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SOLUTION OF THE DIFFUSION EQUATION

Here we present the derivation of the exciton density n
in the polymer film spin-coated on top of the cross-linked
fullerene network from the diffusion equation (1):

∂n(x, t)
∂t

= −n(x, t)
τ

+ D
∂2n(x, t)

∂x2

+ G(x, t)− S(x)n(x, t).
(S.1)

Here x is the spatial coordinate, t denotes the time, τ
represents the exciton lifetime in a quencher free refer-
ence sample, D is the diffusion coefficient, G(x, t) is the
exciton generation term and finally S(x) represents the
exciton quenching. Due to the fast and uniform excita-
tion the generation term G(x, t) can be replaced by the
following initial condition:

n(x, 0) = N0. (S.2)

The exciton quenching therm S(x) corresponds to the
interface quenching and can be replaced by boundary
conditions. The quenching efficiency of the polymer-
fullerene interface can be safely assumed to be 100%:

n(L, t) = 0, (S.3)

where L is the polymer thickness (Figure S1).
We found experimentally that the free interface of a

spin-coated MDMO-PPV film quenches excitons with ef-
ficiency compared to that of the polymer-fullerene inter-
face. The pristine films spin-coated on quartz substrate
exhibit shorter decay times as the polymer thickness is
decreased. The most pronounced thickness dependence
appears in the range of 5 − 50 nm, while more than
200 nm thick samples do not show variations in PL decay
times. Such a thickness dependence is similar to that of
polymer-fullerene heterostructures (see Figure 1) and is
the signature of the diffusion limited interface quenching.

To quantify the quenching efficiency at the free inter-
face we extracted the exciton diffusion length from both
types of samples: polymer-fullerene heterostructures and
pristine films. For the heterostructures we solved Eq.
(S.1) assuming that both interfaces are perfect quenchers,
whereas for the pristine films we assumed that excitons

FIG. S1: Sketch of the two layers in a heterostructured sam-
ple. The choice of coordinates used in the diffusion equation
(S.1) is shown.

are efficiently quenched only at the free interface. By ap-
plying these models to the experimental data we found
the same values of the exciton diffusion length from both
types of samples. This clarifies the choice of the bound-
ary conditions and shows that the free interface indeed
is efficient exciton quencher. In our following publication
we will discuss the exciton quenching at the free interface
in more detail and will relate it to the morphology of a
spin-coated MDMO-PPV film.

Thus due to the efficient exciton quenching at the free
interface the second boundary condition is:

n(0, t) = 0. (S.4)

In such a way Eq. (S.1) is simplified to the Cauchy prob-
lem:





∂n(x, t)
∂t

= −n(x, t)
τ

+ D
∂2n(x, t)

∂x2

n(x, 0) = N0

n(0, t) = n(L, t) = 0

. (S.5)

We seek the solution in the form: n(x, t) = T (t)X(x),
then the variables in Eq. (S.5) can be separated:

1
T

∂T

∂t
+

1
τ

= D
1
X

∂2X

∂x2
= −λ2, (S.6)
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where λ is a constant. The obtained expression splits
into two equations, which determine T (t) and X(x):

T (t) = e−t/τe−λ2t,

X(x) = A cos(ωx) + B sin(ωx),
(S.7)

where A and B are constants, and ω2 = λ2/D. By ap-
plying the boundary conditions we get:

A = 0,

ωk =
πk

L
, k = 0,±1,±2, . . .

(S.8)

Then the exciton density is the linear combination of
the partial solutions:

n(x, t) = e−t/τ
∞∑

k=1

Bke−Dω2
kt sin ωkx. (S.9)

Constants Bk are determined using the initial condition
(S.2):

Bk =
2N0

L

1− (−1)k

ωk
. (S.10)

Since Bk turns to zero for every even index k, we can
simplify (S.10) by introducing the always odd index:

B2m−1 =
4N0

L

1
ω2m−1

, m = 1, 2, 3, . . . (S.11)

In such a way we obtained the exciton density in a poly-
mer film with both quenching interfaces:

n(x, t) =
4N0

L
e−t/τ

∞∑
m=1

e−Dω2
2m−1t

ω2m−1
sinω2m−1x. (S.12)

Then the PL decay is proportional to the integral of the
obtained expression over the sample thickness L:

PL(t) ∝ n(t) =
8N0

L
e−t/τ

∞∑
n=1

e−Dω2
2n−1t

ω2
2n−1

. (S.13)

We model the experimental PL decay that is normal-
ized to unity at zero time PL(0) = 1. The normalization
of (S.13) and expansion of ω2n−1 lead to the expression
(2) that we use for the modelling:

nnormalized(t) =
8
π2

R(t)
∞∑

n=1

e−Dtπ2(2n−1)2/L2

(2n− 1)2
, (S.14)

where R(t) is the normalized PL decay of a thick refer-
ence sample:

R(t) = lim
L→∞

nnormalized(t). (S.15)

It is important to note, that the exciton diffusion coeffi-
cient is the only fit parameter in (S.14).

To extract the exciton diffusion length we model the
relative quenching efficiency Q(L):

Q(L) = 1−
∫ L

0
dx

∫∞
0

dt ntwo quenching int.(x, t)
∫ L

0
dx

∫∞
0

dt nnot quenching int.(x, t)
. (S.16)

It is easy to show that the integral over the time and
thickness of the exciton density in the sample that does
not contain quenching interfaces is simply N0Lτ . Then
by integrating (S.13) and by setting LD =

√
Dτ we get

the final expression for the relative quenching efficiency:

Q(L) =
2LD

L
Tanh

L

2LD
. (S.17)

The resulting equation is labeled as (4) in the article and
used to extract the exciton diffusion length LD, which is
the only fit parameter here.


