Synthesis of Fused Piperidinones Through Free-Radical-Ionic Cascade

Edouard Godineau, ${ }^{\neq}$Kurt Schenk ${ }^{\neq}$and Yannick Landais ${ }^{\mp *}$
${ }^{\neq}$University Bordeaux 1, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France
${ }^{¥}$ University of Lausanne, Institut de Cristallographie, BCP , CH-1015 Dorigny-Lausanne, Switzerland
y.landais@ism.u-bordeaux1.fr

TABLE OF CONTENTS

TABLE OF CONTENTS 2
GENERAL EXPERIMENTAL 3
Synthesis of allylsilane compound 4 4
Aldehyde SI-2 4
Allylsilane oxime 4 5
Synthesis of allylsilane compound 5 6
Dienyl ester SI-4 7
Aldehyde SI-5 7
Allylsilane oxime 5 8
Synthesis of allylsilane compound 6 10
Allyldimethylphenylsilane SI-6 10
Alcohol SI-7. 11
Allylsilane oxime 6 13
Synthesis of allylsilane compound 7 15
Aldehyde SI-10 15
Allylsilane oxime 7 16
Synthesis of ene-aldoxime 8 18
Oxime 8 18
Synthesis of ene-aldoxime 9 18
Oxime 9 19
Synthesis of ene-aldoxime 10 19
Oxime 10 20
Thiyl radical addition-cyclisation 21
Silyl cyclopentane 12a 21
General Procedure for the "Two Pot" radical addition - ionic lactamization processes 21
Procedure \mathbf{A} 22
Procedure \mathbf{B} 22
General Procedure for "One Pot" radical addition - ionic lactamization processes 23
Methoxyamino ester 14a-b 24
Silyl aminoester 15a-b 25
Phenyliodoacetate 18 25
Synthesis of ketoxime 32 26
Ketoxime 32 26
Synthesis of bis p-nitrobenzoylester 34 28
Diol SI-16 28
Bis- p-nitrobenzoyl ester 34 29
X-Ray of bis- p-nitrobenzoyl ester 34 30
Synthesis of ketoximes 37 and 38 30
Aldehyde SI-17 31
Aldehyde SI-18 32
α, β unsaturated ester SI-19 33
α, β unsaturated ester SI-20 34
Oxime 37. 35
Oxime 38. 36
Synthesis of enol ether oxime 39 37
Enol ether ketone SI-21 37
Oxime 39 38
Control experiment excluding alkylation with benzyliodide in the absence of base 39
References 42

GENERAL EXPERIMENTAL

All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) homogeneous materials, unless otherwise stated. Commercial reagents were used without further purification, unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker AC-250 FT (${ }^{1} \mathrm{H}: 250 \mathrm{MHz},{ }^{13} \mathrm{C}: 62.9 \mathrm{MHz}$), Bruker AC-300 FT and $\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75.46 \mathrm{MHz}\right)$, Bruker ARX-400 FT (${ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100.6 \mathrm{MHz}$) using CDCl_{3} as internal reference unless otherwise indicated. The chemical shifts (δ) and coupling constants (J) are expressed in ppm and Hz respectively. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $b=$ broad. Gas chromatography was run on a Fisons Intruments, GC 8000 series. IR spectra were recorded on a Perkin-Elmer 1710 spectrophotometer, on a Perkin-Elmer Paragon 500 FT-IR spectrophotometer or on a Perkin-Elmer Mattson Unicam 500 16PC FT-IR. Mass spectra were recorded on a Nermag R10-10C. High resolution mass spectra were recorded on a FTICR mass spectrometer Bruker 4.7T BioApex II. Melting points were not corrected and determined by using a Büchi Totolli apparatus. Merk silica gel 60 (70-230 mesh), (230-400 mesh ASTM) and Baker silica gel ($0.063-0.200 \mathrm{~mm}$) were used for flash chromatography. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, (i-Pr) $)_{2} \mathrm{NH}$ were distilled from CaH_{2}. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium and benzophenone. Chlorosilanes were distilled from magnesium.

Synthesis of allylsilane compound 4

Aldehyde SI-2

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}$
Molecular Weight: 232,39
sl-2
To a solution of chlorodimethylphenylsilane ($13.4 \mathrm{~mL}, 80 \mathrm{mmol}$) in THF (80 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Ni}(\mathrm{acac})_{2}(1.03 \mathrm{~g}, 4 \mathrm{mmol}) .1,3$-Butadiene $(13.3 \mathrm{~mL}, 160 \mathrm{mmol})$, dissolved in THF $(10 \mathrm{~mL})$ was then added to the resulting mixture, immediately followed by phenylmagnesium bromide (3.0 m solution in THF, $32 \mathrm{~mL}, 96 \mathrm{mmol}$). The reaction mixture was allowed to warm up to $-20^{\circ} \mathrm{C}$ and stirred at this temperature for 20 h . The reaction was then quenched with 1 m HCl and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic extracts were then washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo to afford crude dienylsilane SI-1 used in the next step without further purifications. ${ }^{1}$ To a solution of $\mathrm{t}-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1 / 1,320 \mathrm{~mL})$ were added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(52 \mathrm{~g}, 158 \mathrm{mmol}, 2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(21.8 \mathrm{~g}, 158 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.209 \mathrm{~g}, 0.57 \mathrm{mmol}, 0.7 \mathrm{~mol} \%$), (DHQD) 2_{2} PYR ($0.5 \mathrm{~g}, 0.57 \mathrm{mmol}, 0.7 \mathrm{~mol} \%$). The orange solution was cooled to $5^{\circ} \mathrm{C}$ and methanesulfonamide was added ($2.31 \mathrm{~g}, 24 \mathrm{mmol}, 0.25$ equiv). The crude allylsilane, in solution in t - $\mathrm{BuOH}(20 \mathrm{~mL})$ was then added dropwise, and the resulting mixture was stirred at room temperature for 30 h . Sodium sulfite ($19 \mathrm{~g}, 2.0$ equiv) was then added at $0{ }^{\circ} \mathrm{C}$, and stirring was continued at room temperature for 1 h . The reaction was diluted with water and extracted with EtOAc (4x). The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and the solution was concentrated in vacuo. The resulting brown oil was
taken up in $\mathrm{MeOH}(100 \mathrm{~mL})$, THF $(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. Sodium periodate $(26 \mathrm{~g}, 120$ mmol) was added portionwise. The reaction mixture was stirred at room temperature for 1.5 h and then diluted with $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x})$. The combined organics was then washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Flash column chromatography (silica gel, 30:1 Petroleum Ether/ EtOAc) afforded aldehyde SI-2 $(6.60 \mathrm{~g}, 36 \%)$ as a light yellow oil and unreacted dienyl silane SI-1 from the first step (6.39 g , 47% yield base on recovered starting material).

4-(Dimethyl-phenyl-silanyl)-hex-5-enal (SI-2).

$\mathbf{R}_{\mathbf{f}}=0.21$ (silica gel, 30:1 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2956,1713,1427,1250,1115,833\left(\mathrm{~cm}^{-1}\right)$
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.71(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39$ (m, 3H), $5.55(\mathrm{dt}, J=10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=1.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.88(\mathrm{~m}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 202.7,138.5,137.1,134.0,129.1,127.7,113.8,43.5$, 34.0, 21.0, -4.6, -5.4.

Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi} \mathrm{C}, 72.36 ; \mathrm{H}, 8.67$. Found C, 72.23; H, 8.63.

Allylsilane oxime 4

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOSi}$
Molecular Weight: 261,43
4

To a solution of aldehyde $\operatorname{SI}-2(1.67 \mathrm{~g}, 7.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ were added methoxyamine hydrochloride $(0.63 \mathrm{~g}, 7.54 \mathrm{mmol}, 1.05 \mathrm{equiv})$ and sodium acetate (1.18 g , $14.4 \mathrm{mmol}, 2$ equiv). The resulting white slurry was stirred at room temperature for 12 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Flash column chromatography (silica gel, 40:1 Petroleum Ether/ EtOAc) afforded expected oxime 4 (1:1 E:Z mixture of stereoisomers) ($1.71 \mathrm{~g}, 91 \%$) as a light yellow oil.

4-(Dimethyl-phenyl-silanyl)-hex-5-enal O-methyl-oxime (Z)-(4). ${ }^{2}$

$\mathbf{R}_{\mathbf{f}}=0.27$ (silica gel, 30:1 Petroleum Ether:EtOAc).
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2956,1626,1428,1114,1049,835$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=9.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=1.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=17.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.80(\mathrm{~m}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 150.7,138.6,137.2,134.0,129.1,127.7,113.6,61.1$, 34.1, 29.1, 25.8, -4.5, -5.4.

HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOSi}\left[\mathrm{M}^{+}\right]$261.1549, found 261.1531.

4-(Dimethyl-phenyl-silanyl)-hex-5-enal O-methyl-oxime (E)-(4).

$\mathbf{R}_{\mathbf{f}}=0.23$ (silica gel, 30:1 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2960,1626,1249,1114,1043,900,835$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{t}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=1.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.72(\mathrm{~m}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 151.6,138.5,137.3,134.0,129.1,127.7,113.6,61.5$, 34.3, 25.4, 25.1, -4.5, -5.4.

HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOSi}[\mathrm{M}+$] 261.1549, found 261.1531.

Synthesis of allylsilane compound 5

Dienyl ester SI-4

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$
Molecular Weight: 364,55

To a solution of diisopropylamine ($0.37 \mathrm{~mL}, 2.63 \mathrm{mmol}, 1.3$ equiv.) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise n -butyllithium (2.41 m in hexane, $1.10 \mathrm{~mL}, 2.63 \mathrm{mmol}, 1.3$ equiv.). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes and then recooled to $-78{ }^{\circ} \mathrm{C}$. A solution of methyl 3-(dimethyl(phenyl)silyl)pent-4-enoate ${ }^{3}$ ($0.5 \mathrm{~g}, 2.02 \mathrm{mmol}, 1$ equiv.) was then added dropwise to the LDA solution. The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes and cinnamyl bromide ($0.60 \mathrm{~mL}, 4.04 \mathrm{mmol}, 2$ equiv.) was added dropwise. The reaction was allowed to gradually warm up to room temperature and stirred for an additional 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added. Layers were separated and the aqueous phase was washed with saturated aqueous NaCl , dried over MgSO_{4} and the solvents ere evaporated in vacuo. Flash column chromatography (silica gel, 30:1 Petroleum Ether/ EtOAc) afforded expected ester SI-4 ($0.535 \mathrm{~g}, 73 \%$) as a light yellow oil.
3-(Dimethyl-phenyl-silanyl)-2-(3-phenyl-allyl)-pent-4-enoic acid methyl ester (SI-4).
$\mathbf{R}_{\mathbf{f}}=0.36$ (silica gel, 30:1 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2950,1735,1625,1493,1428,1359,1249,1161,1112,965$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.39(\mathrm{~m}, 8 \mathrm{H}), 6.30(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04$ (ddd, $J=7.2,7.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{ddd}, J=10.6,10.6,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ $(\mathrm{dd}, J=1.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.68(\mathrm{dt}, J=4.2,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.40(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 175.0,137.4,136.9,136.2,134.3,131.7,129.1,128.4$, 127.6, 127.2, 127.0, 126.0, 115.3, 51.1, 45.8, 37.2, 35.4, -3.5, -4.5.

Aldehyde SI-5

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 290,43

SI-5
To a t-butanol and water solution $(1: 1,120 \mathrm{~mL})$ were added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(11.8 \mathrm{~g}, 36 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(4.98 \mathrm{~g}, 36 \mathrm{mmol}, 2 \text { equiv.), (DHQ) })_{2} \mathrm{PHAL}(288 \mathrm{mg}, 5 \mathrm{~mol} \%$) and potassium osmium dehydrate ($133 \mathrm{mg}, 0.36 \mathrm{mmol}, 4.5 \mathrm{~mol} \%$). After 10 minutes at $0{ }^{\circ} \mathrm{C}$,
methanesulfonamide ($1.71 \mathrm{mg}, 18 \mathrm{mmol}, 1$ equiv.) was added to the orange solution. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of ester SI-4 ($6.58 \mathrm{~g}, 18 \mathrm{mmol}, 1$ equiv.) was added dropwise. The reaction was then stirred at room temperature for 4 h . Sodium sulfite (4.53 g , $36 \mathrm{mmol}, 2$ equiv.) was then added at $0^{\circ} \mathrm{C}$ and stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was extracted with EtOAc (4x). The combined organic extracts were washed with brine (1x), dried over MgSO_{4} and concentrated in vacuo. The resulting crude diol was taken up in THF (60 mL), MeOH (60 mL) and water (60 mL) and sodium periodate $(5.77 \mathrm{~g}, 27$ mmol, 1.5 equiv.) was added. The white solution was stirred at room temperature for 3 h . The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organics was washed with saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, dried over MgSO_{4} and concentrated in vacuo. Flash column chromatography (silica gel, 25:1 Petroleum Ether:EtOAc) afforded expected aldehyde SI-5 ($1.56 \mathrm{~g}, 30 \%$ over the 2 steps) as a light yellow oil.

3-(Dimethyl-phenyl-silanyl)-2-(2-oxo-ethyl)-pent-4-enoic acid methyl ester (SI-5).

$\mathbf{R}_{\mathbf{f}}=0.20$ (silica gel, 96:4 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2954,2724,1732,1626,1428,1250,1174,1114,837$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 3 \mathrm{H})$, 5.56 (ddd, $J=10.2,10.6,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=1.9,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.03-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=10.2,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=3.0,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=$ $7.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C-NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 200.2,174.5,136.5,135.3,134.0,129.4,127.8,116.2$, 51.7, 44.3, 39.3, 36.8, -3.51, -4.4

HRMS (LSIMS) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 313.1236$, found 313.1231.

Allylsilane oxime 5

5

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}$ Molecular Weight: 319,47

To a solution of aldehyde SI-5 ($1.34 \mathrm{~g}, 4.61 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ were added sodium acetate ($0.76 \mathrm{~g}, 9.22 \mathrm{mmol}, 2.2$ equiv.) and methoxylamine hydrochloride (0.42 g , $9.22 \mathrm{mmol}, 1.1$ equiv.). The mixture was stirred at room temperature for 15 h . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$. Layers were separated and the organic phase was washed with saturated aqueous NaCl (1x), dried over MgSO_{4} filtered and the solution concentrated in
vacuo. Flash column chromatography (silica gel, 10:1 Petroleum Ether/ EtOAc) afforded expected oxime 5 ($1: 1$ mixture of $\mathrm{E}: Z$ stereoisomers) ($1.00 \mathrm{~g}, 71 \%$) as a colourless oil.

3-(Dimethyl-phenyl-silanyl)-2-(2-methoxyimino-ethyl)-pent-4-enoic acid methyl ester (5). $\mathbf{R}_{\mathbf{f}}=0.57$ and 0.67 (silica gel, 90:10 Petroleum Ether:EtOAc)

IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3071,2953,1732,1626,1428,1250,1170$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.26(\mathrm{~m}$, $0.6 \times 1 \mathrm{H}), 6.59(\mathrm{t}, J=5.5 \mathrm{~Hz}, 0.4 \times 1 \mathrm{H}), 5.48-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.88-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 0.4 \mathrm{x}$ $3 \mathrm{H}), 3.76(0.6 \times 3 \mathrm{H}), 3.42(0.4 \times 3 \mathrm{H}), 3.39(\mathrm{~s}, 0.6 \times 3 \mathrm{H}), 2.37-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.28(\mathrm{~m}$, $1 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 0.4 \times 3 \mathrm{H}), 0.28(\mathrm{~s}, 0.6 \times 3 \mathrm{H})$
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 174.7$ (0.5 C), 174.4 (0.5 C), 148.8 (0.5 C), 148.2 (0.5 C), $136.6(0.5 \mathrm{C}), 136.6(0.5 \mathrm{C}), 135.6(0.5 \mathrm{C}), 135.3(0.5 \mathrm{C}), 135.3$ ($0.5 \times 2 \mathrm{C}), 134.2(0.5 \times 2 \mathrm{C})$, 129.2 (1 C), 127.6 (2 C), 116.0 (0.5 C), 115.9 (0.5 C$), 61.6$ (0.5 C$), 61.3$ (0.5 C$), 51.5$ (0.5 C), 51.3 (0.5 C), 43.4 (0.5 C), 42.8 (0.5 C), 37.1 (0.5 C), 31.4 (0.5 C), 27.3 (0.5 C), -3.5 (0.5 C), -3.6 (1C), -4.5 (1C)

HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}^{+}-\mathrm{OMe}\right] 288.1420$, found 288.1445.

Synthesis of allylsilane compound 6

\qquad

SI-9

Allyldimethylphenylsilane SI-6

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Si}$
Molecular Weight: 176,33

Allyl bromide ($10.3 \mathrm{~mL}, 119.1 \mathrm{mmol}$) in dry THF (28 mL) was added dropwise to a stirred mixture of Mg turnings $(3.14 \mathrm{~g}, 131 \mathrm{mmol})$, chlorodimethylphenylsilane ($20 \mathrm{~mL}, 119.1$ $\mathrm{mmol})$ and dry THF (92 mL) at a rate sufficient to maintain gentle reflux. After being stirred at $25^{\circ} \mathrm{C}$ for 12 h , the mixture was poured onto ice, and the organic layer was washed with a saturated NaCl solution, dried over MgSO_{4}. The yellow oil ($20.32 \mathrm{~g}, 98 \%$) was directly used to prepared β - and γ-hydroxyallylsilanes. All spectroscopic data were in agreement with those previously reported. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H})$, $4.88(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.29(\mathrm{~s}, 6 \mathrm{H})$.

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}$
Molecular Weight: 364,67

To a solution of allyldimethylphenylsilane SI-6 ($5.0 \mathrm{~g}, 28.4 \mathrm{mmol}, 1.4$ equiv) in THF (57 mL) was added at $0^{\circ} \mathrm{C}$ n-Butylithium (2.27 m in hexane, $12.5 \mathrm{~mL}, 28.4 \mathrm{mmol}, 1.4$ equiv). Once the addition is complete, the resulting clear red solution was stirred for 20 minutes at room temperature, and then cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{TiCl}(\mathrm{Oi}-\mathrm{Pr})_{3}(1.0 \mathrm{~m}$ in THF, $30.5 \mathrm{~mL}, 30.5 \mathrm{mmol})$ was then added, and the reaction mixture was stirred for an additional 30 minutes at this temperature. 3-(tert-butyldimethylsilyloxy)propanal ($3.82 \mathrm{~g}, 20.3 \mathrm{mmol}, 1$ equiv) in solution in THF (20 mL) was then added dropwise. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 12h. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added at $-78^{\circ} \mathrm{C}$. The white slurry was allowed to warm to room temperature and stirred for 20 minutes. $\mathrm{Et}_{2} \mathrm{O}$ was added, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and the solution concentrated in vacuo. Flash chromatography (silica gel, 98:2 Petroleum Ether:EtOAc) afforded allylsilane SI-7 as a colorless oil ($5.48 \mathrm{~g}, 53 \%$).
1-(tert-Butyl-dimethyl-silanyloxy)-4-(dimethyl-phenyl-silanyl)-hex-5-en-3-ol (SI-7).
$\mathbf{R}_{\mathbf{f}}=0.21$ (silica gel, 98:2 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3510,2955,2855,1624,1471,1427,1388,1254,1087,890$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 7.57-7.40 (m, 2H), 7.34-7.27 (m, 3H), $5.63(\mathrm{dt}, J=5.3$,
$8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=2.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=2.3,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.99(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{bs}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=3.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 138.3,135.7,134.1,128.9,127.6,114.6,71.3,62.5$, $42.9,38,9,25.9,18.2,-3.5,-3.9,-5.5,-5.6$

HRMS (LSIMS) calcd. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 387.2152$, found 387.2154 .

Bis-protected diol SI-8

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ Molecular Weight: 292,45

To a solution of alcohol SI-7 ($3.0 \mathrm{~g}, 8.2 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added acetic anhydride ($2.28 \mathrm{ml}, 24.3 \mathrm{mmol}, 3$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($3.40 \mathrm{~mL}, 24.3 \mathrm{mmol}, 3$ equiv) and DMAP ($0.099 \mathrm{~g}, 0.81 \mathrm{mmol}, 0.1$ equiv.). The resulting solution was stirred at room temperature overnight (14 h). Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{x})$. The combined organics was washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Flash chromatography (silica gel, 98:2 Petroleum Ether:EtOAc) afforded the corresponding intermediate acetate as a colorless oil ($3.27 \mathrm{~g}, 98 \%$).

Acetic acid 1-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-2-(dimethyl-phenyl-silanyl)-but-3-enyl ester.
$\mathbf{R}_{\mathbf{f}}=0.29$ (silica gel, 98:2 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2958,1738,1626,1428,1372,1235,1116,1024,835$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.85(\mathrm{dt}, J=$ $10.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (dt, $J=3.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=2.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (dd, J $=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=2.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{dd}, J=3.8,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.83$ $(\mathrm{m}, 5 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 170.2,137.6,135.0,134.2,129.2,127.8,115.9,71.7$, 59.8, 39.9, 37.2, 26.0, 21.2, 18.4, -3.7, -3.8, -5.3.

HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}_{2}\left[\mathrm{M}^{+}-t-\mathrm{Bu}\right]$ 349.1655, found 349.1665.

The intermediate TBS-protected alcohol $(0.32 \mathrm{~g}, 0.80 \mathrm{mmol})$ was then dissolved in THF (3.2 $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{~mL})$ and acetic acid $(9.6 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 12 h . The mixture was carefully quenched with 1 m NaOH . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), brine (1x), dried over MgSO_{4}, filtered and the solution was concentrated in vacuo. Flash chromatography (silica gel, 75:25 Petroleum Ether:EtOAc) afforded primary alcohol SI-8 as a colorless oil ($0.23 \mathrm{~g}, 92 \%$).
Acetic acid 2-(dimethyl-phenyl-silanyl)-1-(2-hydroxy-ethyl)-but-3-enyl ester (SI-8).
$\mathbf{R}_{\mathbf{f}}=0.32$ (silica gel, 70:30 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3452,2958,1731,1428,1372,1248,1114,903$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{dt}, J=$ $10.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (quint., $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=1.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=$
$1.1,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.50(\mathrm{bs}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=3.4$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.8,137.2,134.7,134.1,129.3,127.9,116.1,71.2$, 58.6, 40.5, 38.0, 21.0, -3.8, -3.9

HRMS (LSIMS) calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$315.1392, found 315.1380.

Allylsilane oxime 6

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}$
Molecular Weight: 319,47

To a solution of alcohol SI-8 (2.50 g , $8.5 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$ was added DessMartin periodinane ($5.40 \mathrm{~g}, 12.7 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{NaHCO}_{3}(3.57 \mathrm{~g}, 42.5 \mathrm{mmol}, 5$ equiv). The resulting mixture was stirred at room temperature for 30 minutes. $\mathrm{Et}_{2} \mathrm{O}$ and a $1: 1$ mixture of saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were then added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and the solution was concentrated in vacuo. Flash chromatography (silica gel, 85:15 Petroleum Ether:EtOAc) afforded the intermediate corresponding aldehyde as a colorless oil ($2.30 \mathrm{mg}, 93 \%$). This aldehyde was usually obtained with sufficient purity to be used without further purifications.

Acetic acid 2-(dimethyl-phenyl-silanyl)-1-(2-oxo-ethyl)-but-3-enyl ester.

$\mathbf{R}_{\mathbf{f}}=0.34$ (silica gel, 85:15 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2929,2857,1738,1626,1372,1237,1112,836$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 3 \mathrm{H})$, $5.82(\mathrm{dt}, J=10.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=3.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=1.9,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{dd}, J=1.1,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=3.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 199.3,170.0,136.7,133.9,133.8,129.3,127.8,116.9$, 69.2, 48.2, 40.0, 20.8, -4.0, -4.2.

HRMS (LSIMS) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$313.1236, found 313.1216.

The crude aldehyde (8.5 mmol , 1 equiv) was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ and methoxylamine hydrochloride ($0.70 \mathrm{~g}, 8.6 \mathrm{mmol}$) and sodium acetate $(1.08 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.5$ equiv) were
added. The heterogeneous mixture was stirred at room temperature for $12 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was then added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1x). The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Flash chromatography (silica gel, 85:15 Petroleum Ether:EtOAc) afforded oxime 6 (1:1 mixture of $E: Z$ stereoisomers) as a colorless oil ($2.12 \mathrm{~g}, 81 \%$ for the 2 steps $)$.
Acetic acid 2-(dimethyl-phenyl-silanyl)-1-(2-methoxyimino-ethyl)-but-3-enyl ester (Z)(6).
$\mathbf{R}_{\mathbf{f}}=0.62$ (silica gel, 85:15 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2958,1739,1428,1372,1234,1114,1039,906,833$.
${ }^{1} \mathbf{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=10.4,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=3.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=1.8,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92$ (ddd, $J=0.6,1.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J=$ $3.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 170.0,146.8,136.8,133.9,133.9,129.2,127.7,116.6$, 70.9, 61.3, 39.7, 34.6, 20.9, -4.1.

HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NOSi}\left[\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}\right] 260.14707$, found 260.1478.
Acetic acid 2-(dimethyl-phenyl-silanyl)-1-(2-methoxyimino-ethyl)-but-3-enyl ester (E)(6).
$\mathbf{R}_{\mathbf{f}}=0.54$ (silica gel, 85:15 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2958,1739,1428,1372,1234,1039$.
${ }^{1} \mathbf{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=10.4,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=4.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=1.9,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91$ (ddd, $J=0.6,1.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{dd}, J=$ $4.0,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 146.8,136.8,134.0,133.9,133.9,129.2,127.8,116.4$, 70.8, 61.6, 40.3, 31.1, 20.9, -4.1

HRMS (LSIMS) calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 342.1501$, found 342.1488 .

Synthesis of allylsilane compound 7

Aldehyde SI-10

To a solution of the β-silyl ester SI-9 ${ }^{5}\left(0.146 \mathrm{~g}, 0.56 \mathrm{mmol}, 1\right.$ equiv) in THF $(5.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiALH}_{4}(0.043 \mathrm{~g}, 1.12 \mathrm{mmol}, 2$ equiv). The resulting grey slurry was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 h , and $\mathrm{NaOH} 15 \%(0.15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~mL})$ and $\mathrm{NaOH} 15 \%(0.4 \mathrm{~mL})$ were successively added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. The white slurry was filtered through a pad of Celite ${ }^{\circledR}$ and the white cake washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. The alcohol was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and diacetoxyiodobenzene ($0.27 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.5$ equiv) followed by TEMPO ($0.017 \mathrm{~g}, 0.11 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were successively added. The resulting orange solution was stirred at room temperature for 3.5 h and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layers were separated and the organic layer was washed with brine (1x), dried over MgSO_{4}, filtered and the solution concentrated in vacuo. Flash chromatography (silica gel, 97:3 Petroleum Ether:EtOAc) afforded the sensitive aldehyde SI-10 as a colorless oil ($0.105 \mathrm{~g}, 81 \%$ for the 2 steps). This sensitive aldehyde was briefly characterized by NMR before being used in the next step.

3-(Dimethyl-phenyl-silanyl)-2-methyl-pent-4-enal (SI-10).

$\mathbf{R}_{\mathbf{f}}=0.36$ (silica gel, 97:3 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2961,1725,1625,1428,1250,1114,834$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.46(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41$ (m, 3H), 5.66 (ddd, $J=10.1,10.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.04$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.38 (s, 3H), 0.36 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 204.7, 136.8, 134.2, 134.0, 129.3, 127.8, 115.8, 45.9, 34.9, 11.3, -4.1

HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OSi}\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$ 217.10487, found 217.1055.

Allylsilane oxime 7

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NOSi}$ Molecular Weight: 275,46

7
Aldehyde SI-10 ($0.090 \mathrm{~g}, 0.39 \mathrm{mmol}$, 1 equiv) was dissolved in THF (4 mL) and added at 0° C to a solution of ylid preformed from (methoxymethyl)triphenylphosphonium chloride (1.07 g, $3.12 \mathrm{mmol}, 8$ equiv) and n -butyllithium (1.7 m in hexane, $1.80 \mathrm{~mL}, 3.12 \mathrm{mmol}, 8$ equiv). The red color of the ylid progressively disappeared after a few minutes, and the mixture was quenched with the dropwise addition of $\mathrm{H}_{2} \mathrm{O}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and the solution concentrated in vacuo. Flash chromatography (silica gel, $99: 1 \rightarrow 98: 2$ Petroleum Ether:EtOAc) afforded a 80:20 mixture of E:Z enol ethers SI-11 as a colorless oil ($0.058 \mathrm{~g}, 57 \%$).

Enol ether (SI-11).

$\mathbf{R}_{\mathbf{f}}=0.41$ (silica gel, 98:2 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2958,1653,1428,1248,1207,1114,831$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 7.48-7.51 (m, 2H), 7.33-7.35 (m, 3H), $6.15(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 0.8 \times 1 \mathrm{H}), 5.61-5.75(\mathrm{~m}, 1 \mathrm{H}+0.2 \times 1 \mathrm{H}), 4.78-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dd}, \mathrm{J}=9.4,12.8 \mathrm{~Hz}$, $0.8 \times 1 \mathrm{H}), 4.19(\mathrm{dd}, J=7.3,9.8 \mathrm{~Hz}, 0.2 \times 1 \mathrm{H}$), $3.54(\mathrm{~s}, 0.2 \times 3 \mathrm{H}$), $3.20(\mathrm{~s}, 0.8 \times 3 \mathrm{H}$), 2.81-2.94 (m, $0.2 \times 1 \mathrm{H}$), $2.20-2.32(\mathrm{~m}, 0.8 \times 1 \mathrm{H}), 1.77(\mathrm{dd}, J=7.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $0.8 \times 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.2 \times 3 \mathrm{H}), 0.32(\mathrm{~s}, 0.2 \times 3 \mathrm{H}), 0.31(\mathrm{~s}, 0.8 \times 3 \mathrm{H}), 0.30(\mathrm{~s}, 0.2 \times$ $3 \mathrm{H}), 0.27$ ($\mathrm{s}, 0.8 \times 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 145.3$ ($0.8 \times 1 \mathrm{C}$), $144.0(0.2 \times 1 \mathrm{C}), 139.0,137.8,134.1$ ($0.2 \times 2 \mathrm{C}), 134.0(0.8 \times 2 \mathrm{C}), 128.6(0.8 \times 1 \mathrm{C}), 128.6(0.2 \times 1 \mathrm{C}), 127.5(0.8 \times 2 \mathrm{C}), 127.4(0.2 \times$ 2C), $114.0(0.8 \times 1 \mathrm{C}), 113.8(0.2 \times 1 \mathrm{C}), 113.7(0.2 \times 1 \mathrm{C}), 109.6(0.8 \times 1 \mathrm{C}), 59.4(0.2 \times 1 \mathrm{C})$, $55.3(0.8 \times 1 \mathrm{C}), 42.8(0.8 \times 1 \mathrm{C}), 41.8(0.2 \times 1 \mathrm{C}), 33.6(0.8 \times 1 \mathrm{C}), 29.0(0.2 \times 1 \mathrm{C}), 21.8(0.8 \times$ $1 \mathrm{C}), 20.4(0.2 \times 1 \mathrm{C}),-2.4(0.8 \times 1 \mathrm{C}),-3.0(0.2 \times 1 \mathrm{C}),-3.6(0.2 \times 1 \mathrm{C}),-3.9(0.8 \times 1 \mathrm{C})$.
To a solution of the above enol ether SI-11 ($0.049 \mathrm{~g}, 0.19 \mathrm{mmol}, 1$ equiv) in THF (2 mL) was added $\mathrm{HCl} 10 \%(0.5 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 4 h . Saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was then carefully added. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (1x). The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, brine (1x), dried over MgSO_{4}, filtered and the solution concentrated in vacuo to afford the pure aldehyde ($0.046 \mathrm{~g}, 99 \%$) which was used immediately without further purification. The aldehyde (0.19 mmol) was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) and methoxylamine hydrochloride ($0.044 \mathrm{~g}, 0.53 \mathrm{mmol}, 2.8$ equiv) and sodium acetate ($0.069 \mathrm{~g}, 0.84 \mathrm{mmol}, 4.4$ equiv) were successively added. The resulting mixture was stirred for 12 h at room temperature and $\mathrm{H}_{2} \mathrm{O}$ was added. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ (1x). The combined organic extracts were washed with brine (1x), dried over MgSO_{4}, filtered and the solution concentrated in vacuo. Flash chromatography (silica gel, 97:3 \rightarrow 96:4 Petroleum Ether:EtOAc) afforded oxime 7 (1:1 mixture of E:Z stereosiomers) as a colorless oil ($0.044 \mathrm{~g}, 85 \%$ for the 2 steps $)$.
4-(Dimethyl-phenyl-silanyl)-3-methyl-hex-5-enal O-methyl-oxime (7).
$\mathbf{R}_{\mathbf{f}}=0.37$ and 0.39 (silica gel, 96:4 Petroleum Ether:EtOAc)
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2959,1623,1427,1249,1113,1068,830$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 0.5 \times 1 \mathrm{H}), 6.55(\mathrm{t}, J=5.7 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 5.68-5.81(\mathrm{ddd}, J=1.1,10.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dt, $J=2.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.81(\mathrm{~s}, 0.5 \times 3 \mathrm{H})$, $1.82-2.29(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 150.9(0.5 \times 1 \mathrm{C}), 150.2(0.5 \times 1 \mathrm{C}), 137.9,135.0(0.5 \mathrm{x}$ $1 \mathrm{C}), 134.9(0.5 \times 1 \mathrm{C}), 134.0(0.5 \times 2 \mathrm{C}), 134.0(0.5 \times 2 \mathrm{C}), 129.0,127.7(2 \mathrm{C}), 115.7(0.5 \times 1 \mathrm{C})$, $115.6(0.5 \times 1 \mathrm{C}), 61.4(0.5 \times 1 \mathrm{C}), 61.1(0.5 \times 1 \mathrm{C}), 40.4(0.5 \times 1 \mathrm{C}), 40.1(0.5 \times 1 \mathrm{C}), 36.9(0.5 \times$ $1 \mathrm{C}), 32.3(0.5 \times 1 \mathrm{C}), 31.5(0.5 \times 1 \mathrm{C}), 31.0(0.5 \times 1 \mathrm{C}), 17.6(0.5 \times 1 \mathrm{C}), 17.3(0.5 \times 1 \mathrm{C}),-3.4$ ($0.5 \times 1 \mathrm{C}),-3.4(0.5 \times 1 \mathrm{C}),-3.8(0.5 \times 1 \mathrm{C}),-3.9(0.5 \times 1 \mathrm{C})$.
HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NSi}$ [M-OMe] ${ }^{+}$244.1522, found 244.1526.

Synthesis of ene-aldoxime 8

Oxime 8

To a solution of 5-hexene nitrile ($1.9 \mathrm{~g}, 20 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in hexane, $24 \mathrm{~mL}, 24 \mathrm{mmol}, 1.2$ equiv.) over a 30 minute period. The resulting mixture was stirred for an additional 30 minutes at this temperature and a saturated aqueous solution of Rochelle's salt (25 mL) was added dropwise. The white cloudy solution was allowed to warm to room temperature and stirred for 20 minutes. Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, dried over MgSO_{4} and filtered. To the resulting $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of aldehyde were added sodium acetate ($4.92 \mathrm{~g}, 60 \mathrm{mmol}, 3$ equiv.) and methoxylamine hydrochloride ($3.3 \mathrm{~g}, 40 \mathrm{mmol}, 2$ equiv.) The mixture was stirred at room temperature for 2 h . Water was added, layers were separated and the organic phase was washed with saturated aqueous NaCl (1x), dried over MgSO_{4} and filtered. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by normal distillation (1 bar), and the resulting oil was distilled under vacuum (1 mbar, $\mathrm{T}_{\text {eb. }} 88^{\circ} \mathrm{C}$) to afforded expected oxime 19 as a colorless oil $(1.90 \mathrm{~g}, 75 \%$ over the 2 steps). All spectroscopic data matched those reported in the literature. ${ }^{6}$

Synthesis of ene-aldoxime 9

Oxime 9

9

To a solution of the aldehyde $\mathbf{S I - 1 3}{ }^{7}$ ($0.37 \mathrm{~g}, 3.34 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ were added sodium acetate ($1.21 \mathrm{~g}, 14.7 \mathrm{mmol}, 4.4$ equiv.) and methoxylamine hydrochloride (0.78 $\mathrm{g}, 9.35 \mathrm{mmol}, 2.8$ equiv.). The mixture was stirred at room temperature for 4 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water. Layers were separated and the organic phase was washed with saturated aqueous NaCl (1x), dried over MgSO_{4} filtered and the solution concentrated in vacuo ($15{ }^{\circ} \mathrm{C}$ bath temperature). Flash column chromatography (silica gel, 98:2 Petroleum Ether:EtOAc) afforded expected oxime 9 ($1: 1$ mixture of $E: Z$ stereoisomers) $(0.25 \mathrm{~g}, 52 \%)$ as a as colorless oil.

4-Methyl-hex-5-enal O-methyl-oxime (9).

$\mathbf{R}_{\mathbf{f}}=0.75$ and 0.83 (silica gel, 92:8 Petroleum Ether:EtOAc).
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2957,1640,1456,1348,1058,914$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{x} 1 \mathrm{H}), 6.62(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $0.5 \mathrm{x} 1 \mathrm{H}), 5.59-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.92-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.81(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 2.26-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.08-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 0.5 \mathrm{x} 3 \mathrm{H}), 1.00(\mathrm{~s}, 0.5 \times 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 151.7(0.5 \times 1 \mathrm{C}), 150.8(0.5 \times 1 \mathrm{C}), 143.6(0.5 \times 1 \mathrm{C}), 143.6$ ($0.5 \times 1 \mathrm{C}), 113.4(0.5 \times 1 \mathrm{C}), 113.4(0.5 \times 1 \mathrm{C}), 61.5(0.5 \times 1 \mathrm{C}), 61.2(0.5 \times 1 \mathrm{C}), 37.6(0.5 \times 1 \mathrm{C}), 37.4$ $(0.5 \times 1 \mathrm{C}), 33.4(0.5 \times 1 \mathrm{C}), 32.9(0.5 \times 1 \mathrm{C}), 27.3(0.5 \times 1 \mathrm{C}), 23.5(0.5 \times 1 \mathrm{C}), 20.0(0.5 \times 1 \mathrm{C}), 20.0$ ($0.5 \times 1 \mathrm{C}$).
MS (EI): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}\left[\mathrm{M}^{+}\right]$141.2, found 141.2.

Synthesis of ene-aldoxime 10

10
23\% (2 steps)

10

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}$
Molecular Weight: 183,29

To a solution of 4-tert-Butyl-hex-5-enoic acid ethyl ester $\mathbf{S I} \mathbf{- 1 5}{ }^{8}$ ($0.35 \mathrm{~g}, 1.77 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 m in hexane, $1.77 \mathrm{~mL}, 1.77 \mathrm{mmol}, 1$ equiv.) over a 45 min period. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and a saturated aqueous Rochelle's salt solution (potassium sodium tartrate, 7 mL) was added at $-30{ }^{\circ} \mathrm{C}$. Layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2x). The combined organic extracts were washed with saturated aqueous NaCl (1x), and dried over MgSO_{4} filtered. To this crude solution of aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added methoxylamine hydrochloride ($0.297 \mathrm{~g}, 3.55 \mathrm{mmol}, 2$ equiv.) and sodium acetate ($0.640 \mathrm{~g}, 7.80 \mathrm{mmol}, 4$ equiv.). The resulting mixture was stirred at room temperature for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was then added. Layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo ($15{ }^{\circ} \mathrm{C}$ bath temperature). Flash chromatography (silica gel, 98.5:1.5 pentane:EtOAc) afforded title oxime 10 (1:1 mixture of $\mathrm{E}: \mathrm{Z}$ stereoisomers) as a colorless oil ($0.074 \mathrm{~g}, 23 \%$ over 2 steps).

4-tert-Butyl-hex-5-enal O-methyl-oxime (10).
$\mathbf{R}_{\mathbf{f}}=0.49$ (silica gel, 99:1 Petroleum Ether:EtOAc).
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2964,1742,1467,1366,1059,914$.
${ }^{1} \mathbf{H}$-NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.8 \mathrm{x} 1 \mathrm{H}), 6.60(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $0.2 \mathrm{x} 1 \mathrm{H}), 5.59-5.447(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 0.2 \times 3 \mathrm{H}), 3.79(\mathrm{~s}$, $0.8 \times 3 \mathrm{H}), 1.83-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 0.2 \mathrm{x} 9 \mathrm{H}), 0.85(\mathrm{~s}$, $0.8 \mathrm{x} 9 \mathrm{H})$.

[^0]
Thiyl radical addition-cyclisation

Silyl cyclopentane 12a

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}$
Molecular Weight: 429,65

12a
To a solution of allylsilane oxime $\mathbf{8 (1 0 0 ~ m g , ~} 0.31 \mathrm{mmol}, 1$ equiv) in degassed toluene (3 mL) was added thiophenol ($62 \mu \mathrm{~L}, 0.62 \mathrm{mmol}, 2$ equiv). The solution was thermostated at $25^{\circ} \mathrm{C}$, and the reaction mixture was irradiated with a sun lamp for 6 h . TLC then indicated complete consumption of the starting material. Solvent was then removed in vacuo. Flash chromatography (silica gel, 80:20 \rightarrow 75:25 Petroleum Ether:EtOAc) afforded the title compound 12a as a yellow solid as a $88: 12$ mixture with its diastereomer 12b ($125 \mathrm{mg}, 95 \%$ combined yield).

Acetic acid 2-(dimethyl-phenyl-silanyl)-4-methoxyamino-3-phenylsulfanylmethylcyclopentyl ester (12a).
IR (neat, NaCl$) v_{\max }\left(\mathrm{cm}^{-1}\right) 2938,1743,1584,1427,1372,1247,1112,1023$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.24(\mathrm{~m}$, $5 \mathrm{H}), 5.95(\mathrm{bs}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=3.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.85$ (dd, $J=4.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=10.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40-2.52 (m, 1H), 2.20-2.3 (m, $1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.87(\mathrm{~m}, 2 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.2,138.6,136.3,133.6,129.1,128.9,127.9,126.0$ 126.6, 78.6, 62.3, 61.2, 43.0, 38.8, 36.1, 34.0, 21.2, -2.6, -3.1.

HRMS (LSIMS) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}\left[\mathrm{M}+\mathrm{H}^{+}\right] 430.1872$, found 430.1860

General Procedure for the "Two Pot" radical addition - ionic lactamization processes
1.

$$
4 \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}
$$

$$
8 \text { R }=\mathrm{H}
$$

16a-b $R=\mathrm{SiMe}_{2} \mathrm{Ph}$
17a-b $R=H$

To a solution of oxime (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ (not degassed) under an N_{2} atmosphere was added the desired ethyliodoacetate $\mathbf{1 3}$ (2 to 3 equivalents). The resulting mixture was cooled to the indicated temperature and $\mathrm{Et}_{3} \mathrm{~B}$ (1.0 m in hexane, 2 equivalents) was added. A balloon filled with O_{2} was then adapted above the flask and the mixture was stirred at the same temperature until TLC indicated complete consumption of the starting oxime. In the case of non-silylated oxime, completion of the reaction often required additional $\mathrm{Et}_{3} \mathrm{~B}$ injections (via portions of 2 equivalents directly in the solution to avoid premature reaction with the O_{2} atmosphere, 1.0 m in hexane, generally up to 6 equivalents) every 3 h until no starting material could be identified by TLC. Volatile materials were then removed in vacuo and the resulting crude oil was treated either via the following procedure \mathbf{A} or procedure \mathbf{B}.

Procedure A

The crude mixture obtained was dissolved in benzene (ca. 0.1 m) and trifluoroacetic acid was added. The resulting solution was heated at reflux for 2 h . Saturated aqueous NaHCO_{3} was then cautiously added at $5-10{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and the solution was concentrated in vacuo. The crude oil obtained was purified by flash chromatography (silica gel).

Lactam 16a: Prepared according to the procedure described above from oxime $4(0.1 \mathrm{~g}, 0.38$ mmol, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.8 mL), ethyliodoacetate 13 ($0.135 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 3 equiv.) and triethylborane (1.0 m in hexane, $1.14 \mathrm{~mL}, 1.14 \mathrm{mmol}, 3$ equiv) at $-20^{\circ} \mathrm{C}$. Volatiles were removed in vacuo. The resulting oil ($0.079 \mathrm{~g}, 0 . \mathrm{mmol}, 1$ equiv.) was taken up in benzene (10 mL) and cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid ($0.045 \mathrm{~mL}, 0.57 \mathrm{mmol}, 5$ equiv.) was added and the mixture was heated at $85^{\circ} \mathrm{C}$ for 1 h . Upon work up, purification by flash column chromatography afforded 16a as yellow oil ($80 \mathrm{mg}, 70 \%$). See next page for characterization data for 16a.

Procedure B

The crude material obtained from the radical cascade was dissolved in toluene (ca. 0.05 m) and cooled to $0{ }^{\circ} \mathrm{C}$. Trimethylaluminum (2.5 equivalents) was then added and the resulting solution was progressively heated at $100{ }^{\circ} \mathrm{C}$ for a period ranging from 18 to 24 h . Upon cooling to room $5-10^{\circ} \mathrm{C}, 1.0 \mathrm{~m} \mathrm{HCl}$ was cautiously added to the mixture and stirring was
continued at room temperature for 30 minutes to ensure complete hydrolysis. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, dried over MgSO_{4}, filtered and the solution was concentrated in vacuo. The crude oil obtained was purified by flash chromatography (silica gel).
Lactam 17a-b: Prepared according to the procedure described above from oxime 8 (0.047 g , $0.79 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, ethyliodoacetate $\mathbf{1 3}(0.19 \mathrm{~mL}, 1.58 \mathrm{mmol}, 2$ equiv.) and triethylborane (1.0 m in hexane, $1.8 \mathrm{~mL}, 1.8 \mathrm{mmol}, 2$ equiv.) at $0{ }^{\circ} \mathrm{C}$. Additional triethylborane (1.0 m in hexane, $1.8 \mathrm{~mL}, 1.8 \mathrm{mmol}, 2$ equiv.) was required to completely consume all starting materials. Volatiles were removed in vacuo. Flash chromatography afforded diastereomers $\mathbf{1 4 a}$ and $\mathbf{1 4 b}(136 \mathrm{mg}, 80 \%$ combined yield). A portion of the resulting oil ($0.079 \mathrm{~g}, 0.37 \mathrm{mmol}, 1$ equiv.) was taken up in toluene $(10 \mathrm{~mL})$ and cooled to 0 ${ }^{\circ} \mathrm{C}$. Trimethylaluminum (2 M in hexane, $0.46 \mathrm{~mL}, 0.92 \mathrm{mmol}, 2.5$ equiv.) and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 20 h . Upon work up, purification by flash column chromatography afforded a mixture ($80: 20$) of $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ as yellow oil ($36 \mathrm{mg}, 57 \%$). See next page for characterization data for 14a, 14b, 17a and 17b.

General Procedure for "One Pot" radical addition - ionic lactamization processes

To a solution of oxime (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~m})$ (not degassed) under an N_{2} atmosphere was added the desired α-iodoester (see text for number of equivalents). The resulting mixture was cooled to the indicated temperature (generally $-20^{\circ} \mathrm{C}$) and $\mathrm{Et}_{3} \mathrm{~B}(1.0 \mathrm{~m}$ in hexane, see text for number of equivalents) was added. A balloon filled with O_{2} was then adapted above the flask and the mixture was stirred at the same temperature until TLC indicated complete consumption of the starting oxime. In the case of non-silylated oxime, completion of the reaction often required additional $\mathrm{Et}_{3} \mathrm{~B}$ injections (via portions of 2 equivalents directly in the solution to avoid premature reaction with the O_{2} atmosphere, 1.0 M in hexane, see text for total number of equivalents) every 3 h until no starting material could be identified by TLC. Volatile materials were then removed in vacuo and the resulting crude oil was purified by flash chromatography (silica gel).

Methoxyamino ester 14a-b

Prepared according to the general procedure described above from oxime 8 ($0.160 \mathrm{~g}, 1.26$ mmol, 1 equiv), ethyliodoacetate $\mathbf{1 3}(0.224 \mathrm{~mL}, 1.68 \mathrm{mmol}, 1.5$ equiv) and triethylborane (1.0 m in hexane, $3.7 \mathrm{~mL}, 3.7 \mathrm{mmol}$, 3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Flash chromatography (silica gel, 85:15 Petroleum ether/EtOAc) afforded minor diastereomer $\mathbf{1 4 b}$ ($0.037 \mathrm{~g}, 17 \%$) and major diastereoisomer $14 \mathbf{a}(0.116 \mathrm{~g}, 53 \%)$.
3-(2-Methoxyamino-cyclopentyl)-propionic acid ethyl ester; major diastereomer (14a).
$\mathbf{R}_{\mathbf{f}}=0.33$ (silica gel, 90:10 Petroleum ether:EtOAc)
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3263,2940,2872,1732,1466,1446,1371,1251,1179,1036$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 5.40(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, $3.39(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.86(\mathrm{~m}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 173.8,62.6,61.7,60.2,42.8,33.5,29.7,29.5,24.3$, 21.8, 14.2

HRMS (LSIMS) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3}$ [M+] 215.1521, found 215.1525

3-(2-Methoxyamino-cyclopentyl)-propionic acid ethyl ester; minor diastereomer (14b).
$\mathbf{R}_{\mathbf{f}}=0.32$ (silica gel, 85:15 Petroleum ether:EtOAc)
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3525 ; 2938 ; 1732,1466,1447,1374,1254,1182,1036$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 5.40(\mathrm{bs}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.24(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 173.7,67.1,62.1,60.2,42.7,33.1,31.4,30.5,29.8$, 23.4, 14.2

HRMS (LSIMS) calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$216.1599, found 216.1600.

Silyl aminoester 15a-b

15a

15b

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ Molecular Weight: 349,54

Prepared according to the general procedure described above from oxime $4(0.07 \mathrm{~g}, 0.268$ mmol, 1 equiv), ethyliodoacetate $\mathbf{1 3}(0.063 \mathrm{~mL}, 0.53 \mathrm{mmol}, 2$ equiv) and triethylborane (0.67 $\mathrm{mL}, 0.67 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Flash chromatography (silica gel, 25:1 PE:EtOAc) afforded the title methoxyamino ester $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ ($0.051 \mathrm{~g}, 54 \%$ yield) as a yellow oil and lactam $16 \mathbf{a}(0.025 \mathrm{~g}, 30 \%$ yield) as a yellow oil.
NOTE: No significant amount of lactam was initially detected on the crude ${ }^{1} \mathrm{H}$ NMR, observation which led us to assume that 15a is transformed to 16a during the flash chromatography on silica gel. Upon repetition of this experiment, we found that the ratios of 15a and 16a were NOT reproducible from experiment to experiment.

3-[2-(dimethyl-phenyl-silanyl)-5-methoxyamino-cyclopentyl]-propionic acid ethyl ester

 (15a-b). 85:15 mixture of diastereomer also containing $6-7 \%$ of lacatm 16a. This compound was only briefly characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy.${ }^{1} \mathbf{H}$-NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{bs}, 1 \mathrm{H})$, $4.04-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 0.85 \mathrm{x} 3 \mathrm{H}), 3.44(\mathrm{~s}, 0.15 \mathrm{x} 3 \mathrm{H}), 3.65(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.85 \mathrm{x} 1 \mathrm{H}), 3.18$ (q, $J=5.2 \mathrm{~Hz}, 0.15 \mathrm{x} 1 \mathrm{H}), 2.21-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.08-1.30$ (m, 4H), 0.27-0.32 (m, 6H)

Phenyliodoacetate 18

To a solution of phenol ($2.0 \mathrm{~g}, 34 \mathrm{mmol}$, 1 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(34 \mathrm{~mL})$, at $0^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}$ ($7.1 \mathrm{~mL}, 51 \mathrm{mmol}, 1.5$ equiv.) and DMAP $(0.41 \mathrm{~g}, 3.4 \mathrm{mmol}, 0.1$ equiv.). Chloroacetylchoride ($3.0 \mathrm{~mL}, 37 \mathrm{mmol}, 1.1$ equiv.) was then added dropwise and the resulting mixture was stirred for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was then added and layers were separated. The aqueous layer
was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2x). The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{x})$, saturated aqueous NaCl (1x), dried over MgSO_{4} and concentrated in vacuo. The resulting dark oil was taken up in acetone (34 mL) and sodium iodide was added $(5.5 \mathrm{~g}, 37 \mathrm{mmol})$. The reaction was heated at reflux overnight. Once cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ were added. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2x). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ (1x), saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (2x), saturated aqueous NaCl (1x), dried over MgSO_{4} and concentrated in vacuo. The resulting white brown solid was recrystallized to afford a first crop of pure phenyliodoacetate $18(1.70 \mathrm{~g}, 19 \%$ yield). Concentration and recrystallization of mother liquors afforded a second crop ($1.38 \mathrm{~g}, 16 \%$ yield). Finally, mothers liquors were purified by flash chromatography (silica gel, $95: 5 \rightarrow 96: 4$ Petroleum Ether:EtOAc) afforded the title compound 18 as a white solid ($0.912 \mathrm{~g}, 10 \%$ yield, 45% total yield).
$\mathbf{R}_{\mathbf{f}}=0.30$ (silica gel, 95:5 Petroleum Ether:EtOAc)
Mp 75-77 ${ }^{\circ} \mathrm{C}$
IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right) 1736,1418,1249,1185,1147,1075,938$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 7.37-7.43 (m, 2H), 7.23-7.28(m, 1H), 7.11-7.14 (m, $2 \mathrm{H}), 3.90$ ($\mathrm{s}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.4,150.5,129.5,126.2,120.9,-6.0$
MS (EI) m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}[\mathrm{M}+]$ 262.0, found 262.0.

Synthesis of ketoxime 32

Ketoxime 32

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NOSi}$ Molecular Weight: 289,49

To a solution of aldehyde SI-2 ($0.5 \mathrm{~g}, 2.14 \mathrm{mmol}, 1$ equiv.) in THF (8 mL) at $0^{\circ} \mathrm{C}$ was added dropwise ethylmagnesium bromide (3.0 M in THF). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and the reaction was then quenched with water and HCl 1 n and diluted with $\mathrm{Et}_{2} \mathrm{O}$. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were then washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. The resulting crude alcohol (mixture of diastereomers) was of sufficient purity to be used in the next step without further purification. Crude alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ and Dess-Martin periodinane was added ($1.34 \mathrm{~g}, 3.21 \mathrm{mmol}, 1.5$ equiv.). The resulting mixture was stirred at room temperature for 1 h . It was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added. Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organics was then washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, dried over MgSO_{4}, filtered and concentrated in vacuo. (Flash chromatography (silica gel, 97:3 Petroleum Ether:EtOAc) eventually afforded the corresponding ketone). The crude ketone was then taken up in $\mathrm{EtOH}(5.7 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.9 \mathrm{~mL})$. Sodium acetate (0.131 $\mathrm{g}, 1.6 \mathrm{mmol}, 2$ equiv.) and methoxylamine hydrochloride ($0.080 \mathrm{~g}, 0.96 \mathrm{mmol}, 1.2$ equiv.) were added. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 h . Once cooled to room temperature, water was added, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO 4 , filtered and concentrated in vacuo. Flash chromatography (silica gel, 35:1 Petroleum Ether:EtOAc) afforded oxime 32 (1:1 mixture of E:Z stereoisomers) as a yellow oil (0.266 g , 43% over the 3 steps).
(E)-6-(dimethyl(phenyl)silyl)oct-7-en-3-one O-methyl oxime (32).
$\mathbf{R}_{\mathbf{f}}=0.37$ and 0.40 (silica gel, 25:1 Petroleum Ether:EtOAc)
IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2858,1625,1427,1249,1114,1053,832$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.52-5.68(\mathrm{~m}$, $1 \mathrm{H}), 4.93-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.76(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 1.78-2.39$ $(\mathrm{m}, 4 \mathrm{H}), 1.78-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.95-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 162.4(0.5 \times 1 \mathrm{C}), 162.3$ ($\left.0.5 \times 1 \mathrm{C}\right), 139.0$ (1C), 137.5 (1C), $134.0(2 \mathrm{C}), 129.0(1 \mathrm{C}), 127.6(2 \mathrm{C}), 113.4(0.5 \times 1 \mathrm{C}), 113.1(0.5 \times 1 \mathrm{C}), 61.0(0.5 \times 1 \mathrm{C})$, $60.9(0.5 \times 1 \mathrm{C}), 34.8(0.5 \times 1 \mathrm{C}), 34.3$ ($0.5 \times 1 \mathrm{C}$), 33.3 ($0.5 \times 1 \mathrm{C}$), 28.0 ($0.5 \times 1 \mathrm{C}$), 27.6 ($0.5 \times$ $1 \mathrm{C}), 25.6(0.5 \times 1 \mathrm{C}), 24.7(0.5 \times 1 \mathrm{C}), 21.4$ ($0.5 \times 1 \mathrm{C}), 11.1$ ($0.5 \times 1 \mathrm{C}$), 10.3 ($0.5 \times 1 \mathrm{C}$), -4.5 (1C), -5.2 (1C)

HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NOSi}\left[\mathrm{M}^{+}\right]$289.1862, found 289.1883.

Synthesis of bis p-nitrobenzoylester 34

33
SI-16

Diol SI-16

LiAlH_{4} ($156 \mathrm{mg}, 4.1 \mathrm{mmol}, 2.7$ equiv.) was slurried in THF (12 ml). The grey mixture was cooled to $0^{\circ} \mathrm{C}$, and $32(710 \mathrm{mg}, 1.53 \mathrm{mmol}, 1$ equiv.) was added as a solution in THF (5 mL). The mixture was stirred 0.5 h at $0{ }^{\circ} \mathrm{C}$ and then carefully quenched by successive addition of $\mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~mL})$, $\mathrm{NaOH} 15 \%(0.16 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.48 \mathrm{~mL})$. Upon warming to room temperature, the white slurry was filtered through a pas of Celite ${ }^{\circledR}$. The white cake was further washed with ether. The combined organic filtrate was concentrated in vacuo. The diol SI-16 can eventually be purified by column chromtatography on silica gel (EtOAc).

3-(5-(dimethyl(phenyl)silyl)-2-ethyl-2-
((2ydroxyethyl)(methoxy)amino)cyclopentyl)propan-1-ol (SI-16).
$\mathbf{R}_{\mathbf{f}}=0.52(\mathrm{EtOAc})$

IR (neat, NaCl$) v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3416,1469,1427,1248,1110,1046$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.79(\mathrm{~m}$, $2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.10-1.61$ $(\mathrm{m}, 9 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 138.8,133.9,128.9,127.6,75.2,63.9,63.1,60.2$, 56.0, 48.5, 32.1, 31.3, 31.3, 28.3, 28.1, 26.0, 9.5, -3.5, -4.1.

HRMS (TOF) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 402.2440$, found 402.2447.

Bis-p-nitrobenzoyl ester 34

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}$ Molecular Weight: 677,82

The crude diol SI-16 (1.53 mmol, 1 equiv.) was then taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and added dropwise to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{ml})$ solution containing $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.65 \mathrm{mmol}, 5$ equiv.), p nitrobenzoylchloride ($852 \mathrm{mg}, 4.59 \mathrm{mmol}, 3$ equiv.) and DMAP (cat. amount). The yellow mixture was stirred for 0.5 h at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the organic layer was further washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x})$, saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, brine (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Flash column chromatography (silica gel, 90:10 to 83:17 petroleum ether/EtOAc) afforded the title compound 34 as a yellow foamy solid $(1.037 \mathrm{~g}, 82 \%$ over the 2 steps $)$.

2-((-3-(dimethyl(phenyl)silyl)-1-ethyl-2-(3-(4-
nitrobenzoyloxy)propyl)cyclopentyl)(methoxy)amino)ethyl 4-nitrobenzoate (34).
$\mathbf{R}_{\mathbf{f}}=0.17$ (Petroleum Ether:EtOAc)
Mp $99-102{ }^{\circ} \mathrm{C}$
IR (neat, NaCl$) v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3428,1724,1529,1348,1276,1104$
${ }^{1} \mathbf{H}$-NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.09-8.26(\mathrm{~m}, 9 \mathrm{H}), 7.34-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.30(\mathrm{~m}$, $3 \mathrm{H}), 4.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.03-3.22(\mathrm{~m}, 2 \mathrm{H}), 1.76$
$-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.12-1.30(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}$, $3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=164.6,164.5,150.6,150.4,138.7,135.7,135.4,133.9$, $130.6,130.6,129.0,127.7,123.6,123.5,75.3,66.2,64.0,63.6,52.8,48.8,31.9,31.9,28.6$, 28.0, 27.4, 26.1, 9.4, -3.4, -4.1.

X-Ray of bis-p-nitrobenzoyl ester 34

Synthesis of ketoximes 37 and 38

Aldehyde SI-17

SI-17

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$
Molecular Weight: 288,46

To a solution containing activated magnesium turnings ($161 \mathrm{mg}, 6.7 \mathrm{mmol}, 2$ equiv.) in THF (10 mL) was slowly added 2-(2-bromoethyl)-1,3-dioxolane ($0.61 \mathrm{~mL}, 5.17 \mathrm{mmol}, 1.5$ equiv.). The resulting mixture was heated at reflux for 1.5 h . The yellow solution was then added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of aldehyde $\mathbf{S I}-2(800 \mathrm{mg}, 3.44 \mathrm{mmol}$, 1 equiv.) in THF (10 mL). The resulting mixture was allowed to gradually warm up to room temperature and stirred at room temperature overnight (ca. 15h). It was then quenched by the addition of HCl 1 N . Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude mixture of alcohols (mixture of diastereomers) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and solid $\mathrm{NaHCO}_{3}(630 \mathrm{mg}, 7.5 \mathrm{mmol}, 5$ equiv.) and Dess-Martin periodinane ($1.27 \mathrm{~g}, 3.00 \mathrm{mmol}, 2$ equiv.) were successively added. The mixture was stirred at room temperature for 3 h . The mixture was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}: \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (1:1). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (1x). The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo.

The corresponding acetal was taken up in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and $\mathrm{AcOH}(3 \mathrm{~mL})$. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ for 4 h . It was then carefully quenched by adjusting the pH to 8 by the addition of $\mathrm{NaOH} 10 \%$. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layers was drained off and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x})$, saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 90 : 10 Petreoleum Ether / EtOAc) affored the sensitive aldehyde SI-17 ($248 \mathrm{mg}, 25 \%$ yield over 3 steps) as a colourless oil.

7-(dimethyl(phenyl)silyl)-4-oxonon-8-enal (SI-17)

$\mathbf{R}_{\mathbf{f}}=0.10$ (90:10 Petroleum Ether:EtOAc)
IR (neat, NaCl) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2957,1713,1625,1427,1249,1113,833$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 3 \mathrm{H})$, 5.53 (ddd, $J=7.0,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=1.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=0.9,17.1$
$\mathrm{Hz}, 1 \mathrm{H}), 2.29-2.73(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.95(\mathrm{~m}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H})$

${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 208.9, 200.5, 138.8, 137.2, 134.0, 129.1, 127.7, 113.5, 42.0, 37.4, 34.8, 34.0, 22.4, - 4.6, - 5.4.

Aldehyde SI-18

To a solution containing activated magnesium turnings ($141 \mathrm{mg}, 5.9 \mathrm{mmol}, 12.0$ equiv.) in THF (10 mL) was slowly added 2-(3-bromopropyl)-1,3-dioxolane ($1.21 \mathrm{~g}, 4.51 \mathrm{mmol}, 1.5$ equiv.). The resulting mixture was heated at reflux for 1.5 h . The yellow solution was then added to a cooled ($0^{\circ} \mathrm{C}$) solution of aldehyde SI-2 ($700 \mathrm{mg}, 3.01 \mathrm{mmol}, 1$ equiv.) in THF (10 mL). The resulting mixture was allowed to gradually warm up to room temperature and stirred at room temperature overnight (ca. 15h). It was then quenched by the addition of HCl 1 N . Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. The reaction was also run separately on a 1.5 mmol scale (relative to the aldehyde). The combined crude mixture of alcohols (mixture of diastereomers, theoretically 4.5 mmol if we assume a 100% yield in the first step)) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and solid $\mathrm{NaHCO}_{3}(1.26 \mathrm{~g}, 15 \mathrm{mmol}$, 3.3 equiv.) and Dess-Martin periodinane ($2.93 \mathrm{~g}, 6.9 \mathrm{mmol}, 1.5$ equiv.) were successively added. The mixture was stirred at room temperature for 2.5 h . The mixture was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}: \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (1:1). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (1x). The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo.

The corresponding acetal was taken up in $\mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{~mL})$, THF $(2.8 \mathrm{~mL})$ and $\mathrm{AcOH}(11 \mathrm{~mL})$. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ for 2 h . It was then carefully quenched by adjusting the pH to 8 by the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layers was drained off and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2x) and EtOAc (1x). The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 88:12 Petreoleum Ether / EtOAc) afforded the sensitive aldehyde SI-18 ($645 \mathrm{mg}, 48 \%$ yield over 3 steps) as a colourless oil.

8-(dimethyl(phenyl)silyl)-5-oxodec-9-enal (SI-18)

$\mathbf{R}_{\mathbf{f}}=0.41$ (86:14 Petroleum Ether:EtOAc)
IR (neat, NaCl$) v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2956,1712,1428,1250,1114,832$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 3 \mathrm{H})$, 5.53 (ddd, $J=9.0,10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=1.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=1.9,17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.23-2.50(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.89(\mathrm{~m}, 5 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 210.4,201.8,138.9,137.2,134.0,129.0,127.7,113.4$, 42.9, 42.2, 41.4, 34.0, 22.4, 16.0, - 4.6, - 5.4.
α, β unsaturated ester SI-19

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 358,55
SI-19

Preparation of LiHMDS solution: To a stirring solution of hexamethyldisilylazane ($808 \mathrm{mg}, 5$ mmol, 1 equiv.) in THF (2.8 mL) was added at $-10^{\circ} \mathrm{C}$, $\mathrm{n}-\mathrm{BuLi}(2.3 \mathrm{M}$ in hexane, $2.3 \mathrm{~mL}, 5$ mmol, 1 equiv.). The resulting pale yellow solution was stirred at $-30^{\circ} \mathrm{C}$ and then kept until needed in the freezer at $-20^{\circ} \mathrm{C}$ (this LiHMDS solution was titrated at 0.98 M).

To a solution of triphenylphosphonoacetate ($0.5 \mathrm{~mL}, 2.52 \mathrm{mmol}, 1.7$ equiv.) in THF (10 mL) was added at $-10^{\circ} \mathrm{C}$, LiHMDS (0.98 M in THF/hexane, $1.98 \mathrm{~mL}, 1.98 \mathrm{mmol}, 1.3$ equiv.). The solution was stirred at room temperature for 30 minutes and was then added to a solution of aldehyde SI-17 (110 mg, 0.38 mmol , 1 equiv.) in THF (3 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was kept at this temperature 1 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 94:6 $\rightarrow 92: 8$ Petreoleum Ether / EtOAc) yielded α, β unsaturated ester SI-19 ($66 \mathrm{mg}, 48 \%$ yield) $(E: Z$ ratio $>10: 1$) as a colourless oil.

(E)-ethyl 9-(dimethyl(phenyl)silyl)-6-oxoundeca-2,10-dienoate (SI-19)

$\mathbf{R}_{\mathbf{f}}=0.37$ (92:8 Petroleum Ether:EtOAc)
IR (neat, NaCl$) v_{\max }\left(\mathrm{cm}^{-1}\right) 2957,1715,1652,1427,1368,1264,1180$
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{ddd}, J=$ $6.8,9.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{ddd}, J=9.3,10.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$
(dd, $J=1.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.48(\mathrm{~m}$, $6 \mathrm{H}), 1.42-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 202.2,166.4,147.2,138.8,137.2,134.0,129.1,127.7$, $121.9,113.5,60.2,42.2,40.7,34.0,25.9,22.4,14.2,-4.6,-5.4$

HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+] 358.1964$, found 358.1953.
α, β unsaturated ester SI-20

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$ Molecular Weight: 372,57

SI-20
Preparation of LiHMDS solution: To a stirring solution of hexamethyldisilylazane ($808 \mathrm{mg}, 5$ mmol, 1 equiv.) in THF (2.8 mL) was added at $-10^{\circ} \mathrm{C}, \mathrm{n}-\mathrm{BuLi}(2.3 \mathrm{M}$ in hexane, $2.3 \mathrm{~mL}, 5$ $\mathrm{mmol}, 1$ equiv.). The resulting pale yellow solution was stirred at $-30^{\circ} \mathrm{C}$ and then kept until needed in the freezer at $-20^{\circ} \mathrm{C}$ (this LiHMDS solution was titrated at 0.98 M).
To a solution of triphenylphosphonoacetate ($0.5 \mathrm{~mL}, 2.52 \mathrm{mmol}, 1.7$ equiv.) in THF (10 mL) was added at $-10^{\circ} \mathrm{C}$, LiHMDS (0.98 M in $\mathrm{THF} /$ hexane, $1.98 \mathrm{~mL}, 1.98 \mathrm{mmol}, 1.3$ equiv.). The solution was stirred at room temperature for 30 minutes and was then added to a solution of aldehyde SI-18 ($448 \mathrm{mg}, 1.48 \mathrm{mmol}, 1$ equiv.) in THF (14 mL) at room temperature. The reaction mixture was kept at this temperature for 30 minutes and was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Layers were separated and the organic layer was washed with saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 91:9 Petreoleum Ether / EtOAc) yield α, β unsaturated ester SI-20 ($402 \mathrm{mg}, 73$ \% yield) ($E: Z$ ratio $8: 1$) as a colourless oil.
(E)-ethyl 10-(dimethyl(phenyl)silyl)-7-oxododeca-2,11-dienoate (SI-20)
$\mathbf{R}_{\mathbf{f}}=0.29$ and 0.2 (91:9 Petroleum Ether:EtOAc)
IR (neat, NaCl) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2956,1715,1427,1368,1264,1182,1034$
${ }^{1} \mathbf{H}$-NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.89$ (ddd, J $=6.7,8.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (ddd, $J=9.4,10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92 (dd, $J=1.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 210.6,166.5,148.1,138.9,137.3,134.0,129.1,127.7$, $121.9,113.4,60.2,42.2,41.8,34.1,22.4,21.9,14.2,-4.6,-5.4$

HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+]$ 372.2121, found 372.2105 .

Oxime 37

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$ Molecular Weight: 387,59

37
To a solution of ketone SI-19 ($64 \mathrm{mg}, 0.215 \mathrm{mmol}$, 1 equiv.) in ethanol (0.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(1.5 \mathrm{~mL})$ was added methoxyamine hydrochloride ($16 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.1$ equiv.) and sodium acetate ($24 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.5$ equiv.). The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h . It was then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 94:6 Petreoleum Ether / EtOAc) yielded oxime $37(59 \mathrm{mg}, 84 \%$ yield) as a $1: 1$ mixture of E / Z stereoisomers, as a colourless oil.

(2E)-ethyl 9-(dimethyl(phenyl)silyl)-6-(methoxyimino)undeca-2,10-dienoate (37)

$\mathbf{R}_{\mathbf{f}}=0.26$ and 0.20 (94:6 Petroleum Ether:EtOAc)
IR (neat, NaCl) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2957,1722,1656,1627,1428,1264,1053$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{ddd}, J=$ $6.4,9.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=5.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{ddd}, J=8.7,9.4,17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=3.4,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}$, 0.5 x 3 C), $3.68(\mathrm{~s}, 0.5 \mathrm{x} 3 \mathrm{C}), 2.08-2.34(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.2$ (s, 6H)
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 166.5, 159.3 ($0.5 \times 1 \mathrm{C}$), 159.3 ($\left.0.5 \times 1 \mathrm{C}\right), 147.7$ ($\left.0.5 \times 1 \mathrm{C}\right)$, $147.6(0.5 \times 1 \mathrm{C}), 138.8,137.4,134.0(2 \mathrm{C}), 129.0,127.6(2 \mathrm{C}), 121.8(0.5 \times 1 \mathrm{C}), 121.7(0.5 \times 1 \mathrm{C})$, 113.4 ($0.5 \times 1 \mathrm{x}), 113.2$ (0.5 x 1 C$), 61.1,60.2,34.7$ ($0.5 \times 1 \mathrm{C}), 34.2$ (0.5 x 1 C$), 33.8$ (0.5 x 1 C$), 32.6$ (0.5 x 1 C$), 28.8$ (0.5 x 1 C$), 28.4$ (0.5 x 1 C$), 28.2$ (0.5 x 1 C$), 26.6$ (0.5 x 1 C$), 25.4$ (0.5 x 1 C$), 24.6$ (0.5 x 1 C), 14.2, $-4.5,-5.4$

HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+]$ 387.2230, found 387.2257.

Oxime 38

38

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$ Molecular Weight: 401,61

To a solution of ketone SI-20 ($300 \mathrm{mg}, 0.80 \mathrm{mmol}$, 1 equiv.) in ethanol (3.0 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(2.0 \mathrm{~mL})$ was added methoxyamine hydrochloride ($232 \mathrm{mg}, 2.78 \mathrm{mmol}, 3.5$ equiv.) and sodium acetate ($358 \mathrm{mg}, 4.37 \mathrm{mmol}, 5.5$ equiv.). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . It was then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} (1x), saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 91:9 Petreoleum Ether / EtOAc) yielded oxime 38 ($245 \mathrm{mg}, 76 \%$ yield) as a 1.4:1 mixture of E / Z stereoisomers, as a colourless oil.

(2E)-ethyl 10-(dimethyl(phenyl)silyl)-7-(methoxyimino)dodeca-2,11-dienoate (38)

$\mathbf{R}_{\mathbf{f}}=0.40$ and 0.42 (91:9 Petroleum Ether:EtOAc)
IR (neat, NaCl) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2954,1721,1654,1625,1427,1264,1182,1051,968$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.46-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.91$ (ddd, $J=$ $6.8,8.6,15.4,1 \mathrm{H}), 5.80(\mathrm{ddd}, J=1.5,3.4,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{ddd}, J=9.0,10.2,17.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=3.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (s, $0.5 \times 3 \mathrm{H}$), $3.75(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 1.92-2.35(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.94(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H), $0.27-0.28$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) \quad 166.6,160.4(0.5 \mathrm{C}), 160.2$ (0.5C), 148.3 (0.5C), 148.2 (0.5C), 138.9, 137.4, 134.0 (2C), 129.0, 127.6 (2C), 121.7, 113.4 (0.5 C), 113.2 (0.5C), 61.0, $60.1,34.8$ (0.5 C), 34.2 (0.5 C), 33.7, 32.0 (0.5 C), 31.7 (0.5 C), 28.2 (0.5 C), 27.6 (0.5 C), 25.5 (0.5C), 24.8 (0.5 C$), 24.6$ (0.5C), 24.2 (0.5 C), 14.3, - 4.5, - 5.4

HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 424.2284$, found 424.2290 .

Synthesis of enol ether oxime 39

Enol ether ketone SI-21

SI-21

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ Molecular Weight: 316,51

To a solution of methoxymethyl)triphenylphosphonium chloride ($267 \mathrm{mg}, 0.78 \mathrm{mmol}, 2.2$ equiv.) in THF (3.1 mL) at $0{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(1.9 \mathrm{M}$ in hexane, $0.41 \mathrm{~mL}, 0.78 \mathrm{mmol}$, 2.2 equiv.). The dark red mixture was stirred for 10 minutes at $0^{\circ} \mathrm{C}$ and 45 minutes at room temperature. This solution of ylid was then added to a solution of aldehyde SI-18 (100 mg , $0.35 \mathrm{mmol}, 1$ equiv.) in THF at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was then stirred at room temperature for 2 h . The mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 95:5 \rightarrow 94:6 Petreoleum Ether / EtOAc) yielded enol ether SI-21 ($24.5 \mathrm{mg}, 23 \%$ yield) (as a $2: 1$ mixture of Z / E stereoisomers) as a colourless oil.
(E)-8-(dimethyl(phenyl)silyl)-1-methoxydeca-1,9-dien-5-one (SI-21)
$\mathbf{R}_{\mathbf{f}}=0.20$ and 0.26 ($95: 5$ Petroleum Ether:EtOAc)
IR (neat, NaCl) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3070,2954,1713,1657,1427,1249,1210,1113$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.34-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 0.6 \mathrm{x} 1 \mathrm{H}), 5.75(\mathrm{~d}, J=6.4 \mathrm{z}, 0.4 \mathrm{x} 1 \mathrm{H}), 5.43(\mathrm{dt}, J=9.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71$ (dd, $J=1.1,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dt}, J=7.2,12.4 \mathrm{~Hz}, 0.6 \mathrm{x} 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $0.4 \times 1 \mathrm{H}), 3.45(\mathrm{~s}, 0.4 \times 3 \mathrm{H}), 3.36(\mathrm{~s}, 0.6 \times 3 \mathrm{H}), 2.00-2.42(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.74(\mathrm{~m}, 3 \mathrm{H}), 0.18(\mathrm{~s}$, $6 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ (Z stereoisomer): 211.0, 147.9, 139.1, 137.5, 134.2(2C), 129.2, 127.8(2C), 113.5,101.6, 56.0, 44.1, 42.5, 34.2, 22.5, 22.3, -4.4, -5.2
(E stereoisomer): 211.3, 146.9, 139.1, 137.5, 134.2 (2C), 129.2, 127.8 (2C), 113.5, 105.1, 59.6, 43.0, 42.1, 34.2, 22.6, 18.7, -4.4, -5.2.

Oxime 39

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}$
Molecular Weight: 345,55
39
To a solution of ketone SI-21 (23 mg, 0.073 mmol , 1 equiv.) in ethanol (0.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(1.5 \mathrm{~mL})$ was added methoxyamine hydrochloride ($17 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.7$ equiv.) and sodium acetate ($26 \mathrm{mg}, 0.32 \mathrm{mmol}, 4.4$ equiv.). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . It was then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with saturated aqueous NaCl (1x), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, 96 : 4 Petreoleum Ether / EtOAc) yield oxime 39 ($22 \mathrm{mg}, 83 \%$ yield) as a 2:1 mixture of E / Z enol ether (each of these enol ethers present as an $1: 1$ mixture of E / Z oxime stereoisomers) as a colourless oil.
(1E)-8-(dimethyl(phenyl)silyl)-1-methoxydeca-1,9-dien-5-one O-methyl oxime (39)
$\mathbf{R}_{\mathbf{f}}=0.19$ (95:5Petroleum Ether:EtOAc)
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.34-7.43(\mathrm{~m}, 2 \mathrm{H} 5), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H} 5), 6.17(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 0.6 \mathrm{x} 1 \mathrm{H} 13), 5.76$ (dd, $J=1.1,6.0 \mathrm{~Hz}, 0.4 \mathrm{x} 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=9.0,9.8,18.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{dd}, J=2.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=4.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.62(\mathrm{~m}, 0.6 \mathrm{x} 1 \mathrm{H}), 4.19$ (quint, $J=6.8 \mathrm{~Hz}, 0.4 \times 1 \mathrm{H}$), $3.68(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.66(0.5 \mathrm{x} 3 \mathrm{H}), 3.45-3.46(\mathrm{~m}, 0.3 \mathrm{x} 3 \mathrm{H}), 3.66(\mathrm{~s}$, $0.6 \times 3 \mathrm{H}), 1.81-2.29(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.69(\mathrm{~m}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ Major stereoisomer ($1: 1 \mathrm{E} / \mathrm{Z}$ mixture): 160.9 (0.5 xC), 160.7 (0.5 xC), 147.7 (0.5 xC), 147.6 (0.5 xC), 139.1, 134.2 (2C), 129.2, 127.8 (2C), 113.5 $(0.5 \mathrm{xC}), 113.3(0.5 \mathrm{xC}), 102.1(0.5 \mathrm{xC}), 101.9(0.5 \mathrm{xC}), 61.1(0.5 \mathrm{xC}), 61.1(0.5 \mathrm{xC}), 56.0$
(0.5 xC), 56.0 (0.5 xC), 35.7 (0.5 xC); 35.0 (0.5 xC), 34.4 (0.5 xC), 34.1 (0.5 xC$), 29.6$ (0.5 xC), 28.4 (0.5 xC), 25.7 (0.5 xC), 25.1 (0.5 xC), 24.8 (0.5 xC), 24.3 (0.5 xC), $-4.3,-5.1$ (0.5 xC), -5.2 (0.5xC)

Minor stereoisomer (1:1 E/Z mixture): 161.2 (0.5 xC), 161.1 (0.5 xC), 146.8, 139.1, 137.7 $(0.5 \mathrm{xC}), 137.6(0.5 \mathrm{xC}), 134.2(2 \mathrm{C}), 129.1,127.8(2 \mathrm{C}), 113.4(0.5 \mathrm{xC}), 113.2(0.5 \mathrm{xC}), 105.7$ $(0.5 \mathrm{xC}), 105.4(0.5 \mathrm{xC}), 61.1(0.5 \mathrm{xC}), 61.1(0.5 \mathrm{xC}), 59.6(0.5 \mathrm{xC}), 59.6(0.5 \mathrm{xC}), 35.0(0.5 \mathrm{xC})$; $34.4(0.5 x C), 34.3(0.5 \mathrm{xC}), 33.8(0.5 \mathrm{xC}), 28.1(0.5 \mathrm{xC}), 28.1(0.5 \mathrm{xC}), 25.7(0.5 \mathrm{xC}), 24.8$ (0.5 xC), 21.2 (0.5 xC), 20.4 (0.5 xC), $-4.4,-5.0$ (0.5 xC), -5.1 (0.5 xC)

HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+]$ 345.2124, found 345.2131 .

Control experiment excluding alkylation with benzyliodide in the absence of base

27
$\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}$

References

1 Terao, J.; Oda, A.; Ikumi, A.; Nakamura, A.; Kuniyasu, H.; Kambe, N. Angew. Chem., Int. Ed. 2003, 42, 3412-3414.
${ }^{2}$ For assigments of $E: Z$ structure of aldoximes :a) Philips W.D. Ann. N.Y. Acad. Sci, 1958, 70, 817; b) Lustig, E. J. Phys. Chem. 1961, 65, 491.
${ }^{3}$ Beresis, R. T.; Solomon, J. S.; Yang, M. G.; Jain, N. F.; Panek, J. S. Org. Synth. 1997, 75, 78.
4 Soderquist, J. A.; Hassner, A. J. Org. Chem. 1983, 48, 1801-1810.
5 Archibald, S. C.; Barden, D. J.; Bazin, J. F. Y.; Fleming, I.; Foster, C. F.; Mandal, A. K.; Mandal, A. K.; Parker, D.; Takaki, K.; Ware, A. C.; Williams, A. R. B.; Zwicky, A. B. Org. Bio. Chem. 2004, 2, 10511064.
${ }^{6}$ Miyata, O.; Muroya, K.; Kobayashi, T.; Yamanaka, R.; Kajisa, S.; Koide, J.; Naito, T. Tetrahedron 2002, 58, 4459-4479.
7 Ireland, R. E.; Thaisrivongs, S.; Dussault, P. H. J. Am. Chem. Soc. 1988, 110, 5768 ; b) Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1983, 105, 1988.
8 James, P.; Felpin, F.-X.; Landais, Y.; Schenk, K. J. Org. Chem. 2005, 70, 7985-7995.

[^0]: ${ }^{13}$ C-NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 152.0(0.2 \mathrm{x} 1 \mathrm{C}), 151.0(0.8 \mathrm{x} 1 \mathrm{C}), 139.3$ (0.8 x 1 C), 139.2 $(0.2 \times 1 \mathrm{C}), 116.9,61.5(0.2 \times 1 \mathrm{C}), 61.1(0.8 \mathrm{x} 1 \mathrm{C}), 55.0(0.2 \mathrm{x} 1 \mathrm{C}), 54.8$ (0.8 x 1 C$), 32.8(0.2 \mathrm{x} 1 \mathrm{C})$, 32.6, 28.2 (0.8 x 1 C), 27.6 (3C), 25.9 (0.8 xlC$), 24.0$ (0.2 xlC).

 MS (EI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}\left[\mathrm{M}^{+}\right]$183.3, found 183.2.
 HRMS (EI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$ 168.1388, found 168.1380 .

