}\left(c=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 7.44-7.25(10 \mathrm{H}$,
$\mathrm{m}, \mathrm{Ar}), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.83$ and $4.65\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.79(1 \mathrm{H}$, $\left.\mathrm{d}, J_{6, \mathrm{OH}}=5.4 \mathrm{~Hz}, 6-\mathrm{OH}\right) 4.77$ and $4.67\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{t}$, $\left.J_{7, \mathrm{OH}}=5.5 \mathrm{~Hz}, 7-\mathrm{OH}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.6, J_{1 \mathrm{a}, 2}=4.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J$ $=11.4, J=6.0 \mathrm{~Hz}, \mathrm{H}-6), 3.77-3.60(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b} \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-7 \mathrm{a}), 3.43(1 \mathrm{H}, \mathrm{m}$, H-7b). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 143.9-131.1$ (m, Ar), $104.9(\mathrm{Ph}-\mathrm{CH}), 98.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right)$, 91.3 (C-2), $85.0(\mathrm{C}-4), 82.3(\mathrm{C}-5), 78.9\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 76.4(\mathrm{C}-6), 73.6(\mathrm{C}-1), 68.9(\mathrm{C}-3)$, 66.8 (C-7). HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H}): 403.1757$. Found: 403.1759.

4,6,7-Tri-O-benzyl 2,5-O-methylene-D-glycero-D-manno-heptitol (29). A mixture of compound $28(1.0 \mathrm{~g}, 2.48 \mathrm{mmol})$ and $60 \% \mathrm{NaH}$ (3 equiv) in DMF (20 mL) was stirred in an ice bath for 20 min . A solution of benzyl bromide ($0.88 \mathrm{ml}, 7.44 \mathrm{mmol}$) in DMF (3 mL) was added, and the mixture was stirred at room temperature for 2 h . The reaction was quenched with ice water $(40 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$, p-toluenesulfonic acid (100 mg) was added, and the resulting reaction mixture was stirred for 24 h at rt . The reaction was quenched by addition of excess $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, and the solvents were removed under vacuum to give a colorless syrup which was dissolved in ethyl acetate (100 mL) and washed with water (40 $\mathrm{mL})$ and brine (40 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Chromatographic purification of the crude product (hexanes/EtOAc 1:4) afforded $29(0.91 \mathrm{~g}, 74 \%)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}^{23}=-15.2^{\circ}\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41-7.23$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.79-4.54\left(6 \mathrm{H}, 6 \mathrm{~d}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.04$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6}=2.4, J_{6,7 \mathrm{a}}=4.2, J_{6,7 \mathrm{~b}}=6.6 \mathrm{~Hz}, \mathrm{H}-6\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.0 \mathrm{~Hz}, \mathrm{H}-5\right)$, 3.87-3.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-\mathrm{b}) 3.82\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=10.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7 \mathrm{~b})$, $3.68(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=6.6 \mathrm{~Hz}, \mathrm{H}-4\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.4-$ 127.8 (m, Ar), $93.7\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 82.6(\mathrm{C}-4), 78.8(\mathrm{C}-6), 76.4(\mathrm{C}-5), 75.9$ and 75.4 (C-2 and $\mathrm{C}-3$), 73.9, 73.4, 72.7 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 70.0 (C-7), 63.7 (C-1); HRMS Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H}): 495.2383$. Found: 495.2378 .

4,6,7-Tri- O-benzyl-2,5- O-methylene-D-glycero-D-manno-heptitol-1,3-cyclic sulfate

 (30). A mixture of $29(0.90 \mathrm{~g}, 1.82 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$mL) was stirred in an ice bath. Thionyl chloride ($0.2 \mathrm{~mL}, 2.73 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was then added dropwise over 15 min , and the mixture was stirred for an additional 30 min . The mixture was poured into ice-cold water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was dried under high vacuum for 1 h . The diasteromeric mixture of cyclic sulfites was dissolved in a mixture of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CCl}_{4}(1: 1,50 \mathrm{~mL})$ and sodium periodate ($584 \mathrm{mg}, 2.73 \mathrm{mmol}$) and RuCl_{3} (20 mg) were added, followed by water (5 mL). The mixture was then stirred for 2 h at rt . The reaction mixture was filtered through Celite and washed repeatedly with ethyl acetate. The volatile solvents were removed, and the aqueous solution was extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 4:1) to give $\mathbf{3 0}$ as a colorless syrup ($612 \mathrm{mg}, 61 \%$). $[\alpha]_{\mathrm{D}}^{23}=-1.7^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41-7.29$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.87$ and $4.78\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.8 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.83\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=7.2\right.$, $\left.J_{2,3}=10.2 \mathrm{~Hz}, \mathrm{H}-3\right), 4.81-4.64\left(4 \mathrm{H}, 4 \mathrm{~d}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.66\left(1 \mathrm{H}, \mathrm{t}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=J_{1 \mathrm{a}, 2}\right.$ $=11.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{~b}, 2}=5.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 4.20(1 \mathrm{H}, \mathrm{td}$, $\left.J_{1,2}=5.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{H}-6), 3.95-3.90(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5), 3.79$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7 \mathrm{a}}=5.4, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 138.2-127.8 (m, Ar), 93.7 ($\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$), 90.8 (C-5), 78.4 (C-4), 77.9 (C-6), 75.7 (C-5), 74.9 (C-1), 73.5, 72.8, 71.9 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 69.5 (C-7), 62.1 (C-2); HRMS Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H}): 557.1845$. Found: 557.1843.

1,3- O-Benzylidene-2,5- O-methylene-7- O-(tert-butyldimethylsilyl)-D-glycero-D-

manno-heptitol-4,6-cyclic sulfate (31). Compound 28 ($200 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$ and the solution was stirred with $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ under 80 psi of H_{2} for 12 h . The catalyst was removed by filtration through Celite, then evaporation of the solvent followed by purification using a short column of silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right)$ gave the 1,3-O-Benzylidene-2,5-O-methylene-D-glycero-D-mannoheptitol ($90 \mathrm{mg}, 59 \%$). A mixture of the resulting triol ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), imidazole ($44 \mathrm{mg}, 0.64 \mathrm{mmol}$), and TBDMSCl ($26 \mathrm{mg}, 0.18 \mathrm{mmol}$) in dry DMF (2 mL) was stirred
at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 2 h . The reaction was quenched by the addition of ice-cold water (2 $\mathrm{mL})$, and the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The organic phase was washed with water (25 mL) and brine $(25 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was directly converted into the cyclic sulfate 31 by treatment with SOCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$, followed by oxidation with RuCl_{3} and NaIO_{4} as described for the synthesis of compound 30. Data for 31: Colorless syrup, 42 mg , yield 54% over two steps. $[\alpha]_{\mathrm{D}}^{23}=-73.0^{\circ}\left(c=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.53-7.39 (5H, m, Ar), $5.53(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.89$ and $4.82\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2^{-}}\right.$ O), $4.78\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=10.2, J_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4\right), 4.77\left(1 \mathrm{H}, \mathrm{ddd}, J_{6,7 \mathrm{~b}}=1.2, J_{6,7 \mathrm{a}}=3.0, J_{5,6}\right.$ $=10.2 \mathrm{~Hz}, \mathrm{H}-6), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{la}, 2}=4.2, J_{\mathrm{la}, 1 \mathrm{~b}}=10.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5)$, $4.04\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=12.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7 \mathrm{~b}), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.0 \mathrm{~Hz}, \mathrm{H}-\right.$ 3), $3.84\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1 \mathrm{~b}, 2}=10.2 \mathrm{~Hz}, \mathrm{H}-2\right), 3.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-1 \mathrm{~b}), 0.95(9 \mathrm{H}, \mathrm{s}$, TBDMS), 0.14 and $0.12(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 136.6-126.1(\mathrm{~m}, \mathrm{Ar}), 100.1(\mathrm{Ph}-\mathrm{CH})$, 93.6 ($\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$), 84.3 (C-4), 84.0 (C-6), 80.8 (C-3), 68.7 (C-1), 64.7 (C-2), 62.9 (C-5), 60.4 (C-7), 25.8 (TBDMS), -5.3 and -5.5 ($2 \times \mathrm{Me}$). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{SSi}(\mathrm{M}+$ H): 489.1615. Found: 489.1617.

4-O-Benzyl-5,7-O-benzylidene-3,6-O-methylene-D-glycero-D-galacto-heptitol (32). A mixture of AD-mix- $\beta(3.8 \mathrm{~g})$, tert-butyl alcohol (5 mL), and water (5 mL) was stirred at rt for 5 min to produce a biphasic layer. The mixture was cooled to $0^{\circ} \mathrm{C}$, and the olefin 27 $(1.0 \mathrm{~g}, 2.71 \mathrm{mmol})$ was added at once, and the heterogeneous slurry was stirred vigorously at $0^{\circ} \mathrm{C}$ for 7 days. The reaction mixture was quenched by addition of solid sodium sulfite (4 g), stirred at rt for 30 min , extracted with ethyl acetate (3 x 100 mL), and the organic layer was washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Chromatographic purification of the residue $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 97: 3\right)$ afforded $32(0.69 \mathrm{~g}, 64 \%)$ and $28(98 \mathrm{mg}, 9 \%)$ as colorless solids. Data for 32: Mp 208$210{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=-12.0^{\circ}\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 7.45-7.24(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.83$ and $4.67\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.76$ and 4.70 $\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J_{2, \mathrm{OH}}=6.6 \mathrm{~Hz}, 2-\mathrm{OH}\right), 4.65\left(1 \mathrm{H}, \mathrm{t}, J_{1, \mathrm{OH}}=\right.$ $6.0 \mathrm{~Hz}, 1-\mathrm{OH}), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.6, J_{6,7 \mathrm{a}}=4.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.86\left(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J_{1,2}=J_{2,3}=\right.$ $7.5 \mathrm{~Hz}, \mathrm{H}-2), 3.78-3.64$ (5H, m, H-3, H-4, H-5, H-6, H-7b), 3.42 (2H, m, H-1a, H-1b).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): \delta 139.3-126.4(\mathrm{~m}, \mathrm{Ar}), 100.2(\mathrm{Ph}-\mathrm{CH}), 93.0\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 86.3(\mathrm{C}-$ 5), $79.2(\mathrm{C}-4), 74.5\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 73.5(\mathrm{C}-3), 69.2(\mathrm{C}-2), 68.9(\mathrm{C}-7), 64.3(\mathrm{C}-6), 62.0(\mathrm{C}-1)$. HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})$: 403.1757 . Found: 403.1758 .

1,2,4-Tri- O-benzyl-3,6- \boldsymbol{O}-methylene-D-glycero-D-galacto-heptitol (33). Compound 33 was obtained as a colorless syrup ($0.94 \mathrm{~g}, 77 \%$ yield) from $32(1.0 \mathrm{~g}, 2.48 \mathrm{mmol})$ using the same procedure that was used to obtain 29. $[\alpha]_{\mathrm{D}}^{23}=-1.7^{\circ}\left(c=2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.39-7.26(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.85$ and $4.66\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.8 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2^{-}}\right.$ O), 4.81-4.51 ($\left.6 \mathrm{H}, 6 \mathrm{~d}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.07\left(1 \mathrm{H}, \mathrm{ddd}, J_{2,3}=1.2, J_{1 \mathrm{a}, 2}=5.4, J_{1 \mathrm{~b}, 2}\right.$ $=7.2 \mathrm{~Hz}, \mathrm{H}-2), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}\right.$ $=9.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 3.74-3.70(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-$ 1b), $2.38\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{OH}}=3.6 \mathrm{~Hz}, 5-\mathrm{OH}\right), 2.17\left(1 \mathrm{H}, \mathrm{t}, J_{7, \mathrm{OH}}=6.0 \mathrm{~Hz}, 7-\mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.5-127.5(\mathrm{~m}, \mathrm{Ar}), 93.6\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 81.9(\mathrm{C}-4), 76.1(\mathrm{C}-2), 75.5(\mathrm{C}-5), 75.0$ (C-6), 74.2 (C-3), 73.6, 73.5, 72.5 (3 x Ph- CH_{2}), 68.7 (C-1), 63.8 (C-7). HRMS Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H}): 495.2383$. Found: 495.2377.

1,2,4-Tri- O-benzyl-3,6- O-methylene-D-glycero-D-galacto-heptitol-5,7-cyclic sulfate

 (34). Compound 34 was obtained as a colorless syrup ($0.65 \mathrm{~g}, 64 \%$ yield) from 33 (0.9 g , 1.82 mmol) using the same procedure which was used to obtain 30. Colorless syrup; $[\alpha]_{\mathrm{D}}^{23}=+23.2^{\circ}\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.27(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.90-4.44$ $\left(6 \mathrm{H}, 6 \mathrm{~d}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.88\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=7.8, J_{5,6}=8.4 \mathrm{~Hz}, \mathrm{H}-5\right), 4.83$ and $4.55\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7 \mathrm{a}}=10.8, J_{7 \mathrm{a}, 7 \mathrm{~b}}=11.4 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right)$, $4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7 \mathrm{~b}}=5.4 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}\right), 4.23(1 \mathrm{H}, \mathrm{td}, \mathrm{H}-6), 4.15\left(1 \mathrm{H}, \mathrm{ddd}, J_{2,3}=1.8, J_{1 \mathrm{a}, 2}=\right.$ $\left.5.4, J_{1 \mathrm{~b}, 2}=7.8 \mathrm{~Hz}, \mathrm{H}-2\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=10.2 \mathrm{~Hz}, \mathrm{H}-4\right), 3.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-3), 3.73(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=9.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-1 \mathrm{~b}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 137.8-127.4(\mathrm{~m}, \mathrm{Ar})$, 93.6 ($\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$), 90.9 (C-5), 77.4 (C-4), 75.0 (C-2), 74.7 (C-7), 73.9 (C-3), 73.5, 72.9, 71.9 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 67.7 (C-1), 62.2 (C-6). HRMS Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{~S}(\mathrm{M}+\mathrm{H})$: 557.1845. Found: 557.1841.
1,4-Dideoxy-1,4-[[2S,3S,4R,5R,6R]-4,6,7-tri-O-benzyl-2,5-O-methylene-3-

(sulfooxy)heptyl]-(R)-epi-sulfoniumylidine]-D-arabinitol Inner Salt (37). The cyclic
sulfate 30 ($250 \mathrm{mg}, 0.45 \mathrm{mmol}$) and the thiosugar 35 ($275 \mathrm{mg}, 0.54 \mathrm{mmol}$) were dissolved in HFIP (3 mL), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ was added. The mixture was stirred in a sealed tube in an oil bath $\left(75^{\circ} \mathrm{C}\right)$ for 7 days. The solvent was removed under reduced pressure, and the product was purified through a short silica column by eluting with $\mathrm{EtOAc} / \mathrm{MeOH} 95: 5$ to yield the protected sulfonium salt $\mathbf{3 6}(351 \mathrm{mg})$ in 67% yield. To the resulting compound 36 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added trifluoroacetic acid (5 mL), followed by $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 2 h . The solvents were then evaporated under reduced pressure, and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)$ to give 37 as a colorless syrup (190 $\mathrm{mg}, 82 \%) .[\alpha]_{\mathrm{D}}^{23}=+4.4^{\circ}(c=0.9, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.96-6.84(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 4.60\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=10.2 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.51$ and $4.37\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=4.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2^{-}}\right.$ $\mathrm{O}), 4.26\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2), 4.12(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=7.8, J_{3^{\prime}, 4^{\prime}}=6.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.06(2 \mathrm{H}$, br s, $\left.\mathrm{Ph}-\mathrm{CH}_{2}\right), 4.01(1 \mathrm{H}$, br d, $J=1.8 \mathrm{~Hz}, \mathrm{H}-3), 3.97\left(1 \mathrm{H}, \mathrm{td}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=7.8, J_{1^{\prime} \mathrm{b}, 2^{\prime}}=3.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $3.69\left(1 \mathrm{H}, \mathrm{dd}, J_{l^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=13.2 \mathrm{~Hz}, \mathrm{H}-1\right.$ 'a), 3.61-3.57 (4H, m, H-1'b, H-4, H-5a, H-6'), 3.533.43 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}, \mathrm{H}-5^{\prime}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=12.0, J_{1 \mathrm{a}, 2}=1.8, \mathrm{H}-1 \mathrm{a}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4^{\prime} 5^{\prime}}\right.$ $\left.=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{~b}, 2}=3.6, \mathrm{H}-1 \mathrm{~b}\right), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J_{7^{\prime} \mathrm{a}, 7^{\prime} \mathrm{b}}=10.8, \mathrm{~J}_{7^{\mathrm{a}} \mathrm{a}, 6^{\prime}}=3.6\right.$ $\left.\mathrm{Hz}, \mathrm{H}-7{ }^{\prime} \mathrm{a}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{7^{\prime} \mathrm{b}, \mathrm{G}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime} \mathrm{b}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 137.9-126.8(\mathrm{~m}$, $\mathrm{Ar}), 93.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 80.8(\mathrm{C}-3$ '), 80.6 (C-4'), 78.1 (C-3), $78.0(\mathrm{C}-4), 77.1(\mathrm{C}-2), 76.6$ (C$\left.5^{\prime}\right), 73.4,72.5$ and 71.6 ($3 \times \mathrm{CH}_{2} \mathrm{Ph}$), 71.5 (C-6'), 70.8 (C-2'), 68.9 (C-7'), 59.1 (C-5), 49.5 (C-1), $49.2\left(\mathrm{C}-1\right.$ '). HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{12} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})$: 707.2195. Found: 707.2195.

1,4-Dideoxy-1,4-[[2S,3S,4R,5R,6R]-2,3,4,5,6,7-hexahydroxy-heptyl]-(R)-epi-

 sulfoniumylidine]-D-arabinitol methyl sulfate (38). To a solution of compound $\mathbf{3 7}$ (150 $\mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $1.0 \mathrm{M} \mathrm{BCl}_{3}(2 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then warmed to rt over a period of 20 min and stirred for $12 \mathrm{~h} . \mathrm{MeOH}$ was added to quench the reaction mixture and all the volatile components were removed under reduced pressure. The residue was dissolved in water (5 mL) and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The water layer was evaporated to give a crude product which was purified by reverse-phase HPLC [$\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(4: 96, \mathrm{v} / \mathrm{v})$ to yield compound 38 (54 mg , $74 \%)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}^{23}=-4.0^{\circ}(c=0.8, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 4.62$$(1 \mathrm{H}$, br d, $J=2.4 \mathrm{~Hz}, \mathrm{H}-2), 4.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 4.17\left(1 \mathrm{H}, \mathrm{td}, J_{1^{\prime} \mathrm{a}, 2}=3.6, J_{1^{\mathrm{b}} \mathrm{b}, 2}=J_{2^{\prime}, 3^{\prime}}=\right.$ $8.4 \mathrm{~Hz}, \mathrm{H}-2$ '), $4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5 \mathrm{a}}=4.8, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5 \mathrm{~b}}=9.6\right.$ $\mathrm{Hz}, \mathrm{H}-4), 3.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5 \mathrm{~b}), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=3.6, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 3.88$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=2.4, J_{4^{\prime}, 5^{\prime}}=7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.86(2 \mathrm{H}, \mathrm{d}$ like, $J=2.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-1 \mathrm{~b}), 3.85$ (1H, dd, H-3'), 3.83 (1 H , d like, $J=7.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.80 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-7$ 'a), 3.75 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-1 \mathrm{l} \mathrm{b}), 3.71(1 \mathrm{H}, \mathrm{d}$ like, $J=6.6 \mathrm{~Hz}, \mathrm{H}-5 '), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OSO}_{3}\right), 3.67(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7 \mathrm{~b}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 79.5$ (C-3), 79.4 (C-2), 74.8 (C-6'), 74.0 (C-3'), 73.7 (C-4), 73.1 (C-5'), 71.9 (C-4'), 69.4 (C-2'), 64.4 (C-7'), 61.1 (C-5), $55.2\left(\mathrm{CH}_{3} \mathrm{OSO}_{3}\right), 52.7$ (C-1'), 51.9 (C-1). HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{12} \mathrm{~S}_{2}\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OSO}_{3}\right)$: 345.1219. Found: 345.1218.

1,4-Dideoxy-1,4-[[2S,3S,4R,5R,6S]-2,3,4,5,6,7-hexahydroxy-heptyl]-(R)-epi-

sulfoniumylidine]-D-arabinitol methyl sulfate (40). The cyclic sulfate $\mathbf{3 4}$ ($250 \mathrm{mg}, 0.45$ mmol) and the thiosugar $35(275 \mathrm{mg}, 0.54 \mathrm{mmol})$ were dissolved in HFIP (3 mL), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ was added. The mixture was stirred in a sealed tube in an oil bath ($75{ }^{\circ} \mathrm{C}$) for 7 days. The solvent was removed under reduced pressure, and the product was purified through a short silica column by eluting with EtOAc/MeOH 95:5 to yield the protected sulfonium salt $39(325 \mathrm{mg}, 61 \%)$. To a solution of the protected compound $39(200 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $1.0 \mathrm{M} \mathrm{BCl}_{3}$ $(3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then warmed to rt over a period of 20 min and stirred for 12 h . MeOH was added to quench the reaction mixture and all the volatile components were removed under reduced pressure. The residue was dissolved in water (5 mL) and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The water layer was evaporated to give a crude product that was purified by reverse-phase HPLC [MeCN-H2O (4:96, v/v) to yield compound $40(40 \mathrm{mg}, 61 \%)$ as a colorless syrup. $[\alpha]_{\mathrm{D}}^{23}=+10.0^{\circ}(c=0.6, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 4.62\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{aa}, 2}=3.0, J_{1 \mathrm{~b}, 2}=J_{2,3}=2.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.37(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,4}=1.2 \mathrm{~Hz}, \mathrm{H}-3\right), 4.18\left(1 \mathrm{H}, \mathrm{td}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=3.6, J_{1^{\prime} \mathrm{b}, 2}=J_{2^{\prime}, 3^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.05(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{4,5 \mathrm{a}}=4.8, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}\right), 4.01\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J_{4,5 \mathrm{~b}}=9.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.94(1 \mathrm{H}, \mathrm{dd}$, $J_{1 \mathrm{a}, 1 \mathrm{~b}}=13.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$), $3.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.87(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-1 \mathrm{~b}), 3.85$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=1.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.84\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{4^{\prime}, 5^{\prime}}=7.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-\mathrm{l}^{\prime} \mathrm{b}\right)$, $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OSO}_{3}\right), 3.66\left(2 \mathrm{H}, \mathrm{br}\right.$ d, $J=6.6 \mathrm{~Hz}, \mathrm{H}-7$ 'a, H-7'b), $\left.3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-4)^{\prime}\right){ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 79.5$ (C-3), $79.4(\mathrm{C}-2), 73.7(\mathrm{C}-4), 73.6$ (C-5'), 71.7 (C-6'), 71.2 (C-4'),
70.2 (C-3'), 69.7 (C-2'), 64.9 (C-7'), 61.1 (C-5), $55.2\left(\mathrm{CH}_{3} \mathrm{OSO}_{3)}, 52.7\right.$ (C-1'), 51.9 (C-1). HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{12} \mathrm{~S}_{2}\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OSO}_{3}\right)$: 345.1219 . Found: 345.1216.

5,7-Di- O-benzylidene-2,4,6-tri- O-p-methoxybenzyl-D-perseitol (42) and 1,3-Di-O-benzylidene-2,4,6-tri- \boldsymbol{O}-p-methoxybenzyl-D-perseitol (43). A mixture of compound $\mathbf{4 1}^{4}$ ($8.50 \mathrm{~g}, 21.89 \mathrm{mmol}$) and $60 \% \mathrm{NaH}$ (4 equiv) in DMF (90 mL) was stirred in an ice bath for 20 min . A solution of p-methoxybenzyl chloride ($12.2 \mathrm{ml}, 87.55 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for 2 h . The reaction was quenched with ice water $(150 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (3×150 $\mathrm{mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was dissolved in $\mathrm{MeOH}(100 \mathrm{~mL})$, p-toluenesulfonic acid $(2.0 \mathrm{~g})$ was added, and the resulting reaction mixture was stirred for 30 min at rt . The reaction was quenched by addition of excess $\mathrm{Et}_{3} \mathrm{~N}(\sim 20 \mathrm{~mL})$, and the solvents were removed under vacuum to give a colorless syrup which was dissolved in ethyl acetate (500 mL) and washed with water (100 mL) and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Chromatographic purification of the crude product (hexanes/EtOAc 3:7) afforded $42(4.0 \mathrm{~g}, 44 \%)$ and $43(3.1 \mathrm{~g}, 34 \%)$ (yield was calculated based on recovered 1,3:5,7-di- O-benzylidene-2,4,6-tri- O - p -methoxybenzyl-D-perseitol, 6.0 g). Data for 42: Pale yellow syrup, $[\alpha]_{\mathrm{D}}^{23}=+19.0^{\circ}(c=$ 1.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right): ~ \delta ~ 7.47-6.86(17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH})$, 4.70-4.41 ($\left.6 \mathrm{H}, 6 \mathrm{~d}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.44\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=10.2, J_{7 \mathrm{a}, 6}=4.2 \mathrm{~Hz}, \mathrm{H}-\right.$ $7 \mathrm{a}), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}=9.6, J_{4,5}=1.8 \mathrm{~Hz}, \mathrm{H}-5\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=8.4, J_{2,3}=1.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 3), $3.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-4), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=12.6, J_{1 \mathrm{a}, 2}=4.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 3.93\left(1 \mathrm{H}, \mathrm{td}, J_{6,7 \mathrm{~b}}\right.$ $=10.2 \mathrm{~Hz}, \mathrm{H}-6), 3.81(9 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times \mathrm{OMe}), 3.80\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{~b}, 2}=1.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 3.75(1 \mathrm{H}$, td, H-2), $3.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right): \delta 159.8,159.4$ and 159.1 (Ar), 137.6 and 129.7-113.7 (m, Ar), 101.6 (Ph-CH), 79.9 (C-5), 76.3 (C-2), 75.8 (C-4), 72.6, 71.4, and 71.2 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 71.4 (C-3), 69.7 (C-7), 68.1 (C-6), $63.1(\mathrm{C}-1)$, 55.3 (3 x OMe). HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})$: 661.3012. Found: 661.3003.

Data for 43: Pale yellow syrup, $[\alpha]_{\mathrm{D}}^{23}=+22.5^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.52-6.80 (17H, m, Ar), $5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.84-4.28\left(6 \mathrm{H}, 6 \mathrm{~d}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, \mathrm{Ph}-\right.$ $\left.\mathrm{CH}_{2}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, \mathrm{b}}=12.6, J_{1 \mathrm{a}, 2}=1.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=9.0, J_{4,5}=1.2\right.$
$\mathrm{Hz}, \mathrm{H}-4), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=1.2 \mathrm{~Hz}, \mathrm{H}-3\right), 4.09\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{5,6}=8.4 \mathrm{~Hz}, \mathrm{H}-5\right), 3.96(1 \mathrm{H}$, dd, $\left.J_{1 \mathrm{~b}, 2}=1.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 3.91-3.90(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}), 3.82,3.80$ and $3.77(9 \mathrm{H}, 3 \mathrm{~s}, 3 \mathrm{x}$ OMe), $3.62(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}-2), 3.56\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6,7 \mathrm{a}}=J_{6,7 \mathrm{~b}}=4.2 \mathrm{~Hz}, \mathrm{H}-6\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.3,159.3$ and $159.1(\mathrm{Ar}), 137.9$ and 130.2-113.8 (m, Ar), $101.5(\mathrm{Ph}-\mathrm{CH})$, 78.3 (C-3), 78.1 (C-6), 74.6 (C-4), 73.6, 70.7, and 69.7 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 70.3 (C-5), 69.3 (C2), 67.3 (C-1), $61.4(\mathrm{C}-7), 55.4,55.3$ (3 x OMe). HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})$: 661.3012. Found: 661.3005.

1,3-O-Benzylidene-2,4,6-tri- O-p-methoxybenzyl-D-perseitol-5,7-cyclic sulfate (44). Compound 44 was obtained as a colorless foam (2.5 g , 77% yield) from 43 ($3.0 \mathrm{~g}, 4.54$ $\mathrm{mmol})$ using the same procedure as used to obtain $\mathbf{3 0} .[\alpha]_{\mathrm{D}}^{23}=+5.8^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.59-6.84(17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{C} H), 5.16\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}=\right.$ $\left.9.6, J_{4,5}=1.2 \mathrm{~Hz}, \mathrm{H}-5\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.67\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=13.2\right.$, $\left.J_{1 \mathrm{a}, 2}=1.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 4.48-4.45\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.45-4.43(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$, $\mathrm{H}-7 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.28\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.20(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,4}=10.2, J_{2,3}=1.8 \mathrm{~Hz}, \mathrm{H}-3\right), 4.13\left(1 \mathrm{H}, \mathrm{td}, J_{6,7 \mathrm{a}}=J_{6,7 \mathrm{~b}}=7.2 \mathrm{~Hz}, \mathrm{H}-6\right), 3.99\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{~b}, 2}\right.$ $=1.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 3.83,3.81$ and $3.80(9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OMe}), 3.64(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 159.8,159.3,137.5,129.9-113.8(\mathrm{~m}, \mathrm{Ar}), 101.1(\mathrm{Ph}-\mathrm{CH})$, 84.2 (C-5), 76.3 (C-3), 73.9, 72.1, and 69.7 ($3 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 73.1 (C-4), 71.9 (C-7), 68.8 (C2), 67.0 (C-1), 66.7 (C-6), 55.4, 55.3 ($3 \times \mathrm{OMe}$). HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{O}_{12} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$: 745.2294. Found: 745.2277.

2,3,5-Tri-O-p-methoxybenzyl-1,4-dideoxy-1,4-[[2S,3S,4R,5R,6S]-5,7-benzylidene-2,4,6-tri-O-p-methoxybenzyl-3-(sulfooxy)heptyl]-(R)-epi-sulfoniumylidine]-D-

arabinitol Inner Salt (45). Compound 45 was obtained as a colorless syrup (238 mg , 69% yield) by reacting compounds 44 ($200 \mathrm{mg}, 0.28 \mathrm{mmol}$) and 35 ($171 \mathrm{mg}, 0.34 \mathrm{mmol}$) using the same procedure as used to obtain 36. $[\alpha]_{\mathrm{D}}^{23}=+5.4^{\circ}(c=0.4$, acetone $) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): δ 7.71-6.75 (29H, m, Ar), $5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}), 4.96\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=\right.$ $\left.9.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.85-4.15\left(12 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{7^{\prime} \mathrm{a}, 7 \mathrm{~b} \mathrm{~b}}=12.6 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime} \mathrm{a}\right), 4.66$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1 \mathrm{a}, 2}=2.4, J_{1 \mathrm{~b}, 2}=3.6, J_{2,3}=3.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ '), $4.48(1 \mathrm{H}, \mathrm{br}$ d, H3), $4.39\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=13.8, J_{1^{\prime} \mathrm{a}, 2}=4.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{a}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{b}, 2}=2.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{b}\right)$,
$\left.4.27\left(1 \mathrm{H}, \mathrm{ddd}, J_{2^{\prime}, 3^{\prime}}=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4)^{\prime}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=13.8 \mathrm{~Hz}\right.$, H-1a), $4.04\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}-7\right.$ 'b) , $3.92\left(1 \mathrm{H}\right.$, dd-like, $\left.J_{5 \mathrm{a}, 4}=7.8, J_{5 \mathrm{~b}, 4}=7.2 \mathrm{~Hz}, \mathrm{H}-4\right), 3.89(1 \mathrm{H}$, dd, H-1b), 3.81-3.72 (18H, 6s, OMe), $3.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6\right.$ '), $3.60\left(1 \mathrm{H}, \mathrm{dd}, J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.2 \mathrm{~Hz}\right.$, $\mathrm{H}-5 \mathrm{a}), 3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): $\delta 159.8-159.0,139.6,129.8-126.6$, 113.8-113.4 (m, Ar), 100.4 (Ph-CH), 83.4 (C-3), 81.7 (C-2), 76.7 (C-5'), 74.4 (C-4'), 74.2 (C-2'), 73.5 (C-3'), 72.7-69.3 ($6 \times \mathrm{Ph}-\mathrm{CH}_{2}$), 70.6 (C-6'), 66.9 (C-7'), 66.3 (C-5), 64.5 (C4), 54.7-54.6 (6 x OMe), 49.6 (C-1'), 47.8 (C-1). HRMS Calcd for $\mathrm{C}_{67} \mathrm{H}_{77} \mathrm{O}_{18} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})$: 1233.4551. Found: 1233.4561.

1,4-Dideoxy-1,4-[[2S,3S,4R,5R,6S]-2,4,5,6,7-pentahydroxy-3-(sulfooxy)heptyl]-(R)-

 $\boldsymbol{e p i}$-sulfoniumylidine]-D-arabinitol Inner Salt (20). Compound 45 ($100 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added trifluoroacetic acid (5 mL), followed by $\mathrm{H}_{2} \mathrm{O}(0.5$ mL), and the mixture was stirred at room temperature for 2 h . The solvents were then evaporated under reduced pressure, and the residue was dissolved in water (5 mL) and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The water layer was evaporated to give a crude product that was purified on silica gel column by eluting with $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 7: 3: 1$ (v/v) to give compound 20 in 93% yield (32 mg) as a colorless solid. $[\alpha]_{\mathrm{D}}^{23}=+7.0^{\circ}(c=0.6$, $\mathrm{H}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}) (coupling constant values are determined by $\mathrm{D}_{2} \mathrm{O}$ addition): $\delta 5.64\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=8.4, J_{3^{\prime}, 4^{\prime}}=1.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.24\left(1 \mathrm{H}, \mathrm{ddd}, J_{1^{\prime} \mathrm{a}, 2^{\prime}}=J_{1^{\prime} \mathrm{b}, 2^{\prime}}=4.2 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.2^{\prime}\right), 5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 5.12\left(1 \mathrm{H}, \mathrm{dd}, J_{4}, 5^{\prime}=9.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.07\left(1 \mathrm{H}\right.$, dd-like, $J_{1 \mathrm{a}, 2}=1.8$, $\left.J_{1 \mathrm{~b}, 2}=3.6 \mathrm{~Hz}, \mathrm{H}-2\right), 4.93\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=13.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{a}\right), 4.88\left(1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6^{\prime}}=1.8, J_{6,77^{\prime} \mathrm{a}}\right.$ $\left.=5.4, J_{6^{\prime}, 7 \mathrm{~b}}=4.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-5 '), 4.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-1 ' \mathrm{~b}), 4.62\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}_{4,5 \mathrm{a}}\right.$ $\left.=J_{4,5 \mathrm{~b}}=10.2 \mathrm{~Hz}, \mathrm{H}-4\right), 4.51(2 \mathrm{H}$, dd-like, $J=7.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}, \mathrm{H}-5 \mathrm{~b}), 4.40\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}\right.$ $=10.8 \mathrm{~Hz}, \mathrm{H}-7$ 'a), $4.31\left(2 \mathrm{H}\right.$, dd-like, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=13.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-1 \mathrm{~b}\right), 4.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-7$ 'b) . ${ }^{13} \mathrm{C}$ NMR (pyridine- d_{5}): $\delta 79.4$ (C-3), 78.1 (C-2), 77.9 (C-3'), 72.6 (C-6'), 72.2 (C-4), 71.3 (C-5'), 70.5 (C-4'), 67.4 (C-2'), 65.4 (C-7'), 60.0 (C-5), 53.8 (C-1'), 50.1 (C-1). HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{12} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{Na})$: 447.0606. Found: 447.0596.

References

(1) Grindley, T. B.; Szarek, W. A. Can. J. Chem. 1974, 52, 4062-4070.
(2) Baggett, N.; Stribblehill, P. J. Chem. Soc., Perkin Trans. 1, 1977, 1123-1126.
(3) Kim, K. S.; Szarek, W. A. Synthesis 1978, 48-50.
(4) Ness, A. T.; Hann, R. M.; Hudson, C. S. J. Am. Chem. Soc. 1948, 70, 765-770.

