Supporting Information

Pseudopolymorph and Infinite Hydrogen Bonding Network of Cyclic Oligomers of \boldsymbol{m}-Aminobenzenesulfonic Acid

Kosuke Katagiri, Takako Kato, Hyuma Masu, Masahide Tominaga and Isao Azumaya*

Contents

X-ray Crystallographic Analysis. 2-5

X-ray Crystallographic Analysis.

Crystal data for 1 (Type I). $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} ; M=555.59 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism measuring $0.20 \times 0.10 \times 0.05 \mathrm{~mm}$, triclinic, $P-1, a=8.434(5), b=12.342(6), c=12.702(7) \AA, \alpha=$ 109.453(6), $\beta=97.697(7), \gamma=102.720(7)^{\circ}, V=1184.8(11) \AA^{3}, Z=2, D_{c}=1.557 \mathrm{Mg} \mathrm{m}^{-3}, T=$ $150 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.377 \mathrm{~mm}^{-1}, 2 \theta_{\max }=23.82^{\circ}, 4717$ reflections, 3506 unique reflections $\left(R_{\text {int }}=\right.$ $0.0706)$ which were used in all calculations. $R_{1}=0.1439, w R_{2}=0.2193$ (all data) $R_{1}=0.0805, w R_{2}=$ $0.1886(I>2 \sigma(I))$ for 309 parameters. The positions of hydrogen atoms included in the water molecules were not calculated.

Figure S1. ORTEP diagram of unit cell (left) and packing structure (right) in a crystal of $\mathbf{1}$ (type I).

Crystal data for 1 (Type II). $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{3} \cdot \mathrm{CH}_{4} \mathrm{O} ; M=497.55 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism measuring $0.50 \times 0.30 \times 0.30 \mathrm{~mm}$, monoclinic, $P 2_{1} / \mathrm{n}, a=8.430(1), b=8.9689(1), c=28.364(4) \AA$, $\beta=91.132(2)^{\circ}, V=2144.2(6) \AA^{3}, Z=4, D_{c}=1.541 \mathrm{Mg} \mathrm{m}^{-3}, T=291 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.394 \mathrm{~mm}^{-1}$, $2 \theta_{\max }=27.47^{\circ}, 12454$ reflections, 4851 unique reflections $\left(R_{\text {int }}=0.0290\right)$ which were used in all calculations. $R_{1}=0.0557, w R_{2}=0.1327$ (all data) $R_{1}=0.0403, w R_{2}=0.11170(I>2 \sigma(I))$ for 303 parameters.

Figure S2. ORTEP diagram of unit cell (left) and packing structure (right) in a crystal of $\mathbf{1}$ (type II).

Crystal data for 1 (Type III). $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} ; M=547.62 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism
measuring $0.40 \times 0.20 \times 0.10 \mathrm{~mm}$, triclinic, $P-1, a=9.949(2), b=10.949(2), c=11.940(3) \AA, \alpha=$ 81.215(3), $\beta=75.704(3), \gamma=77.805(7)^{\circ}, V=1225.0(5) \AA^{3}, Z=2, D_{c}=1.485 \mathrm{Mg} \mathrm{m}^{-3}, T=150 \mathrm{~K}$, $\mu(\mathrm{MoK} \alpha)=0.352 \mathrm{~mm}^{-1}, 2 \theta_{\max }=27.50^{\circ}, 7386$ reflections, 5344 unique reflections $\left(R_{\text {int }}=0.0280\right)$ which were used in all calculations. $R_{1}=0.0562, w R_{2}=0.1413$ (all data) $R_{1}=0.0448, w R_{2}=0.1299$ $(I>2 \sigma(I)$) for 327 parameters.

Figure S3. ORTEP diagram of unit cell (left) and packing structure (right) in a crystal of $\mathbf{1}$ (type III).

Crystal data for 2. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{4} ; M=620.68 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism measuring $0.15 \times 0.10 \times$ 0.05 mm , tetragonal, $I 4_{1} / \mathrm{a}, a=15.428(4), b=15.428(4), c=21.819(2) \AA, V=5193.3(19) \AA^{3}, Z=8$, $D_{c}=1.588 \mathrm{Mg} \mathrm{m}^{-3}, T=303 \mathrm{~K}, \mu=0.424 \mathrm{~mm}^{-1}, 2 \theta_{\max }=23.93^{\circ}, 8033$ reflections, 1844 unique $\left(R_{\mathrm{int}}\right.$ $=0.0886), R_{1}=0.0901, w R_{2}=0.1159\left(\right.$ all data) $R_{1}=0.0394, w R_{2}=0.0925(I>2 \sigma(I))$ for 181 parameters.

Figure S4. ORTEP diagram of asymmetric unit (left) and packing structure (right) in a crystal of $\mathbf{2}$.

