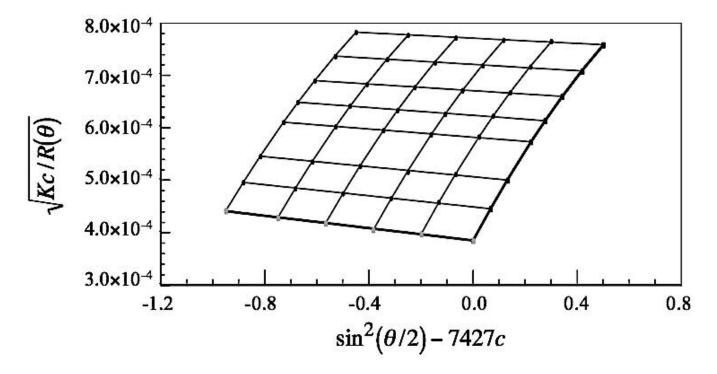

Supporting Information


(a)

(b)

(c)

Sample Zimm plots of polystyrene (PS) samples in toluene at room temperature. Here, θ , c, $R(\theta)$, and K respectively denote the detection angle, the concentration of a sample in g/ml, the excess Rayleigh ratio, and $K = \frac{4\pi^2}{N_A} \frac{n_0^2}{\lambda_0^4} \left(\frac{dn}{dc}\right)^2$ with N_A the Avogadro's number, n_0 the solvent refractive index $(n_0=1.488 \text{ for toluene})$, λ_0 the vacuum wavelength of incident light, and dn/dc the refractive index increment (dn/dc=0.106). Note that a negative "stretch factor" has been used for enhanced interpretability. We employed a "Berry plot" for (a) 1.28×10^6 g/mol, (b) 2.53×10^6 g/mol, and (c) 6.62×10^6 g/mol polystyrene, since this method of plotting is recommended for polymers with the molecular weight higher than 1 million g/mol. The actual molecular weight, the radius of gyration, and the second virial coefficient, A_2 for three different PS samples are listed in the table below.

Part No.	Nominal M_w	Actual M_w	R_g	A_2
(Batch No.)	10 ⁶ g/mol	10 ⁶ g/mol	nm	$10^{-4} \mathrm{mol}\cdot\mathrm{mL/g}^2$
F-128	1.09	1.28	43.9	2.32
F-288	2.11	2.53	62.9	2.84
F-550	5.48	6.62	104.8	1.77