Supporting information

An Enantioselective Synthetic Route to *cis*-2,4-Disubstituted and 2,4-Bridged Piperidines.

Mercedes Amat,^{*} Maria Pérez, Annamaria T. Minaglia, and

Joan Bosch^{*}

Supporting information-1:

- Experimental procedures and full spectroscopic data for all compounds: pages S2-S29
- ¹H NMR and ¹³C NMR spectra for compounds **3a-11b**: pages S30-S50

Supporting information-2:

• ¹H NMR and ¹³C NMR spectra for compounds **12a-21**: pages S51-S71

General Procedures. All non-aqueous reactions were performed under an argon or nitrogen atmosphere with dry, freshly distilled solvents using standard procedures. Drying of organic extracts during the work-up of reactions was performed over anhydrous Na₂SO₄ or MgSO₄. Evaporation of solvents was accomplished with a rotatory evaporator. Thin-layer chromatography was done on SiO₂ (silica gel 60 F_{254}), and the spots were located by UV and either a 1% KMnO₄ solution or iodine. Chromatography refers to flash column chromatography and was carried out on SiO₂ (silica gel 60, 230-400 mesh). Melting points were determined in a capillary tube and are uncorrected. NMR spectra were recorded at 300 or 400 MHz (¹H) and 75.4 or 100.6 MHz (¹³C), and chemical shifts are reported in δ values downfield from TMS or relative to residual chloroform (7.26 ppm, 77.0 ppm) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant (*J*) in hertz (Hz), integrated intensity, and assignment (when possible). Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; ap, apparent. Only noteworthy IR absorptions (cm⁻¹) are listed. Mass spectra (MS) data are reported as *m/z* (%).

(3R,8aS)-6-(Benzyloxycarbonyl)-8a-methyl-5-oxo-3-phenyl-6-(phenylselenyl)-

2,3,6,7,8,8a-hexahydro-5*H***-oxazolo[3,2-***a***]pyridine** (**2a**). Lithium bis(trimethylsilyl)amide (1 M in THF, 29.5 mL) was slowly added at -78 °C to a solution of lactam **1a**¹ (3.1 g, 13.4 mmol) in anhydrous THF (172 ml), and the resulting mixture was stirred for 90 min. Then, benzyl chloroformate (1.89 mL, 13.4 mmol) and, after 60 min of continuous stirring at -78 °C, PhSeCl (3.6 g, 18.8 mmol) were added to the solution. The resulting mixture was stirred for 1 h and poured into saturated aqueous NH₄Cl. The aqueous layer was extracted with EtOAc, and the combined organic extracts were dried and concentrated. Flash chromatography (1:9 to 3:7 EtOAc-hexane) of the resulting oil afforded **2a** as a mixture of

C-6 epimers (6.05 g, 88% overall yield). **2a** (higher R_f epimer): IR (NaCl) 1651, 1723 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY) δ 1.17 (s, 3H, CH₃), 1.81-2.28 (m, 4H, H-7, H-8), 3.49 (dd, J = 8.8, 7.8 Hz, 1H, H-2), 4.48 (t, J = 8.8 Hz, 1H, H-2), 5.18 (d, J = 12.0 Hz, 1H, CH₂)benzyl), 5.33 (d, J = 12.0 Hz, 1H, CH₂ benzyl), 5.39 (t, J = 8.8 Hz, 1H, H-3), 7.15-7.70 (m, 15H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 24.3 (CH₃), 28.1 (C-7), 32.2 (C-8), 54.9 (C-6), 58.8 (C-3), 67.8 (CH₂ benzyl), 69.4 (C-2), 93.7 (C-8a), 125.2-129.6, 138.3 (C-o, m, p), 135.0, 139.5 (C-*i*), 165.5 (NCO), 170.4 (COO); $[\alpha]^{22}_{D}$ –39.2 (*c* 0.75, CHCl₃). Anal. Calcd for C₂₈H₂₇NO₄Se: C, 64.61; H, 5.23; N, 2.69. Found: C, 64.21; H, 5.28; N, 2.69. 2a (lower R_f epimer): IR (NaCl) 1654, 1731 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY, HETCOR) § 0.93 (s, 3H, CH₃), 1.89-2.49 (m, 4H, H-7, H-8), 3.89 (dd, J = 8.8, 8.0 Hz, 1H, H-2), 4.38 (t, J = 8.8 Hz, 1H, H-2), 5.20 (d, J = 12.6 Hz, 1H, CH₂ benzyl), 5.29 (d, J = 12.6 Hz, 1H, CH₂ benzyl), 5.30 (t, J = 8.4 Hz, 1H, H-3), 7.16-7.57 (m, 15H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) § 23.1 (CH₃), 30.4 (C-7), 33.8 (C-8), 55.1 (C-6), 60.0 (C-3), 67.9 (CH₂ benzyl), 69.4 (C-2), 93.6 (C-8a), 125.2-129.5, 138.7 (C-o, m, p), 135.1, 138.7 (C-i), 165.2 (NCO), 170.1 (COO); $[\alpha]^{22}_{D}$ –142.3 (c 0.9, CHCl₃). Anal. Calcd for C₂₈H₂₇NO₄Se: C, 64.61; H, 5.23; N, 2.69. Found: C, 64.33; H, 5.19; N, 2.79.

(3R,8aR)-6-(Benzyloxycarbonyl)-5-oxo-3,8a-diphenyl-6-(phenylselenyl)-2,3,6,7,8,8a-

hexahydro-5*H*-oxazolo[3,2-*a*]pyridine (2b). Operating as in the above preparation of 2a, from lactam $1b^2$ (3.0 g, 10.2 mmol), lithium bis(trimethylsilyl)amide (1 M in THF, 22.5 mL), benzyl chloroformate (1.51 mL, 10.2 mmol), and PhSeCl (2.74 g, 14.3 mmol), lactam 2b was obtained as a mixture of C-6 epimers (4.65 g, 78% overall yield) after column chromatography (1:9 to 3:7 EtOAc-hexane). 2b (higher R_f epimer): IR (NaCl) 1651, 1728 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY) δ 1.68-2.44 (4m, 4H, H-7, H-8), 3.62 (t, *J* = 9.3 Hz, 1H, H-2), 4.42 (dd, *J* = 9.3, 8.1 Hz, 1H, H-2), 5.17 (d, *J* = 12.0 Hz, 1H, CH₂ benzyl), 5.28 (d, *J* = 12.0 Hz, 1H, CH₂ benzyl), 5.35 (dd, *J* = 9.3, 8.1 Hz, 1H, H-3), 7.05-7.70 (m, 20H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 26.1 (C-7), 34.0 (C-8), 55.7 (C-6), 60.9 (C-3), 68.0 (CH₂ benzyl), 69.2 (C-2), 97.5 (C-8a), 126.7-129.7 (C-*o*, *m*, *p*), 135.1, 140.6 (C-*i*), 167.4 (NCO), 171.1 (COO); [α]²²_D –75.3 (*c* 0.76, EtOH). Anal. Calcd for C₃₃H₂₉NO₄Se: C, 68.04; H, 5.02; N, 2.40. Found: C, 67.68; H, 5.06; N, 2.45.

(3*R*,8a*S*)-6-(Benzyloxycarbonyl)-8a-methyl-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5*H*-oxazolo

[3,2-*a*]**pyridine** (3a). A stream of ozone gas was bubbled through a cooled (-78 °C) solution of selenides 2a (400 mg, 1.1 mmol) in anhydrous CH₂Cl₂ (20 mL) until it turned pale blue. The solution was purged with O₂, and the temperature was slowly raised to 25 °C. After 30 min of stirring, the mixture was poured into brine (20 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were dried and concentrated under reduced pressure to give **3a** (350 mg) as an oil, which was used in the next reaction without further purification: ¹H NMR (300 MHz, CDCl₃, HETCOR) δ 1.51 (s, 3H, CH₃), 2.74 (m, 2H, H-8), 4.13 (dd, *J* = 9.3, 6.0 Hz, 1H, H-2), 4.39 (dd, *J* = 9.0, 6.9 Hz, 1H, H-2), 5.22-5.32 (m, 2H, CH₂ benzyl), 5.36 (dd, *J* = 6.9, 6.0 Hz, 1H, H-3), 7.20-7.62 (m, 11H, ArH, H-7).

(3R,8aR)-6-(Benzyloxycarbonyl)-5-oxo-3,8a-diphenyl-2,3,8,8a-tetrahydro-5H-

oxazolo[3,2-*a*]pyridine (3b). Operating as in the above preparation of 3a, from selenides 2b (370 mg, 0.86 mmol) and anhydrous CH₂Cl₂ (25 mL), unsaturated lactam 3b (320 mg) was obtained as an oil, which was used in the next reaction without further purification: ¹H NMR (400 MHz, CDCl₃) δ 2.98 (dd, *J* = 17.6, 6.8 Hz, 1H, H-8), 3.11 (dd, *J* = 17.6, 2.4 Hz, 1H, H-8), 3.70 (t, *J* = 9.2 Hz, H-2), 4.47 (dd, *J* = 9.2, 7.6 Hz, 1H, H-2), 5.22 (d, *J* = 12.8 Hz, 1H, CH₂ benzyl), 5.28 (d, *J* = 12.8 Hz, 1H, CH₂ benzyl), 5.32 (t, *J* = 7.6 Hz, 1H, H-3), 7.13-7.62 (m, 16H, ArH, H-7).

(3R,7R,8aS)-6-(Benzyloxycarbonyl)-8a-methyl-5-oxo-3-phenyl-7-vinyl-2,3,6,7,8,8a-

hexahydro-5H-oxazolo[3,2-a]pyridine (4a). LiCl (189 mg, 4.5 mmol) was heated at 80 °C for 1 h under vacuum (10-15 mm Hg) in a three-necked, 500 mL round-bottomed flask. Then, CuI (357 mg, 4.5 mmol) and THF (5 mL) were added at rt, and the mixture was stirred at rt for 5 min. The suspension was cooled at -78 °C, and vinylmagnesium bromide (1 M in THF, 4.5 mL), TMSCl (0.57 mL, 4.5 mmol), and the crude of unsaturated lactam **3a** (1.8 mmol) in THF (8 mL) were successively added. The resulting mixture was stirred at -78 °C for 20 h. The reaction was quenched with saturated aqueous NH₄Cl, and the organic layer was extracted with EtOAc. The combined organic extracts were dried and concentrated. Flash chromatography (1:4 EtOAc-hexane) gave lactams 4a (major) and 7epi-4a as mixtures of C-6 epimers (508 mg, 62% overall yield from 2a). 4a (major C-6 epimer): IR (NaCl) 1665, 1744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.54 (s, 3H, CH₃), 1.94 (dd, J = 14.4, 8.4 Hz, 1H, H-8), 2.38 (dd, J = 14.4, 7.2 Hz, 1H, H-8), 3.15 (m, 1H, H-7), 3.40 (d, J = 10.8 Hz, 1H, H-6), 4.03 (dd, J = 9.2, 6.8 Hz, 1H, H-2), 4.41 (t, J = 8.4 Hz, 1H, H-2), 5.09 (m, 2H, CH₂=), 5.17 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.24 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.42 (t, J = 7.2 Hz, 1H, H-3), 5.74 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H, CH=), 7.25-7.36 (m, 10H ArH); 13 C NMR (100.6 MHz, CDCl₃) δ 26.7 (CH₃), 36.0 (C-7), 39.5 (C-8), 53.7 (C-6), 59.1 (C-3), 67.0 (CH₂ benzyl), 69.2 (C-2), 93.2 (C-8a), 116.5 (CH₂=), 124.5-128.5 (C-o, m, p), 135.6, 139.7 (C-i), 138.1 (CH=), 166.7 (NCO), 168.7 (COO). Anal. Calcd for C₂₄H₂₅NO₄: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.30; H, 6.58; N, 3.51.

(3R,7R,8aR)-6-(Benzyloxycarbonyl)-5-oxo-3,8a-diphenyl-7-vinyl-2,3,6,7,8,8a-

hexahydro-5*H***-oxazolo**[**3,2-***a*]**pyridine** (**4b**). Operating as described for the preparation of **4a**, from crude lactam **3b** (0.58 mmol), vinylmagnesium bromide (1 M solution in THF, 1.62 mL), CuI (308 g, 1.62 mmol), LiCl (69 mg, 1.62 mmol), and TMSCl (200 \Box L, 1.62 mmol) in THF (10.5 mL), lactams **4b** (major) and 7-*epi*-**4b** were obtained as mixtures of C-

6 epimers (160 mg, 61% overall yield from **2b**) after flash chromatography (1:4 to 1:2 EtOAc-hexane). **4b** (major C-6 epimer): ¹H NMR (400 MHz, CDCl₃) δ 1.56 (s, 3H, CH₃), 2.02 (dd, J = 14.8, 10.4 Hz, 1H, H-8), 2.63 (dd, J = 14.8, 5.6 Hz, 1H, H-8), 3.19 (m, 1H, H-7), 3.40 (d, J = 11.6 Hz, 1H, H-6), 3.87 (t, J = 8.8 Hz, 1H, H-2), 4.39 (dd, J = 8.8, 8.4 Hz, 1H, H-2), 5.09 (m, 2H, CH₂=), 5.20 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.25 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.46 (m, 2H, H-3, CH=), 7.25-7.36 (m, 15H ArH); ¹³C NMR (CDCl₃, 100.6) δ 37.3 (C-7), 42.4 (C-8), 55.0 (C-6), 60.7 (C-3), 67.1 (CH₂ benzyl), 68.5 (C-2), 96.3 (C-8a), 117.1 (CH₂=), 125.7-128.6 (C-*o*, *m*, *p*), 135.5, 138.0, 142.4 (C-*i*), 137.1 (CH=), 168.6 (NCO), 168.9 (COO).

(3R,7S,8aS)-7-Allyl-6-(benzyloxycarbonyl)-3-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-

hexahydro-5*H*-oxazolo[3,2-*a*]pyridine (5a). Operating as in the preparation of 4a, from crude lactam 3a (0.54 mmol), allylmagnesium bromide (1 M solution in Et₂O, 2.15 mL), CuI (197 mg, 2.15 mmol), LiCl (91 mg, 2.15 mmol), and TMSCl (272 \Box L, 2.15 mmol) in THF (11 mL), lactams 5a (major) and 7-*epi*-5a were obtained as mixtures of C-6 epimers (217 mg, 70% overall yield from 2a) after flash chromatography (1:4 EtOAc-hexane). 5a (major C-6 epimer): IR (NaCl) 1665, 1741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY) δ 1.39 (2s, 3H, CH₃), 1.80 (dd, *J* = 14.7, 8.7 Hz, 1H, H-8), 2.11, 2.25 (2m, 2H, CH₂ allyl), 2.33 (dd, *J* = 14.1, 6.9 Hz, 1H, H-8), 2.57 (m, 1H, H-7), 3.25 (d, *J* = 11.4 Hz, 1H, H-6), 4.00 (dd, *J* = 8.7, 6.3 Hz, 1H, H-2), 4.38 (t, *J* = 8.7 Hz, 1H, H-2), 5.05 (m, 2H, CH₂=), 5.19 (d, *J* = 12.3 Hz, 1H, CH₂ benzyl), 5.26 (d, *J* = 12.3 Hz, 1H, CH₂ benzyl), 5.39 (t, *J* = 7.2 Hz, 1H, H-3), 5.69 (m, 1H, CH=), 7.20-7.40 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.0 (CH₃), 31.5 (C-7), 26.3 (C-8), 38.7 (CH₂ allyl), 54.1 (C-6), 59.1 (C-3), 67.0 (CH₂ benzyl), 69.1 (C-2), 93.2 (C-8a), 118.2 (CH₂=), 124.9-128.7 (C-*o*, *m*, *p*); 134.8 (CH=), 135.4, 139.7 (C-*i*), 167.2 (COO), 169.1 (NCO). Anal. Calcd for C₂₅H₂₇NO₄: C, 74.05; H, 6.71; N, 3.45. Found: C, 73.81; H, 6.82; N, 3.41.

(3R,7S,8aR)-7-Allyl-6-(benzyloxycarbonyl)-5-oxo-3,8a-diphenyl-2,3,6,7,8,8a-

hexahydro-5*H*-oxazolo[3,2-*a*]pyridine (5b). Operating as in the preparation of 4a, from crude lactam 3b (0.63 mmol), allylmagnesium bromide (1 M solution in Et₂O, 1.76 mL), CuI (336 mg, 1.76 mmol), LiCl (65 mg, 1.76 mmol), and TMSCl (222 \Box L, 1.76 mmol) in THF (9 mL), lactams 5b (major) and 7-*epi*-5b were obtained as mixtures of C-6 epimers (274 mg, 91% overall yield from 2b) after column chromatography (1:5 to 1:2 EtOAchexane). 5b (major C-6 epimer): IR (NaCl) 1667, 1743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 1.75 (dt, *J* = 13.5, 7.2, 7.2 Hz, 1H, CH₂ allyl), 1.97 (dd, *J* = 14.4, 10.8 Hz, 1H, H-8), 1.99 (m, 1H, CH₂ allyl), 2.54 (dd, *J* = 14.4, 6.0 Hz, 1H, H-8), 2.60 (m, 1H, H-7), 3.28 (d, *J* = 10.8 Hz, 1H, H-6), 3.84 (t, *J* = 9.0 Hz, 1H, H-2), 4.36 (dd, *J* = 9.0, 8.4 Hz, 1H, H-2), 4.82 (dd, *J* = 17.1, 1.5 Hz, 1H, CH₂=), 4.93 (dm, *J* = 10.2 Hz, 1H, CH₂=), 5.22 (d, *J* = 12.3 Hz, 1H, CH₂ benzyl), 5.28 (d, *J* = 12.3 Hz, 1H, CH₂ benzyl), 5.41 (t, *J* = 8.1 Hz, 1H, H-3), 5.55 (m, 1H, CH=), 7.05-7.40 (m, 15H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 32.4 (C-7), 38.0 (CH₂ allyl), 41.4 (C-8), 55.1 (C-6), 60.8 (C-3), 67.2 (CH₂ benzyl), 68.6 (C-2), 96.0 (C-8a), 118.1 (CH₂=), 125.8-128.6 (C-*o*, *m*, *p*), 134.1, 135.4, 142.3 (C-*i*), 169.5 (COO), 170.0 (NCO).

(3R,7S,8aS)-6-(Benzyloxycarbonyl)-8a-methyl-5-oxo-3,7-diphenyl-2,3,6,7,8,8a-

hexahydro-5*H*-oxazolo[3,2-*a*]pyridine (6a). Operating as in the preparation of 4a, from crude lactam 3a (0.46 mmol), phenylmagnesium bromide (1 M solution in THF, 1.12 mL), CuI (213 mg, 1.12 mmol), LiCl (47 mg, 1.12 mmol), and TMSCl (141 \Box L, 1.12 mmol) in THF (9 mL), lactams 6a (major) and 7-*epi*-6a were obtained as mixtures of C-6 epimers (150 mg, 74% overall yield from 2a) after column chromatography (1:4 EtOAc-hexane). Repurification by column chromatography (1:2 Et₂O-hexane) and then crystallization from Et₂O-hexane afforded pure 6a (major C-6 epimer): IR (NaCl) 1663, 1744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.56 (s, 3H, CH₃), 2.15 (dd, *J* = 14.4, 12.0 Hz, 1H,

H-8), 2.64 (dd, J = 14.4, 5.6 Hz, 1H, H-8), 3.59 (td, J = 12.0, 12.0, 5.6 Hz, 1H, H-7), 3.82 (d, J = 12.0 Hz, 1H, H-6), 4.04 (dd, J = 8.4, 6.8 Hz, 1H, H-2), 4.53 (t, J = 8.4 Hz, 1H, H-2), 4.97 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.05 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.55 (t, J = 7.6 Hz, 1H, H-3), 7.25-7.36 (m, 15H ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.4 (CH₃), 38.8 (C-7), 42.8 (C-8), 55.3 (C-6), 59.0 (C-3), 66.8 (CH₂ benzyl), 69.0 (C-2), 93.2 (C-8a), 125.5-128.9 (C-o, m, p), 135.5, 140.2, 140.6 (C-i), 167.6 (NCO),168.2 (COO); mp 153-154 °C; $[\alpha]^{22}_{D} - 87.1$ (c 0.5, CHCl₃). Anal. Calcd for C₂₈H₂₇NO₄: C, 76.17; H, 6.16; N, 3.17. Found: C, 75.97; H, 6.14; N, 3.14. **6a** (minor C-6 epimer): ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 1.57 (s, 3H, CH₃), 3.65 (m, 1H, H-7), 4.04 (dd, J = 8.4, 6.8 Hz, 1H, H-2), 4.62 (t, J = 8.4 Hz, 1H, H-2), 5.44 (t, J = 7.6 Hz, 1H, H-3); ¹³C NMR (100.6 MHz, CDCl₃, 57.2 (CH₂ benzyl), 69.9 (C-2), 93.5 (C-8a), 135.4, 140.6, 140.9 (C-i); m/z: 442 (M+1, 8), 441 (M⁺, 25), 427 (18), 426 (60), 350 (39), 306 (16), 162 (10), 160 (10), 120 (11), 104 (35), 91 (100); HMRS calcd for C₂₈H₂₇NO₄: 441.1940, found: 441.1920.

(*3R*,7*S*,8*aR*)-6-(Benzyloxycarbonyl)-5-oxo-3,7,8a-triphenyl-2,3,6,7,8,8a-hexahydro-5*H*-oxazolo[3,2-*a*]pyridine (6b). Operating as described for the preparation of 4a, from crude lactam 3b (0.27 mmol), phenylmagnesium bromide (1 M solution in THF, 0.75 mL), CuI (144 mg, 0.75 mmol), LiCl (32 mg, 0.75 mmol), and TMSCl (95 μL, 0.75 mmol) in THF (7 mL), lactams 6b (major) and 7-*epi*-6b were obtained as mixtures of C-6 epimers (98 mg, 72% overall yield from 2b) after column chromatography (1:4 to 1:2 EtOAc-hexane). 6b (mixture of C-6 epimers): IR (NaCl) 1665, 1732 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY) δ 2.17 (dd, *J* = 15.2, 12.8 Hz, 1H, H-8 isomer 1), 2.65 (ddd, *J* = 14.4, 4.0, 2.0 Hz, 1H, H-8 isomer 2), 2.80 (dd, *J* = 15.2, 4.8 Hz, 1H, H-8 isomer 1), 2.88 (t, *J* = 14.4 Hz, 1H, H-8 isomer 2), 3.68 (m, 2H, H-7), 3.90 (t, *J* = 8.8 Hz, 1H, H-2 isomer 1), 3.91 (d, *J* = 12.8 Hz, 1H, H-6 isomer 1), 3.97 (t, *J* = 8.8 Hz, 1H, H-2 isomer 2), 2.03 (dd, *J* = 4.8, 2.0 Hz, 1H, H-

6 isomer 2), 4.45 (td, J = 8.8, 2.0 Hz, 1H, H-2), 4.94 (d, J = 12.4 Hz, 1H, CH₂ benzyl isomer 1), 4.98 (d, J = 12.4 Hz, 1H, CH₂ benzyl isomer 1), 4.99 (d, J = 12.4 Hz, 1H, CH₂ benzyl isomer 2), 5.06 (d, J = 12.4 Hz, 1H, CH₂ benzyl isomer 2), 7.00-7.60 (20H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 36.5, 38.3 (C-7), 39.8, 45.7 (C-8), 56.3, 56.6 (C-6), 60.2, 61.0 (C-3), 67.2, 67.3 (CH₂ benzyl), 67.9, 68.6 (C-2), 96.5, 97.0 (C-8a), 125.4-128.7 (C-*o*, *m*, *p*), 135.1-143.1 (C-*i*), 168.2, 168.5 (COO), 169.3, 169.7 (NCO). Anal. Calcd for C₃₃H₂₉NO₄·¹/₂H₂O: C, 75.99; H, 5.99; N, 2.69. Found: C, 76.00; H, 5.60; N, 2.57.

(3R,7S,8aS)-7-Ethyl-8a-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

a)pyridine (7a). A solution of 4a containing minor amounts of 7-epi-4a (273 mg, 0.69 mmol) in MeOH (23 mL) containing 10% Pd/C (31 mg) was hydrogenated at rt for 48 h at atmospheric pressure. The catalyst was removed by filtration, and the solvent was evaporated. The resulting oil was dissolved in toluene (42 mL), and the solution was heated at reflux for 20 h, cooled, and poured into saturated aqueous NH₄Cl. The aqueous layer was extracted with EtOAc, and the combined organic extracts were dried and concentrated. The residue was chromatographed (1:1 EtOAc-hexane) to afford lactams 7a and 7-epi-7a (ratio 93:7, 143 mg, 80% overall yield). 7a: IR (NaCl) 1650 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 0.95 (t, J =7.2 Hz, 3H, CH₃ ethyl), 1.35 (s, 3H, CH₃ angular), 1.41 (q, J =7.2 Hz, 2H, CH₂ ethyl), 1.65 (dd, J = 14.0, 10.0 Hz, 1H, H-8), 1.84 (m, 1H, H-7), 2.05 (dd, J = 14.8, 12.0 Hz, 1H, H-6), 2.36 (ddd, J = 14.0, 5.2, 2.0 Hz, 1H, H-8), 2.55 (ddd, J = 14.8, 3.6, 2.4 Hz, 1H, H-6), 3.97 (dd, J = 8.8, 6.8 Hz, 1H, H-2), 4.57 (t, J = 8.8 Hz, 1H, H-2), 5.45 (t, J = 8.0 Hz, 1H, H-3), 7.20-7.34 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 11.3 (CH₃ ethyl), 27.3 (CH₃ angular), 28.6 (CH₂ ethyl), 31.5 (C-7), 38.7 (C-6), 41.2 (C-8), 58.4 (C-3), 69.0 (C-2), 93.7 (C-8a), 125.3-128.5 (C-o, m, p), 140.8 (C-i), 171.5 (NCO). Anal. Calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40. Found: C, 73.89; H, 8.14; N, 5.07.

(3R,7S,8aR)-7-Ethyl-5-oxo-3,8a-diphenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

a]pyridine (7b). Ammonium formate (134 mg, 1.74 mmol) and 10% Pd/C (55 mg) were added to a solution of **4b** containing minor amounts of 7-epi-**4b** (100 mg, 0.22 mmol) in anhydrous MeOH (4 mL). The resulting suspension was stirred at rt for 18 h, filtered (Celite®), and concentrated to give an oil, which was dissolved in toluene (27 mL). The solution was heated at reflux for 12 h, cooled, and poured into brine. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried and concentrated. The residue was chromatographed (1:3 EtOAc-hexane) to afford lactams 7b and 7-epi-7b (ratio 94:6, 51 mg, 73% overall yield). **7b**: IR (NaCl) 1668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) $\delta 0.89$ (t, J = 7.6 Hz, 3H, CH₃), 1.24-1.34 (m, 2H, CH₂ ethyl), 1.71 (dd, J = 14.4, 11.2 Hz, 1H, H-8), 1.92 (m, 1H, H-7), 2.15 (dd, J = 14.8, 12.4 Hz, 1H, H-6), 2.60 (m, 2H, H-6, H-8), 3.82 (t, J = 8.8 Hz, 1H, H-2), 4.40 (t, J = 8.8 Hz, 1H, H-2), 5.45 (t, J = 8.8 Hz, 1 H, H-3), 6.98-7.38 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 11.1 (CH₃), 28.0 (CH₂ ethyl), 32.4 (C-7), 39.6 (C-6), 44.3 (C-8), 60.0 (C-3), 68.4 (C-2), 97.0 (C-8a), 125.6-128.4 (C-o, m, p), 138.9-143.6 (C-i), 173.3 (NCO). m/z: 322 (M+1, 8), 321 $(M^+, 31)$, 264 (32), 244 (31), 225 (6), 224 (37), 223 (7), 222 (29), 203 (36), 193 (16), 175 (7), 146 (14), 120 (67), 119 (35), 105 (100), 104 (57), 103 (24), 91 (34). Anal. Calcd for $C_{21}H_{23}NO_2$.¹/₂hexane: C, 79.08; H, 8.30; N, 3.24. Found: C, 78.64; H, 8.30; N, 3.48.

(3R,7S,8aS)-8a-Methyl-5-oxo-3-phenyl-7-propyl-2,3,6,7,8,8a-hexahydro-5H-

oxazolo[3,2-*a*]pyridine (8a). Operating as above, from the above mixture of 5a and 7-*epi*-5a (185 mg, 0.45 mmol), ammonium formate (560 mg, 9.0 mmol), and 10% Pd/C (86 mg) in MeOH (6.5 mL), lactams 8a and 7-*epi*-8a were obtained (ratio 78:22, 89 mg, 72% overall yield) after column chromatography (1:2 EtOAc-hexane). 8a: IR (NaCl) 1665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 0.91-0.96 (m, 3H, CH₃ propyl), 1.36-1.44 (m, 7H, 2CH₂ propyl, CH₃ angular), 1.65 (dd, *J* = 14.4, 10.4 Hz, 1H, H-8), 1.93 (m, 1H, H-7), 2.06 (dd, *J* = 14.8, 12.4 Hz, 1H, H-6), 2.35 (ddd, *J* = 14.4, 5.6, 2.4 Hz, 1H, H-8), 2.54 (ddd, *J* = 14.8, 3.2, 2.0 Hz, 1H, H-6), 3.97 (dd, J = 8.8, 6.8 Hz, 1H, H-2), 4.46 (t, J = 8.8 Hz, 1H, H-2), 5.45 (t, J = 8.0 Hz, 1H, H-3), 7.19-7.35 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 14.1 (CH₃ propyl), 19.8 (CH₂ propyl), 27.3 (CH₃ angular), 29.5 (C-7), 38.0 (CH₂ propyl), 39.0 (C-6), 41.6 (C-8), 58.4 (C-3), 69.0 (C-2), 93.8 (C-8a), 121.1-128.5 (C-*o*, *m*, *p*), 140.8 (C-*i*), 171.5 (NCO); *m/z*: 274 (M+1, 5), 273 (M⁺, 25), 259 (6), 258 (36), 230 (5), 203 (4), 162 (23), 161 (21), 160 (24), 155 (4), 146 (8), 138 (4), 132 (6), 130 (8), 128 (9), 121 (8), 120 (100), 119 (31), 118 (31), 104 (45), 97 (26), 91 (21). 7-*epi*-8a: ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 2.20 (dm, J = 12.0 Hz, 1H, H-6), 2.74 (dm, J = 12.0 Hz, 1H, H-6), 4.53 (t, J = 8.8 Hz, 1H, H-2), 5.35 (t, J = 8.0 Hz, 1H, H-3), 7.19-7.35 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) δ 24.0 (CH₃), 29.5 (C-7), 38.5 (C-6), 31.3 (CH₂ propyl), 41.6 (C-8), 58.4 (C-3), 70.0 (C-2), 93.9 (C-8a), 140.1 (C-*i*), 170.0 (NCO); *m/z*: 274 (M+1, 5), 273 (M⁺, 24), 259 (8), 258 (43), 230 (5), 203 (1), 162 (19), 161 (12), 160 (20), 155 (4), 146 (6), 138 (4), 132 (6), 130 (6), 128 (7), 121 (4), 120 (100), 119 (25), 118 (22), 104 (41), 97 (27), 91 (16). Anal. Calcd for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12. Found: C, 74.37; H, 8.60; N, 4.76.

(3R,7S,8aR)-5-Oxo-3,8a-diphenyl-7-propyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

a]**pyridine (8b).** Operating as described for the preparation of **7b**, from the above mixture of **5b** and 7-*epi*-**5b** (75 mg, 0.16 mmol), ammonium formate (81 mg, 1.3 mmol), and 10% Pd/C (35 mg) in MeOH (2.3 mL), lactams **8b** and 7-*epi*-**8b** were obtained (ratio 85:15, 41 mg, 73% overall yield) after column chromatography (1:3 EtOAc-hexane). **8b**: IR (NaCl) 1667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.2 Hz, 3H, CH₃), 1.16-1.38 (m, 4H, 2CH₂ propyl), 1.70 (dd, *J* = 14.4, 11.2 Hz, 1H, H-8), 1.96-2.10 (m, 1H, H-7), 2.35 (dd, *J* = 14.8, 12.8 Hz, 1H, H-6), 2.59 (m, 2H, H-6, H-8), 3.82 (t, *J* = 8.8 Hz, 1H, H-2), 4.40 (t, *J* = 8.4 Hz, 1H, H-2), 5.45 (t, *J* = 8.8 Hz, 1H, H-3), 6.98-7.48 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 14.0 (CH₃), 19.6 (CH₂ propyl), 30.4 (C-7), 37.4 (CH₂ propyl), 39.9 (C-6),

44.6 (C-8), 60.0 (C-3), 68.4 (C-2), 97.0 (C-8a), 125.6-128.5 (C-o, m, p), 138.9, 143.6 (C-i), 173.4 (NCO). 7-epi-**8b**: ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 0.95 (t, J = 7.2 Hz, 3H, CH₃), 2.80 (m, 2H, H-6, H-8), 3.97 (t, J = 8.4 Hz, 1H, H-2), 4.45 (t, J = 8.8 Hz, 1H, H-2), 5.27 (t, J = 8.4 Hz, 1H, H-3); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) δ 12.0 (CH₃), 19.6 (CH₂ propyl), 30.4 (C-7), 37.4 (CH₂ propyl), 39.9 (C-6), 44.6 (C-8), 60.0 (C-3), 68.4 (C-2), 97.2 (C-8a), 138.4, 142.0 (C-i), 171.8 (NCO). Anal. Calcd for C₂₂H₂₅NO₂: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.39; H, 7.93; N, 3.91.

(3R,7S,8aS)-8a-Methyl-5-oxo-3,7-diphenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

a pyridine (9a). Operating as described for the preparation of 7b, from pure lactam 6a (major C-6 epimer, 200 mg, 0.45 mmol), ammonium formate (457 mg, 7.2 mmol), and 10% Pd/C (94 mg) in EtOAc-MeOH (5:7 mL), lactam 9a was obtained as a white solid (94 mg, 68% overall yield) after column chromatography (1:2 EtOAc-hexane): IR (NaCl) 1664 cm⁻ ¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 1.34 (s, 3H, CH₃), 2.15 (dd, *J* = 14.4, 12.0 Hz, 1H, H-8), 2.61 (ddd, J = 14.4, 4.8, 2.8 Hz, 1H, H-8), 2.66 (dd, J = 15.2, 12.0 Hz, 1H, H-6), 2.75 (ddd, J = 15.2, 3.6, 2.4 Hz, 1H, H-6), 3.21 (tt, J = 12.0, 4.4 Hz, 1H, H-7), 4.02 (dd, J = 8.8, 7.2 Hz, 1H, H-2), 4.55 (t, J = 8.8 Hz, 1H, H-2), 5.56 (t, J = 8.0 Hz, 1H, H-3), 7.06-7.42 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.2 (CH₃), 35.5 (C-7), 39.6 (C-6), 43.0 (C-8), 58.4 (C-3), 69.0 (C-2), 94.0 (C-8a), 125.3-128.9 (C-o, m, p), 140.8, 142.4 (C-i), 171.2 (NCO); mp 104-106 °C; $[\alpha]_{D}^{22}$ – 11.6 (c 0.2, CHCl₃). Anal. Calcd for C₂₀H₂₁NO₂·¹/₄H₂O: C, 77.02; H, 6.95; N, 4.49. Found: C, 76.75; H, 7.31; N, 4.10. Operating as in the preparation of 7b, from the above mixture of 6a and 7-epi-6a (100 mg, 0.22 mmol), ammonium formate (220 mg, 3.5 mmol), and 10% Pd/C (47 mg) in EtOAc-MeOH (2.5:3.5 mL), lactams 9a and 7-epi-9a were obtained (ratio 84:16, 60 mg, 69% overall yield) after column chromatography (1:2 EtOAc-hexane): 7-epi-9a: (400 MHz, CDCl₃, selected resonances) δ 1.25 (s, 3H, CH₃), 2.04 (J = 12.4 Hz, 1H, H-6), 2.39 (ddd, J = 12.4, 3.2, 2.0 Hz, 1H, H-6), 2.52 (dd, J = 18.4, 11.6 Hz, 1H, H-8), 2.96 (ddm, J = 18.2, 6.4 Hz, 1H, H-8), 3.33 (m, 1H, H-7), 4.03 (dd, J = 8.8, 8.0 Hz, 1H, H-2), 4.60 (t, J = 8.8 Hz, 1H, H-2), 5.43 (t, J = 8.4 Hz, 1 H, H-3), 7.06-7.42 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) δ 24.0 (CH₃), 29.8 (C-6), 35.6 (C-7), 41.5 (C-8), 70.0 (C-2), 94.1 (C-8a), 125.3-128.9 (C-o, m, p), 140.2, 142.6 (C-i), 170.0 (NCO).

(3R,7S,8aR)-5-Oxo-3,7,8a-triphenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine

(**9b**). Operating as in the preparation of **7b**, from the above mixture of **6b** and 7-*epi*-**6b** (1.9 g, 3.77 mmol), ammonium formate (1.9 mg, 30.2 mmol), and 10% Pd/C (200 mg) in EtOAc (180 mL), lactams **9b** and 7-*epi*-**9b** were obtained (ratio 92:8). Flash chromatography (1:1 Et₂O-hexane) afforded pure **9b** (1.07 g, 83% overall yield): IR (NaCl) 1667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.15 (dd, J = 14.8, 12.4 Hz, 1H, H-8), 2.70-2.84 (m, 3H, H-6, H-8), 3.28 (tt, J = 12.8, 3.6 Hz, 1H, H-7), 3.90 (t, J = 8.8 Hz, 1H, H-2), 4.47 (t, J = 8.8 Hz, 1H, H-2), 5.55 (t, J = 8.8 Hz, 1H, H-3), 7.00-7.40 (m, 15H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 36.4 (C-7), 40.7 (C-6), 46.0 (C-8), 60.1 (C-3), 68.4 (C-2), 97.0 (C-8a), 125.6-128.7 (C-*o*, *m*, *p*), 139.8, 141.9, 143.3 (C-*i*), 173.9 (NCO); *m*/*z*: 370 (M+1, 5), 369 (M⁺, 16), 392 (13), 265 (18), 264 (47), 224 (25), 222 (34), 193 (20), 146 (23), 131 (54), 121 (21), 120 (91), 119 (26), 105 (98), 104 (100), 103 (59), 91 (40); HMRS calcd for C₂₅H₂₃NO₂: 370.1801, found: 370.1803. Anal. Calcd for C₂₅H₂₃NO₂: C, 81.27; H, 6.27; N, 3.79. Found: C, 81.05; H, 6.27; N, 3.60. 7-*epi*-**9b**: ¹H NMR (300 MHz, CDCl₃, selected resonances) δ 3.64 (t, J = 9.3 Hz, 1H, H-2), 4.41 (dd, J = 9.3, 8.4 Hz, 1H, H-2), 5.29 (t, J = 8.4 Hz, 1 H, H-3), 6.99-7.40 (m, 15H, ArH).

(2*R*,4*R*)-1-[(1*R*)-2-Hydroxy-1-phenylethyl]-2-methyl-4-phenylpiperidine (10a). LiAlH₄ (273 mg, 7.2 mmol) was slowly added to a solution of lactam 9a (220 mg, 0.72 mmol) in anhydrous THF (20 mL) at 0 °C, and the mixture was stirred at room temperature for 20 h. The reaction was quenched by a slow addition of distillated water, and the aqueous layer

was extracted with EtOAc. The combined organic extracts were dried and concentrated, and the resulting residue was chromatographed (2:8 EtOAc-hexane) to give pure piperidine **10a** (149 mg, 70% yield): IR (NaCl) 3418 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY) δ 1.35 (d, J = 6.0 Hz, 3H, CH₃), 1.52 (td, J = 12.3, 12.3, 10.8 Hz, 1H, H-3ax), 1.68 (td, J = 12.3, 12.3, 3.6 H, 1H, H-5ax), 1.85 (m, 3H, H-6ax, H-3eq, H-5eq), 2.41 (tt, J = 12.3, 3.6 Hz, 1H, H-4), 2.57 (ddddd, J = 10.8, 6.0, 6.0, 6.0, 2.4 Hz, 1H, H-2), 3.04 (dt, J = 11.4, 3.3, 3.3 Hz, 1H, H-6eq), 3.58 (dd, J = 10.2, 5.1 Hz, 1H, H-1'), 4.05 (t, J = 10.5 Hz, 1H, H-2'), 4.39 (dd, J = 10.8, 5.1 Hz, 1H, H-2'), 7.15-7.35 (m, 5H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 21.4 (CH₃), 33.6 (C-5), 42.6 (C-4), 43.7 (C-3), 45.4 (C-6), 53.5 (C-2), 59.0 (C-2'), 60.6 (C-1'), 126.1, 127.7 (C-*p*), 126.6, 128.1, 128.3, 128.8 (C-*o*, *m*), 135.1, 145.9 (C-*i*); $[\alpha]^{22}_{D} - 43.1$ (*c* 1.1, CHCl₃); HMRS calcd for [C₂₀H₂₅NO + H]: 296.2008, found: 296.2018.

(2*S*,4*S*)-1-[(1*R*)-2-Hydroxy-1-phenylethyl]-2,4-diphenylpiperidine (10b). Operating as in the preparation of 10a, from lactam 9b (70 mg, 0.19 mmol) in anhydrous THF (5 mL), and LiAlH₄ (72 mg, 1.9 mmol), pure piperidine 10b was obtained (60 mg, 88% yield) after column chromatography (2:8 EtOAc-hexane): IR (NaCl) 3376 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY, HETCOR) δ 1.81 (dt, J = 12.0, 12.0, 11.1 Hz, 1H, H-3ax), 1.87 (dddd, J = 12.6, 12.6, 12.6, 3.6 Hz, 1H, H-5ax), 1.95 (m, 2H, H-5eq, H-3eq), 2.12 (td J = 12.0, 12.0, 2.4 Hz, 1H, H-6ax), 2.52 (tt, J = 12.0, 3.9 Hz, 1H, H-4), 3.27 (dt, J = 12.0, 3.3, 3.3 Hz, 1H, H-6eq), 3.45 (m, 2H, H-2, H-2'), 4.09 (m, 2H, H-1', H-2'), 7.05-7.42 (m, 15H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 33.3 (C-5), 42.6 (C-4), 45.1 (C-3), 45.5 (C-6), 59.5 (C-2'), 61.7 (C-1'), 65.2 (C-2), 126.1-129.4 (C-*o*, *m*, *p*), 134.2, 143.4, 145.4 (C-*i*); $[\alpha]^{22}_{D} - 9.3$ (*c* 1.5, CHCl₃). Anal. Calcd for C₂₅H₂₇NO·1H₂O: C, 79.99; H, 7.48; N, 3.66. Found: C, 79.96; H, 7.78; N, 3.73.

(2*R*,4*R*)-1-(*tert*-Butoxycarbonyl)-2-methyl-4-phenylpiperidine (11a). A solution of 10a (120 mg, 0.41 mmol) and di-*tert*-butyl dicarbonate (178 mg, 0.81 mmol) in EtOAc (12 mL)

containing 20% Pd(OH)₂-C (20 mg) was hydrogenated at rt for 20 h at atmospheric pressure. The catalyst was removed by filtration, and the solvent was evaporated to give an oil, which was chromatographed (5:95 EtOAc-hexane) to afford **11a** (99 mg, 88% yield) as a white solid: IR (NaCl) 1692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY) δ 1.20 (d, *J* = 6.6 Hz, 3H, CH₃), 1.49 [s, 9H, (CH₃)₃C], 1.52-1.68 (m, 2H, H-3ax, H-5ax), 1.90 (dddd, *J* = 13.5, 6.2, 3.3, 1.2 Hz, 1H, H-3eq), 2.15 (m, 1H, H-5eq), 2.75 (m, 1H, H-4), 3.25 (ddd, *J* = 13.8, 9.9, 6.6 Hz, 1H, H-6ax), 3.79 (ddd, *J* = 13.8, 7.5, 3.3 Hz, 1H, H-6eq), 3.95 (dddd, *J* = 9.3, 6.0, 6.0, 6.0 Hz, 1H, H-2), 7.15-7.35 (m, 5H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 19.8 (CH₃), 28.5 [(CH₃)₃C], 31.2 (C-5), 37.1 (C-3), 37.6 (C-6), 38.0 (C-4), 50.0 (C-2), 79.8 [(CH₃)₃C], 126.0 (C-*p*), 126.7, 128.4 (C-*o*, *m*), 146.0 (C-*i*), 155.3 (COO); mp 54-55 °C; $[\alpha]_{12}^{22}_{12}$ - 72.1 (*c* 0.6, CHCl₃). Anal. Calcd for C₁₇H₂₅NO₂: C, 74.14; H, 9.15; N, 5.09. Found: C, 74.00; H, 9.24; N, 4.97.

(2*S*,4*R*)-1-(*tert*-Butoxycarbonyl)-2,4-diphenylpiperidine (11b). Operating as described above in the preparation of **11a**, from **10b** (190 mg, 0.53 mmol), di-*tert*-butyl dicarbonate (232 mg, 1.06 mmol) in EtOAc (15 mL), and 20% Pd(OH)₂-C (48 mg), compound **11b** was obtained (134 mg, 75% yield) after flash chromatrography (5:95 EtOAc-hexane) as a white solid: IR (NaCl) 1692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, COSY, HETCOR) δ 1.28 [s, 9H, (C*H*₃)₃C], 1.70 (dddd, *J* = 16.5, 9.6, 6.6, 3.3 Hz, 1H, H-5), 1.96 (dt, *J* = 13.5, 13.5, 11.7 Hz, 1H, H-3ax), 2.18 (dddd, *J* = 13.5, 6.6, 3.3, 1.5 Hz, 1H, H-3eq), 2.31 (m, 1H, H-5), 2.91 (m, 1H, H-4), 3.52 (ddd, *J* = 13.8, 9.9, 6.3 Hz, 1H, H-6ax), 4.11 (ddd, *J* = 13.8, 7.5, 3.0 Hz, 1H, H-6eq), 4.88 (dd, *J* = 11.7, 6.3 Hz, 1H, H-2), 7.18-7.28 (m, 10H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 26.2 [(*C*H₃)₃C], 31.2 (C-5), 38.1, 39.2 (C-3, C-6), 38.2 (C-4), 58.0 (C-2), 79.5 [(CH₃)₃C], 125.0, 126.7, 128.3, 128.5 (C-*o*, *m*), 126.2, 126.5 (C-*p*), 144.6, 146.0 (C-*i*), 155.8 (COO); mp 70-72 °C; $[\alpha]^{22}_{D} - 45.6$ (*c* 1.0, CHCl₃). Anal. Calcd for C₂₂H₂₇NO₂: C, 78.30; H, 8.06; N, 4.15. Found: C, 78.17; H, 8.13; N, 4.03.

(3R,8aR)-8a-(3-Hydroxypropyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-

oxazolo[3,2-*a*]pyridine. А solution (3R)-8a-(3-benzyloxypropyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine³ (4:1 mixture of C-8a epimers; 286 mg, 0.78 mmol) in MeOH (25 mL) containing 10% Pd/C (40 mg) was hydrogenated at rt for 48 h at atmospheric pressure. The catalyst was removed by filtration, and the solvent was concentrated. The residue was chromatographed (pure EtOAc to 95:5 EtOAc-MeOH) to afford the title alcohol (141 mg, 66% yield) and its 8a-epimer (55 mg, 26% yield). **3R,8aR-isomer** (higher R_f): IR (NaCl) 3415, 1660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.57 (m, 3H, CH₂CH₂CH₂O, H-8), 1.80 (m, 3H, H-7, CH₂CH₂CH₂O), 1.92 (m, 1H, H-7), 2.10 (br, 1H, OH), 2.35 (m, 1H, H-8), 2.43 (dd, J = 18.1, 9.2 Hz, 1H, H-6), 2.58 (dd, J = 18.4, 6.0 Hz, 1H, H-6), 3.53 (m, 2H, CH₂CH₂CH₂O), 3.88 (t, J = 8.4 Hz, 1H, H-2), 4.48 (t, J = 9.2 Hz, 1H, H-2), 5.34 (t, J = 8.4 Hz, 1H, H-3), 7.05-7.20 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 16.6 (C-7), 27.2 (CH₂CH₂CH₂O), 30.6 (C-6), 30.8 (C-8), 31.2 (CH₂CH₂CH₂O), 58.6 (C-3), 62.2 (CH₂CH₂CH₂O), 69.3 (C-2), 95.9 (C-8a), 125.4, 128.5 (C-o, m), 127.1 (C-p), 139.6 (C-i), 169.9 (COO); $[\alpha]_{D}^{22} - 131.7$ (c 1.0, CHCl₃); HMRS calcd for $[C_{16}H_{21}NO_3 + H]$: 276.1594, found: 276.1603. Anal. Calcd for C₁₆H₂₁NO₃·¹/₂H₂O: C, 67.58; H, 7.80; N, 4.93. Found: C, 67.24; H, 7.77; N, 4.62. **3R,8aS**isomer (lower R_f): IR (NaCl) 3450, 1650 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.52-1.96 (m, 7H, H-8, 2H-7, 2CH₂), 2.20-2.50 (m, 3H, 2H-6, H-8), 2.94 (br, 1H, OH), 3.57 (m, 2H, CH₂CH₂CH₂O), 3.88 (dd, J = 8.8, 1.6 Hz, 1H, H-2), 4.40 (t, J = 8.8, 7.2 Hz, 1H, H-2), 4.93 (dd, J = 7.2, 1.6 Hz, 1H, H-3), 7.10-7.20 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) & 16.7 (C-7), 27.0 (CH₂CH₂CH₂O), 29.7 (C-6), 30.1 (C-8), 30.7 (CH₂CH₂CH₂O), 58.8 (C-3), 61.8 (CH₂CH₂CH₂O), 71.1 (C-2), 95.1 (C-8a), 126.1, 128.4 (C-o, m), 127.2 (C-p), 141.5 (C-i), 167.5 (COO); $[\alpha]_{D}^{22} - 15.3 (c 1.5, CHCl_3)$; HMRS calcd for [C₁₆H₂₁NO₃ + H]: 276.1594, found: 276.1601.

(*3R*,8*aR*)-8a-[3-(2-Nitrophenylselenyl)propyl]-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5*H*-oxazolo[3,2-*a*]pyridine. To a stirred solution of the above 8*aR*-epimer (145 mg, 0.53 mmol) and *o*-nitrophenylselenocyanate (157 mg, 0.69 mmol) in anhydrous THF (3 mL) was added *n*-tributylphosphine (170 μL, 0.69 mmol) at rt. After 2 h, the solvent was removed under reduced pressure. Flash chromatography of the residue (1:9 to 7:3 EtOAc-hexane) gave the title *o*-nitrophenylselenide (180 mg, 73% yield): IR (NaCl) 1650 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.58 (td, *J* = 13.3, 13.3, 4.0 Hz, 1H, H-8), 1.76-1.99 (m, 6H, 2H-7, 2CH₂), 2.30 (dt, *J* = 13.3, 3.7 Hz, 1H, H-8), 2.45 (dd, *J* = 18.2, 8.6 Hz, 1H, H-6), 2.61 (dd, *J* = 18.2, 6.1 Hz, 1H, H-6), 2.79-2.96 (2m, 2H, CH₂CH₂CH₂Se), 3.91 (t, *J* = 8.2 Hz, 1H, H-2), 4.48 (t, *J* = 8.8 Hz, 1H, H-2), 5.39 (t, *J* = 8.0 Hz, 1H, H-3), 7.20-7.52 (2m, 9H, ArH), 8.26-8.28 (d, *J* = 8.4 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 16.6 (C-7), 22.9 (CH₂CH₂CH₂Se), 25.7 (CH₂CH₂CH₂Se), 30.6 (C-6), 30.9 (C-8), 34.8 (CH₂CH₂CH₂Se), 58.4 (C-3), 69.3 (C-2), 95.5 (C-8a), 125.4-130.7 (C-*o*, *m*, *p*), 126.4 (C-*o*-PhSe), 132.9, 138.7 (C-*i*), 146.8 (CNO₂), 169.8 (NCO); [α]²²_D - 16.9 (*c* 1.0, CHCl₃); HMRS calcd for [C₂₂H₂A₄N₂O₄Se + H]: 461.0974, found: 461.0978.

(3R,8aR)-8a-Allyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine

(12a). 30% aqueous H₂O₂ (40 µL, 1.3 mmol) and pyridine (12 µL, 0.14 mmol) were added to a solution of the above *o*-nitrophenylselenide (60 mg, 0.13 mmol) in CH₂Cl₂ (20 mL), and the resulting mixture was stirred at rt for 2 h. The resulting solution was washed with water (10 x 5 mL), dried, and concentrated to give an oil. The residue was chromatographed (1:4 to 1:1 EtOAc-hexane) to afford compound **12a** (20 mg, 70% yield) as a trasparent oil: IR (NaCl) 1656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.51 (tdd, *J* = 13.6, 13.6, 5.2, 1.6 Hz, 1H, H-8), 1.89 (m, 2H, H-7), 2.38 (m, 2H, CH₂ allyl, H-8), 2.44 (dd, *J* = 18.4, 7.6 Hz, 1H, H-6), 2.51 (m, 1H, CH₂ allyl), 2.62 (ddd, *J* = 18.4, 10.0, 2.8 Hz, 1H, H-6), 3.94 (t, J = 7.2 Hz, 1H, H-2), 4.53 (t, J = 9.2 Hz, 1H H-2), 5.11 (m, 2H, CH₂=), 5.39 (t, J = 8.0 Hz, 1H, H-3), 5.72 (dddd, J = 16.0, 10.0, 8.4, 5.6 Hz, 1H, CH=), 7.10-7.35 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 16.4 (C-7), 30.6 (C-6), 30.9 (C-8), 39.4 (CH₂ allyl), 58.4 (C-3), 69.3 (C-2), 95.2 (C-8a), 118.8 (CH₂=), 125.3, 128.5 (C-*o*, *m*), 127.1 (C-*p*), 139.8 (C-*i*), 169.8 (NCO); $[\alpha]^{22}_{D} - 118.5$ (*c* 2.0, CHCl₃). Anal. Calcd for C₁₆H₁₉NO₂: C, 74.468; H, 7.44; N, 5.44. Found: C, 74.58; H, 7.20; N, 5.32.

(3R,8aR)-8a-(3-Butenyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

a]pyridine (12b). A stirred solution of (-)-(R)-phenylglycinol (350 mg, 2.56 mmol) and 5oxo-8-nonenoic acid⁴ (435 mg, 2.56 mmol) in toluene (6 mL), containing molecular sieves (4 Å, 5 g), was heated at reflux for 24 h, with azeotropic elimination of water produced. The resulting solution was filtered (Celite[®]) and concentrated, and the residue was taken up with EtOAc. The organic solution was washed with 5% aqueous NaHCO₃, dried, and concentrated to give an orange oil. Column chromatography (1:2 EtOAc-hexane to EtOAc) afforded a mixture of lactams 12b and 8a-epi-12b (ratio 8:2, 489 mg, 71% overall yield). **12b**: IR (NaCl) 1654 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.57 (td, J = 13.3, 13.3, 4.4 Hz, 1H, H-8), 1.83 (m, 3H, H-7, CH₂), 1.96 (m, 1H, H-7), 2.12 (m, 2H, CH₂), 2.35 (dt, J = 13.3, 8.8, 8.8 Hz, 1H, H-8), 2.48 (ddd, J = 18.1, 9.6, 8.2 Hz, 1H, H-6), 2.64 (ddd, J = 18.0, 7.4, 2.1 Hz, 1H, H-6), 3.88 (t, J = 8.4 Hz, 1H, H-2), 4.52 (t, J = 8.8 Hz, 1H, H-2), 4.95 (m, 2H, CH₂=), 5.38 (t, J = 8.2 Hz, 1H, H-3), 5.75 (tt, J = 10.1, 6.5 Hz, 1H, CH=), 7.20-7.36 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 16.8 (C-7), 28.4 (C-8), 30.6 (C-6), 30.9 (CH₂CH₂CH=), 33.8 (CH₂CH₂CH=), 58.7 (C-3), 69.5 (C-2), 95.9 (C-8a), 115.1 (CH₂=), 125.4-128.6 (C-*o*, *m*, *p*), 137.4 (CH=), 139.9 (C-*i*), 169.9 (COO). 8a-*epi*-12b: ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 3.95 (dd, J = 9.1, 1.8 Hz, 1H, H-2), 4.42 $(dd, J = 9.1, 7.4 Hz, 1H, H-2), 5.05 (m, 2H, CH_2=), 5.87 (tt, J = 10.4, 6.9 Hz, 1H, CH=);$ ^{13}C NMR (100.6 MHz, CDCl₃, selected resonances) δ 16.9 (C-7), 28.4 (C-8), 29.9 (C-6), 30.4 ($CH_2CH_2CH_2$), 33.6 ($CH_2CH_2CH_2$), 59.1 (C-3), 71.3 (C-2); HMRS calcd for $[C_{17}H_{21}NO_2 + H]$: 272.1645, found: 272.1650.

(3R,8aR)-8a-Allyl-6-(benzyloxycarbonyl)-5-oxo-3-phenyl-6-(phenylselenyl)-6-

2,3,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (13a). Operating as described for the preparation of 2a, from lactam 12a (294 mg, 1.14 mmol), lithium bis(trimethylsilyl)amide (1 M in THF, 2.5 mL), benzyl chloroformate (161 µL, 1.14 mmol), and PhSeCl (307 mg, 1.6 mmol) in anhydrous THF (23 mL), lactam 13a was obtained as a mixture of C-6 epimers (437 mg, 70% overall yield) after column chromatography (1:5 EtOAc-hexane). **13a** (major, higher R_f): IR (NaCl) 1658, 1726 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.85-2.16 (m, 5H, 2H-8, 2H-7, CH₂ allyl), 2.51 (dd, J = 14.4, 5.6 Hz, 1H, CH₂ allyl), 3.93 (t, J = 8.0 Hz, 1H, H-2), 4.53 (t, J = 8.8 Hz, 1H H-2), 4.87 (d, J = 17.2 Hz, 1H, $CH_2=$), 4.99 (d, J = 10.4 Hz, 1H, $CH_2=$), 5.20 (d, J = 12.0 Hz, 1H, CH_2 benzyl), 5.34 (d, J = 10.4 Hz, 1H, $CH_2=$), 5.20 (d, J = 112.0 Hz, 1H, CH₂ benzyl), 5.47 (t, J = 8.0 Hz, 1H, H-3), 5.53 (m, 1H, CH=), 7.11-7.64 (m, 15H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.6, 28.5 (C-7, C-8), 40.5 (CH₂ allyl), 54.8 (C-6), 58.8 (C-3), 67.9 (CH₂ benzyl), 69.2 (C-2), 95.1 (C-8a), 119.3 (CH₂=), 125.3-138.5 (C-o, m, p), 135.1 (CH=), 139.6 (C-*ipso*), 166.2 (COO), 169.8 (NCO); $[\alpha]_{D}^{22}$ – 115.6 (c 1.6, CHCl₃). HMRS calcd for [C₃₀H₂₉NO₄Se + H]: 548.1326, found: 548.1330. **13a** (minor, lower R_f): IR (NaCl) 1659, 1738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.41 (dd, J = 15.6, 9.6 Hz, 1H, CH₂ allyl), 1.79 (tdd, J = 13.2, 13.2, 6.4, 1.6 Hz, 1H, H-8), 2.12 (dt, J = 13.2, 3.2, 3.2 Hz, 1H, H-8), 2.21 (m, 2H, H-7, CH₂ allyl), 2.34 (dt, J = 14.8, 4.0, 4.0 Hz, 1H, H-7), 3.89 (t, J = 8.4 Hz, 1H, H-2), 4.40 (t, J = 8.8 Hz, 1H, H-2), 4.86 (d, J = 17.2 Hz, 1H, CH₂=), 5.02 (d, J = 10.0 Hz, 1H, CH₂=), 5.20 (d, J = 12.0 Hz, 1H, CH₂ benzyl), 5.27 (d, J = 12.0 Hz, 1H, CH₂ benzyl), 5.33 (t, J = 8.4 Hz, 1H, H-3), 5.52 (dddd, J = 17.2, 10.0, 10.0, 5.2 Hz, 1H, CH=), 7.20-7.60 (m, 15H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) § 29.5, 29.6 (C-7, C-8), 38.9 (CH₂ allyl), 55.1 (C-6), 60.1 (C-3), 68.1 (CH₂ benzyl), 69.4 (C-2), 94.9 (C-8a), 118.8 (CH₂=), 125.3-138.7 (C-*o*, *m*, *p*), 135.2 (CH=), 138.9 (C-*i*), 166.6 (COO), 170.2 (NCO). HMRS calcd for [C₃₀H₂₉NO₄Se + H]: 548.1326, found: 548.1331.

(3R,8aS)-6-(Benzyloxycarbonyl)-8a-(3-butenyl)-5-oxo-3-phenyl-6-(phenylselenyl)-

2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (13b). Operating as in the preparation of 2a, from the above mixture of lactam 12b and its C-8a epimer (440 mg, 1.62 mmol), lithium bis(trimethylsilyl)amide (1 M in THF, 3.6 mL), benzyl chloroformate (50% in toluene, 3.2 mL, 1.62 mmol), and PhSeCl (435 mg, 2.27 mmol) in THF (33 mL), followed by column chromatography (1:5 EtOAc-hexane), lactam 13b was obtained as a mixture of C-6 epimers (785 mg, 88% overall yield), which were separated after an additional column chromatography (1:9 EtOAc-hexane). **13b** (major, higher R_f): IR (NaCl) 1659, 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.25-1.37 (m, 2H, CH₂), 1.81-2.16 (m, 6H, H-7, H-8, CH₂), 3.84 (t, J = 8.4 Hz, 1H, H-2), 4.48 (t, J = 8.4 Hz, 1H, H-2), 4.78-4.84 (m, 2H, CH₂=), 5.17 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.32 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.43 (t, J = 8.4 Hz, 1H, H-3), 5.48-5.57 (m, 1H, CH=), 7.07-7.41 (m, 15H, ArH), 7.62 (d, J = 7.6 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.8, 29.4, 29.9 (C-7, C-8, CH₂), 32.8 (CH₂), 55.1 (C-6), 60.2 (C-3), 68.0 (CH₂ benzyl), 69.3 (C-2), 95.4 (C-8a), 114.9 (CH₂=), 126.6-129.0, 138.8 (C-o, m, p), 135.2, 137.2, 138.7 (C-i), 166.5 (COO), 170.3 (NCO); $[\alpha]^{22}_{D}$ – 113.7 (*c* 0.35, CHCl₃); HMRS calcd for $[C_{31}H_{31}NO_4Se + H]$: 562.1491, found: 562.1492. **13b** (minor, lower R_t): ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.25-1.37 (m, 1H, CH₂), 1.60 (m, 1H, CH₂), 2.79-2.20 (m, 6H, H-7, H-8, CH₂), 3.84 (t, J = 8.4 Hz, 1H, H-2), 4.48 (t, J = 9.2 Hz, 1H, H-2), 4.80 (d, J = 13.6 Hz, 1H, CH₂=), 4.83 (d, J = 5.6 Hz, 1H, CH₂=), 5.17 (d, J = 12.0 Hz, 1H, CH₂ benzyl), 5.32 (d, J = 12.0 Hz, 1H, CH₂ benzyl), 5.43 (t, J = 8.4 Hz, 1H, H-3), 5.47-5.57 (m, 1H, CH=), 7.05-7.41 (m, 15H, ArH), 7.62 (d, J = 7.6 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.7, 27.8, 28.6 (C-7, C-8,

CH₂), 34.9 (CH₂), 54.7 (C-6), 58.9 (C-3), 67.9 (CH₂ benzyl), 69.0 (C-2), 95.7 (C-8a), 115.0 (CH₂=), 125.2-129.7, 138.5 (C-*o*, *m*, *p*), 135.0, 137.0, 139.5 (C-*i*), 166.1 (COO), 170.3 (NCO); [α]²²_D + 36.9 (*c* 0.35, CHCl₃).

(3R,8aS)-8a-Allyl-6-(benzyloxycarbonyl)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-

oxazolo[3,2-*a***]pyridine (14a).** 30% aqueous H₂O₂ (25 µL, 0.83 mmol) and pyridine (11 µL, 0.14 mmol) were added to a solution of selenides **13a** (71 mg, 0.12 mmol) in CH₂Cl₂ (9 mL), and the resulting mixture was stirred at rt for 30 minutes. The reaction was quenched with distilled water, the two phases were separated, and the organic layer was washed with water, dried, and concentrated to give crude **14a** (70 mg) as an yellow oil, which was used in the next reaction without further purification: ¹H NMR (300 MHz, CDCl₃) δ 2.44-2.60 (m, 3H, CH₂ allyl, H-8), 2.96 (dd, *J* = 18.0, 7.2 Hz, 1H, H-8), 4.13 (dd, *J* = 9.2, 6.4 Hz, 1H, H-2), 4.43 (dd, *J* = 9.2, 7.6 Hz, 1H, H-2), 5.08 (dd, *J* = 17.2, 1.2 Hz, 1H, CH₂=), 5.13 (d, *J* = 10.0 Hz, 1H, CH₂=), 5.27 (d, *J* = 13.2 Hz, 1H, CH₂ benzyl), 5.29 (d, *J* = 13.2 Hz, 1H, H-3), 5.73 (dddd, *J* = 17.2, 10.0, 8.8, 6.4 Hz, 1H, CH=), 7.25-7.40 (m, 11H, ArH, H-7).

(3R,8aS)-6-(Benzyloxycarbonyl)-8a-(3-butenyl)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-

5*H*-oxazolo[3,2-*a*]pyridine (14b). Operating as described for the preparation of 14a, from selenides 13b (190 mg, 0.34 mmol), 30% aqueous H₂O₂ (70 μL, 2.3 mmol), and pyridine (30 μL, 0.37 mmol) in CH₂Cl₂ (23 mL), crude unsaturated lactam 14b was obtained and used in the next reaction without further purification: ¹H NMR (300 MHz, CDCl₃) δ 1.77 (m, 1H, CH₂), 1.95 (m, 1H, CH₂), 2.07 (m, 1H, CH₂), 2.62 (br, J = 13.5 Hz, 1H, H-8), 2.93 (dd, J = 13.5, 4.8 Hz, 1H, H-8), 4.07 (dd, J = 6.9, 4.8 Hz, 1H, H-2), 4.42 (dd, J = 6.9, 5.7 Hz, 1H, H-2), 4.97 (m, 2H, CH₂=), 5.27 (s, 1H, CH₂ benzyl), 5.30 (s, 1H, CH₂ benzyl), 5.38

(t, *J* = 5.1 Hz, 1H, H-3), 5.72 (dddd, *J* = 12.6, 7.5, 4.5, 4.5 Hz, 1H, CH=), 7.26-7.34 (m, 11H, ArH, H-7).

(3R,7R,8aS)-8a-Allyl-6-(benzyloxycarbonyl)-5-oxo-3-phenyl-7-vinyl-2,3,6,7,8,8a-

hexahydro-5H-oxazolo[3,2-a]pyridine (15a). Operating as described for the preparation of 4a, from crude lactam 14a (0.12 mmol), vinylmagnesium bromide (1.7 M solution in THF, 0.3 mL), CuI (93 mg, 0.49 mmol), LiCl (21 mg, 0.49 mmol), and TMSCl (62 µL, 0.49 mmol) in THF (4 mL), lactam 15a was obtained as a mixture of C-6 epimers (ratio 75:25, 33 mg, 60% overall yield from 13a) after column chromatography (hexane). 15a (major): IR (NaCl) 1667, 1743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 2.01 (dd, J = 14.8, 10.8 Hz, 1H, H-8), 2.25 (dd, J = 14.8 Hz, 1H, H-8), 2.27 (m, 1H, CH₂ allyl), 2.35 (td, J =14.0, 7.2, 7.2 Hz, 1H, CH₂ allyl), 3.05 (m, 1H, H-7), 3.34 (d, J = 12.0 Hz, 1H, H-6), 4.06 (dd, J = 9.2, 7.2 Hz, 1H, H-2), 4.90 (t, J = 8.8 Hz, 1H, H-2), 5.05-5.17 (m, 4H, 2CH₂=),5.18 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.23 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.51 (t, J =8.0 Hz, 1H, H-3), 5.61-5.73 (m, 2H, 2CH=), 7.20-7.40 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 36.3 (C-8), 36.4 (C-7), 42.6 (CH₂ allyl), 54.3 (C-6), 59.1 (C-3), 67.1 (CH₂ benzyl), 68.6 (C-2), 94.5 (C-8a), 117.0, 120.2 (CH₂=), 125.6-128.6 (C-o, m, p), 131.6, 137.5 (CH=), 135.5, 139.8 (C-i), 167.7, 168.6 (COO, NCO). 15a (minor): ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 2.11 (dd, J = 14.4, 8.4 Hz, 1H, H-8), 2.84 (m, 1H, H-7), 3.68 (dd, J = 4.0, 0.8 Hz, 1H, H-6), 3.94 (dd, J = 8.8, 7.6 Hz, 1H, H-2), 4.55 (t, J = 9.2 Hz, 1H, H-2)H-2), 5.53 (t, J = 8.0 Hz, 1H, H-3), 5.91 (ddd, J = 17.6, 10.4, 7.2 Hz, 1H, CH=), 7.20-7.40 (m, 10H, ArH); 13 C NMR (100.6 MHz, CDCl₃, selected resonances) δ 33.1 (C-8), 36.8 (C-7), 42.0 (CH₂ allyl), 54.0 (C-6), 58.2 (C-3), 67.3 (CH₂ benzyl), 68.5 (C-2), 94.8 (C-8a), 116.6, 119.2 (CH₂=), 131.6, 136.6 (CH=), 135.1, 140.4 (C-*i*), 166.8, 168.0 (COO, NCO); HMRS calcd for $[C_{26}H_{27}NO_4 + H]$: 418.2012, found: 418.2018.

(3R,7R,8aS)-6-(Benzyloxycarbonyl)-8a-(3-butenyl)-5-oxo-3-phenyl-7-vinyl-2,3,8,8a-

hexahydro-5H-oxazolo[3,2-a]pyridine (15b). Operating as in the preparation of 4a, from crude lactam 14b (0.34 mmol), vinylmagnesium bromide (1.7 M solution in THF, 0.86 mL), CuI (280 mg, 1.47 mmol), LiCl (62 mg, 1.47 mmol), and TMSCl (186 µL, 1.47 mmol) in THF (5 mL), lactam 15b was obtained as a mixture of C-6 epimers (ratio 77:23, 123 mg, 68% overall yield from 13b) after column chromatography (1:6 to 3:7 EtOAchexane). 15b (major): IR (NaCl) 1666, 1744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.55 (ddd, J = 14.0, 10.8, 5.6 Hz, 1H, CH₂), 1.75 (ddd, J = 14.0, 11.2, 6.0 Hz, 1H, CH₂), 1.96 (dd, J = 14.8, 10.4 Hz, 1H, H-8), 2.06 (m, 2H, CH₂), 2.30 (dd, J = 14.8, 6.0 Hz, 1H, H-8), 3.09 (m, 1H, H-7), 3.36 (d, J = 11.6 Hz, 1H, H-6), 4.00 (dd, J = 8.4, 7.2 Hz, 1H, H-2), 4.43 (t, J = 8.4 Hz, 1H, H-2), 4.87-4.92 (m, 2H, CH₂=), 5.06-5.25 (m, 4H, CH₂) benzyl, CH₂=), 5.46 (t, J = 7.6 Hz, 1H, H-3), 5.73-5.75 (m, 2H, CH=), 7.21-7.40 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 28.1 (CH₂CH₂CH₂=CH₂), 36.3 (C-7), 36.6 (C-8), 37.3 (CH₂CH₂CH₂=CH₂), 54.1 (C-6), 59.1 (C-3), 67.1 (CH₂ benzyl), 68.5 (C-2), 95.5 (C-8a), 115.2 (CH₂=), 116.9 (CH₂=), 125.6-128.6 (C-o, m, p), 135.5 (C-i), 136.8, 137.6 (CH=), 139.7 (C-i), 167.5 (COO), 168.5 (NCO). 15b (minor): ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 2.84 (dt, J = 11.6, 11.6, 4.4 Hz, 1H, H-7), 3.68 (d, J = 2.8 Hz, 1H, H-6), 3.85 $(t, J = 8.0 \text{ Hz}, 1\text{H}, \text{H}-2), 4.50 (t, J = 8.4 \text{ Hz}, 1\text{H}, \text{H}-2), 4.83 (m, 2\text{H}, \text{CH}_2=), 5.06-5.25 (m, 2\text{H}, 10^{-1}), 5.06-5.25 (m, 2\text{H$ 5H, CH₂ benzyl, CH₂=, H-3), 5.93 (m, 1H, CH=); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) § 28.0 (CH₂CH₂CH₂=CH₂), 36.3 (C-7), 36.5 (C-8), 37.0 (CH₂CH₂CH₂=CH₂), 53.9 (C-6), 58.3 (C-3), 67.1 (CH₂ benzyl), 68.3 (C-2), 95.7 (C-8a), 114.7 (CH₂=), 116.6 (CH₂=), 135.0 (C-*i*), 136.9, 137.3 (CH=), 140.4 (C-*i*), 166.7 (COO), 168.0 (NCO); HMRS calcd for $[C_{27}H_{29}NO_4 + H]$: 432.2169, found: 432.2173.

(3R,7R,11S)-6-(Benzyloxycarbonyl)-7,11-methano-5-oxo-3-phenyl-2,3,6,7,10,11-

hexahydro-5H-oxazolo[3,2-a]azocine (16a). Second-generation Grubbs catalyst (3 mg)

was added to a solution of lactams 15a (20 mg, 0.05 mmol) in CH₂Cl₂ (7 ml). The mixture was stirred at rt for 2 h, concentrated, and purified by flash column chromatography (1:9 to 1:4 EtOAc-hexane) to yield tricyclic lactam 16a as a mixture of C-6 epimers (ratio 2:1, 16 mg, 80% yield). 16a (major): IR (NaCl) 1659, 1734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 2.30-2.45 (m, 3H, 2H-10, CH₂), 2.35 (dd, *J* = 12.0, 4.0 Hz, 1H, CH₂), 3.24 (d, J = 4.0 Hz, 1H, H-7), 3.67 (d, J = 6.4 Hz, 1H, H-6), 4.00 (t, J = 8.8 Hz, 1H, H-2), 4.61 (t, J = 8.4 Hz, 1H, H-2), 5.18 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.22 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 5.48 (t, J = 8.0 Hz, 1H, H-3), 5.64 (m, 1H, CH=), 5.76 (m, 1H, CH=), 7.05-7.20 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 31.8 (C-10), 34.4 (C-7), 36.1 (CH₂), 52.0 (C-6), 58.7 (C-3), 67.2 (CH₂ benzyl), 70.1 (C-2), 92.3 (C-11), 125.0-129.9 (C-o, m, p, CH=), 135.4, 139.2 (C-i), 164.2 (NCO), 169.7 (COO). 16a (minor): ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 2.19 (ddd, J = 12.4, 4.4, 1.6 Hz, 1H, H-10), 3.05 (br, 1H, H-7), 3.53 (s, 1H, H-6), 4.02 (dd, J = 9.2, 7.6 Hz, 1H, H-2), 4.57 (t, J = 8.8 Hz, 1H, H-2), 5.45 (t, J = 7.6 Hz, 1H, H-3), 5.76 (m, 1H, CH=), 5.90 (m, 1H, CH=); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) § 30.9 (C-10), 33.3 (C-7), 36.2 (CH₂), 53.5 (C-6), 57.9 (C-3), 67.0 (CH₂ benzyl), 70.1 (C-2), 92.4 (C-11), 164.5 (NCO), 168.9 (COO); HMRS calcd for $[C_{24}H_{23}NO_4 + H]$: 390.1699, found: 390.1704.

(*3R*,7*R*,12*S*)-6-(Benzyloxycarbonyl)-3-phenyl-7,12-methano-5-oxo-2,3,5,6,7,10,11,12octahydrooxazolo[3,2-*a*]azonine (16b). Operating as described for the preparation of 16a, from lactams 15b (90 mg, 0.21 mmol) and second-generation Grubbs catalyst (14 mg) in CH₂Cl₂ (30 mL), tricyclic lactam 16b was obtained as a mixture of C-6 epimers (ratio 2:1, 70 mg, 83% overall yield) after column chromatography (1:9 to 1:4 EtOAc-hexane). 16b (major): IR (NaCl) 1658, 1738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.71 (ddd, *J* = 14.0, 12.0, 3.2 Hz, 1H, H-11), 2.05 (dm, *J* = 14.0 Hz, 1H, H-11), 2.13-2.20 (m, 4H, H-13, H-10), 3.09 (m, 1H, H-7), 3.47 (d, *J* = 1.6 Hz, 1H, H-6), 4.04 (dd, *J* = 9.2, 8.4 Hz, 1H, H-2), 4.46 (dd, J = 9.2, 8.4 Hz, 1H, H-2), 5.19 (s, 2H, CH₂ benzyl), 5.39 (t, J = 8.4 Hz, 1H, H-3), 5.85 (m, 1H, CH=), 6.06 (ddd, J = 11.6, 9.2, 2.8 Hz, 1H, CH=), 7.25-7.40 (m, 10H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 22.5 (CH₂), 31.9 (C-7), 35.6 (C-11), 37.8 (CH₂), 53.0 (C-6), 60.2 (C-3), 67.2 (CH₂ benzyl), 69.3 (C-2), 96.6 (C-12), 125.4-128.6 (C-o, m, p), 131.7, 135.0 (CH=), 135.5, 139.0 (C-i), 167.0 (NCO), 170.7 (COO). **16b** (minor): ¹H NMR (400 MHz, CDCl₃, selected resonances) δ 1.75 (dt, J = 13.6, 13.6, 3.6 Hz, 1H, H-11), 1.85 (dm, J = 13.6 Hz, 1H, H-11), 1.97 (dm, J = 13.6 Hz, 1H, H-10), 2.27 (m, 1H, H-10), 3.32 (m, 1H, H-7), 3.82 (d, J = 9.6 Hz, 1H, H-6), 4.04 (t, J = 7.6 Hz, 1H, H-2), 4.54 (dt, J = 8.8 Hz, 1H, H-2), 5.13 (s, 2H, CH₂ benzyl), 5.50 (t, J = 8.0 Hz, 1H, H-3), 5.71 (ddd, J = 11.6, 9.2, 2.8 Hz, 1H, CH=), 5.85 (m, 1H, CH=); ¹³C NMR (100.6 MHz, CDCl₃, selected resonances) δ 22.3 (CH₂), 30.8 (C-7), 33.9 (CH₂), 39.2 (C-10), 51.9 (C-6), 58.9 (C-3), 67.1 (CH₂ benzyl), 68.8 (C-2), 96.2 (C-12), 130.7, 134.3 (CH=), 135.2, 139.2 (C-i), 166.3 (NCO), 169.2 (COO); HMRS calcd for [C₂₅H₂₅NO₄ + H]: 404.1856, found: 404.1860.

(3R,7S,11S)-7,11-Methano-5-oxo-3-phenyl-2,3,6,7,8,9,10,11-octahydro-5H-oxazolo[3,2-

a]azocine (17a). Operating as in the preparation of 7a, from lactams 16a (110 mg, 0.28 mmol) and 10% Pd/C (20 mg) in MeOH (15 mL) for 48 h, pure lactam 17a was obtained (56 mg, 78% overall yield) after column chromatography (1:1.5 EtOAc-hexane): ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 1.50-1.70 (m, 3H, H-10, 2H-12), 1.72 (m, 1H, H-9), 1.72 (dm, *J* = 12.0 Hz, 1H, H-8), 1.83-1.93 (m, 2H, H-9, H-10), 2.04 (ddd, *J* = 12.0, 3.3, 1.5 Hz, 1H, H-8), 2.32 (d, *J* = 18.6 Hz, 1H, H-6), 2.54 (m, 1H, H-7), 2.67 (dd, *J* = 18.6, 7.8 Hz, 1H, H-6), 3.95 (dd, *J* = 9.0, 7.8 Hz, 1H, H-2), 4.42 (dd, *J* = 9.0, 7.8 Hz, 1H, H-2), 5.24 (t, *J* = 7.8 Hz, 1H, H-3), 7.20-7.43 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 19.7 (C-9), 28.1 (C-7), 31.3, 34.3 (C-10, C-12), 36.8 (C-6), 38.3 (C-8), 59.6 (C-3), 69.8 (C-2), 93.3 (C-11), 125.5, 128.7 (C-*o*, *m*), 127.3 (C-*p*), 139.4 (C-*i*), 170.1 (NCO); [α]²²_D – 137.8 (*c* 0.4, CHCl₃); HMRS calcd for [C₁₆H₁₉NO₂ + H]: 258.1488, found: 258.1490.

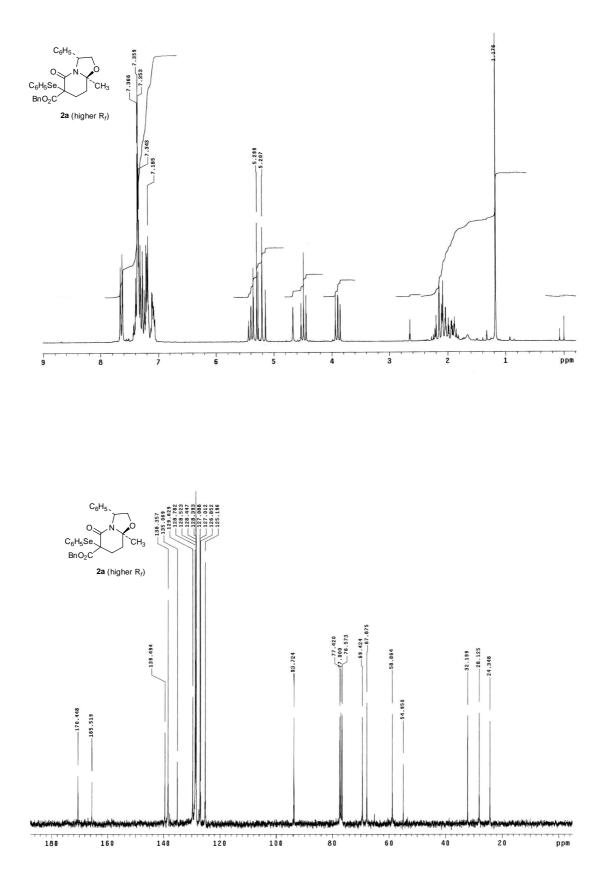
(*3R*,7*S*,1*2S*)-7,12-Methano-5-oxo-3-phenyl-2,3,5,6,7,8,9,10,10,11,12-decahydrooxazolo-[3,2-*a*]azonine (17b). Operating as described for the preparation of 7a, from lactams 16b (60 mg, 0.13 mmol) and 10% Pd/C (27 mg) in MeOH (3 mL) for 48 h, pure lactam 17b was obtained (28 mg, 83% overall yield) after column chromatography (1:1.5 EtOAc-hexane): ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 1.55-1.76 (m, 6H, CH₂), 1.85-2.00 (m, 3H, CH₂), 2.35 (m, 1H, CH₂), 2.39 (d, *J* = 18.0 Hz, 1H, H-6), 2.48 (m, 1H, H-7), 2.65 (dd, *J* = 18.0, 8.0 Hz, 1H, H-6), 3.98 (dd, *J* = 8.4, 7.2 Hz, 1H, H-2), 4.48 (t, *J* = 8.8 Hz, 1H, H-2), 5.47 (t, *J* = 8.4 Hz, 1H, H-3), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 23.5 (CH₂), 23.9 (CH₂), 26.1 (C-7), 35.7 (C-11), 37.2, 37.3 (CH₂), 38.2 (C-6), 58.5 (C-3), 69.2 (C-2), 96.0 (C-12), 125.4-128.5 (C-*o*, *m*), 127.0 (C-*p*), 140.4 (C-*i*), 170.8 (NCO).

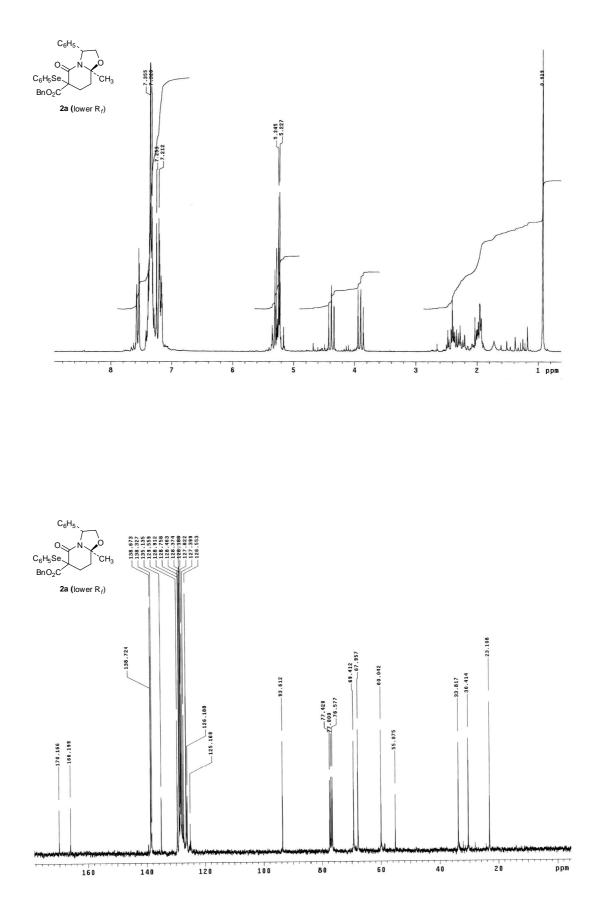
(1*R*,5*R*)-2-[(1*R*)-2-Hydroxy-1-phenylethyl]-2-azabicylo[3.3.1]nonane (18a). LiAlH₄ (68 mg, 1.8 mmol) was slowly added to a suspension of AlCl₃ (80 mg, 0.58 mmol) in THF (8 mL) at 0 °C. After the mixture was stirred at 25 °C for 30 min and cooled to -78 °C, lactam 17a (60 mg, 0.23 mmol) in THF (2 mL) was slowly added. The stirring was continued at -78 °C for 90 min and at rt for 18 h. The reaction was quenched with water, the aqueous layer was extracted with EtOAc, and the combined organic extracts were dried and concentrated. The resulting oil was dissolved in CH₂Cl₂ (7 mL), and then TiCl₄ (0.11 mL, 0.98 mmol) and Et₃SiH (97 µL, 0.61 mmol) were added. The resulting mixture was heated at reflux for 48 h, poured into saturated aqueous NaHCO₃, and extracted with CH₂Cl₂. The combined organic extracts were dried and concentrated, and the resulting residue was chromatographed (EtOAc) to give **18a** (24 mg, 48% overall yield): IR (NaCl) 3306 cm⁻¹; ¹H NMR (400 MHz, CDCl₃,) δ 1.20-2.00 (m, 10H, H-4, H-6, H-7, H-8, H-9), 1.94 (m, 1H, H-5), 2.82 (m, 2H, H-3), 3.00 (m, 1H, H-1), 3.24 (br, 1H, OH), 3.73 (dd, *J* = 9.6, 4.8 Hz, 1H, H-2'), 3.75 (dd, *J* = 12.4, 9.6, 4.8 Hz, 1H, H-2'), 3.86 (ddd, *J* = 12.4, 9.6, 4.8 Hz, 1H, H-1'),

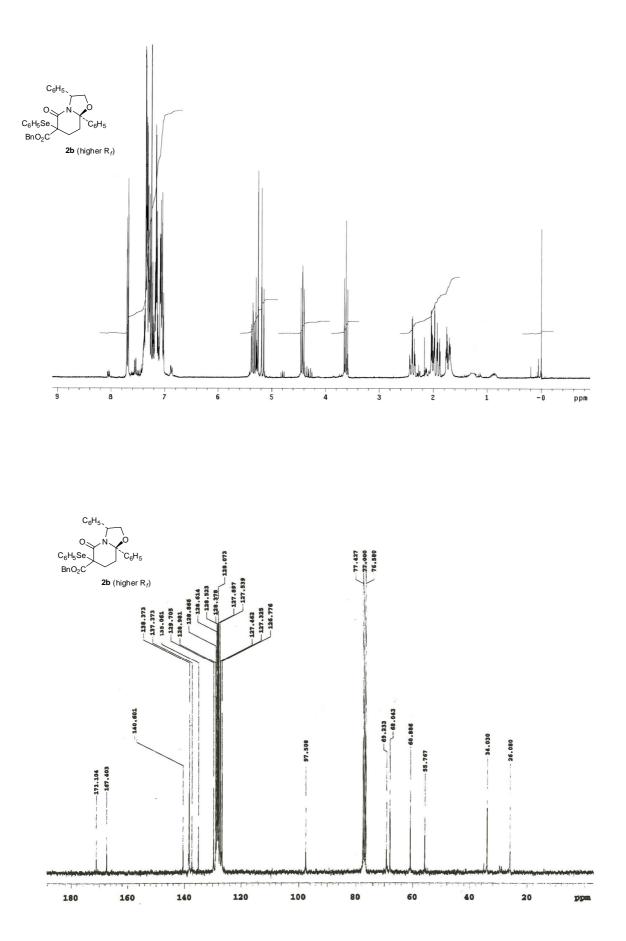
7.20-7.40 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 19.2 (C-7), 24.5 (C-5), 28.4 (CH₂), 29.3 (CH₂), 31.4 (CH₂), 31.6 (CH₂), 42.3 (C-3), 50.1 (C-1), 61.2 (C-2'), 68.8 (C-1'), 128.3, 128,6 (C-*o*, *m*), 127.7 (C-*p*), 138.0 (C-*i*); HMRS calcd for [C₁₆H₂₃NO + H]: 246.1852, found: 246.1846.

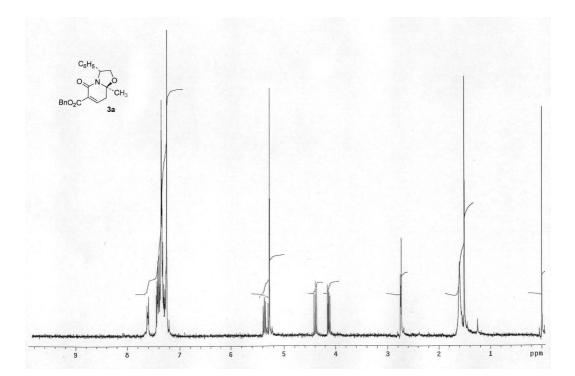
(1*R*,6*R*)-7-[(1*R*)-2-Hydroxy-1-phenylethyl]-7-azabicyclo[4.3.1]decane (18b). LiAlH₄ (75 mg, 1.9 mmol) was slowly added to a suspension of AlCl₃ (76 mg, 0.55 mmol) in THF (8 mL) at 0 °C. After the mixture was stirred at rt for 30 min and cooled to -78 °C, lactam 17b (60 mg, 0.22 mmol) in THF (2 mL) was slowly added. The stirring was continued at -78 °C for 90 min and at rt for 3 h. The mixture was cooled to 0 °C, and the reaction was quenched with water. The aqueous layer was extracted with EtOAc, and the combined organic extracts were dried and concentrated to give an oil, which was chromatographed (1:1.5 EtOAc-hexane) to afford 18b (46 mg, 80% yield): IR (NaCl) 3193 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.28-2.23 (m, 10H, CH₂), 2.03 (m, 1H, H-1), 2.65 (m, 1H, H-8), 2.75 (ddd, *J* = 18.4, 8.4, 4.8 Hz, 1H, H-8), 3.11 (m, 1H, H-6), 3.25 (br, 1H, OH), 3.70 (dd, *J* = 6.4, 5.6 Hz, 1H, H-1'), 3.77 (dd, *J* = 10.4, 5.6 Hz, 1H, H-2'), 7.28-7.35 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 26.4 (CH₂), 26.9 (CH₂), 28.0 (C-1), 29.7 (CH₂), 31.0 (CH₂), 31.4 (CH₂), 36.5 (CH₂), 41.2 (C-8), 52.1 (C-6), 61.8 (C-2'), 66.1 (C-1'), 127.6-128.4 (C-*o*, *m*), 127.6 (C-*p*), 138.7 (C-*i*); [α]²²_D – 2.8 (*c* 0.25, CHCl₃); HMRS calcd for [C₁₇H₂₅NO + H]: 260.2008, found: 260.2010.

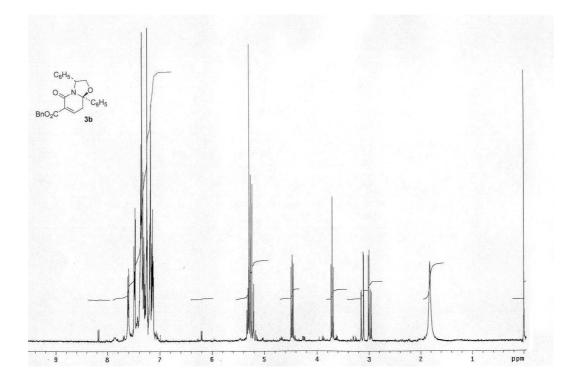
(1*R*,5*R*)-2-(*tert*-Butoxycarbonyl)-2-azabicyclo[3.3.1]nonane (19a). Operating as described in the preparation of 11a, from 18a (20 mg, 0.08 mmol), di-*tert*-butyl dicarbonate (27 mg, 0.12 mmol) and 20% Pd(OH)₂-C (10 mg) in MeOH (5 mL) for 48 h, compound 19a was obtained (11 mg, 61% yield) after flash chromatrography (1:99 to 5:95 EtOAc-hexane): IR (NaCl) 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, HETCOR) δ 1.20-1.90 (m,

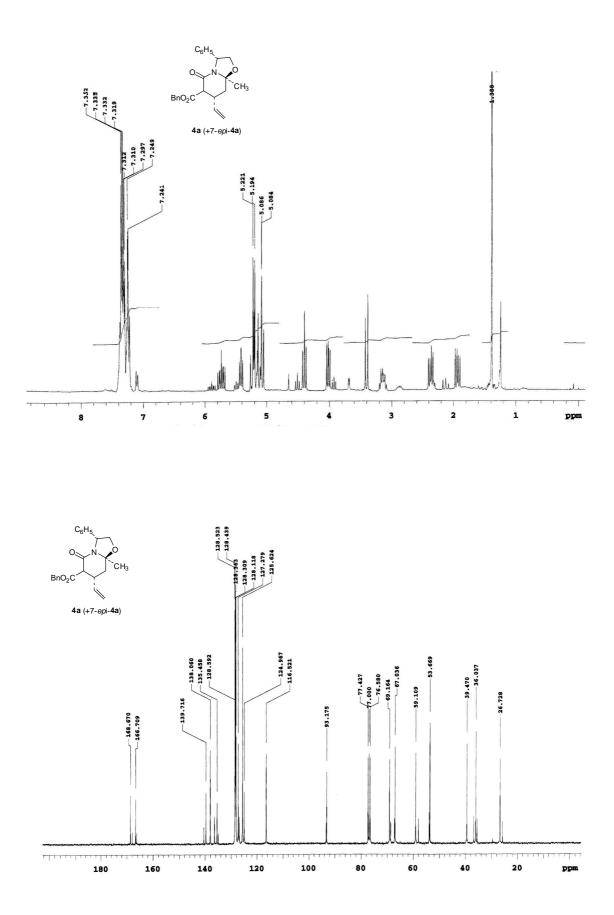

10H, H-4, H-6, H-7, H-8, H-9), 1.46 [s, 9H, (CH₃)₃C], 2.00 (m, 1H, H-5), 3.50 (m, 2H, H-3), 4.00, 4.18 (2m, 1H, H-1); ¹³C NMR (100.6 MHz, CDCl₃) δ 19.1, 19.7 (C-7), 24.5, 24.8 (C-5), 28.4, 28.8 (CH₂), 28.5 [C(*C*H₃)₃], 30.3, 31.0 (CH₂), 31.1, 31.3 (CH₂), 31.9, 32.2 (CH₂), 39.7, 40.8 (C-3), 46.2, 47.2 (C-1), 78.9 [*C*(CH₃)₃], 155.9 (COO); [α]²²_D – 14.6 (*c* 0.9, CHCl₃); HMRS calcd for [C₁₃H₂₃NO₂ + H]: 226.1788, found: 226.1794.

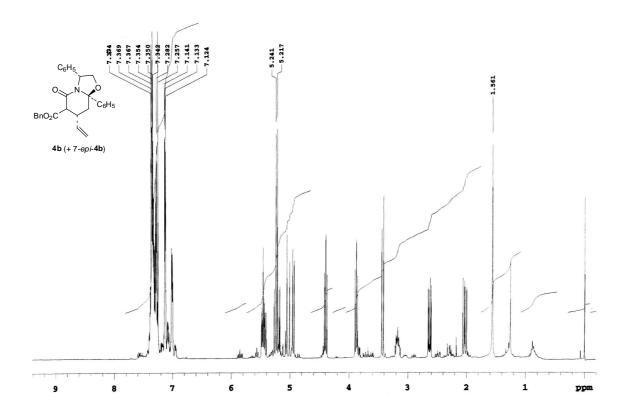

(1*R*,6*R*)-2-(*tert*-Butoxycarbonyl)-7-azabicyclo[4.3.1]decane (19b). Operating as described in the preparation of 11a, from 18b (45 mg, 0.17 mmol), di-*tert*-butyl dicarbonate (66 mg, 0.3 mmol) and 20% Pd(OH)₂-C (17 mg) in EtOAc (10 mL) for 48 h, compound 19b was obtained (129 mg, 73% yield) after flash chromatrography (1:99 to 5:95 EtOAc-hexane): IR (NaCl) 1692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.40-1.80 (m, 9H, CH₂), 1.45 [s, 9H, (CH₃)₃C], 1.86 (m, 1H, CH₂), 2.14 (m, 1H, H-1), 3.13, 3.19 (2d, J = 12.0 Hz, 1H, H-8), 3.78, 3.84 (2dm, J = 12.0 Hz, 1H, H-8), 4.24, 4.39 (2s, 1H, H-6); ¹³C NMR (100.6 MHz, CDCl₃) δ 27.2 (C-1), 28.5 [(CH₃)₃C], 30.8 (CH₂), 30.9, 31.3 (CH₂), 32.8, 33.3 (CH₂), 34.9, 35.8 (CH₂), 37.5, 38.5 (C-8), 48.3, 49.5 (C-6), 78.9 [(CH₃)₃C], 155.5, 155.8 (COO); HMRS calcd for [C₁₄H₂₅NO₂ + H]: 240.1958, found: 240.1958.

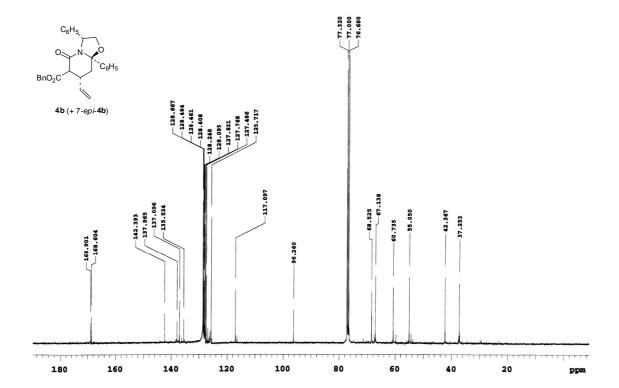

(1*S*,6*R*)-7-[(1*R*)-2-Hydroxy-1-phenylethyl]-7-azabicyclo[4.3.1]decan-8-one (20). TiCl₄ (166 μ L, 0.88 mmol) and Et₃SiH (88 μ L, 0.55 mmol) were added to a solution of lactam 17b (60 mg, 0.22 mmol) in CH₂Cl₂ (4 mL), and the resulting mixture was heated at reflux for 20 h. The mixture was poured into saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The combined organic extracts were dried and concentrated, and the resulting residue was chromatographed (1:9 EtOAc-hexane to EtOAc) to give recovered compound 17b (20 mg) and alcohol 20 (29 mg; 73% yield based on consumed 17b): IR (NaCl) 3400, 1615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.60 (m, 5H, CH₂), 1.84 (m, 3H, CH₂), 2.03 (dt, *J* = 12.3, 6.0, 6.0 Hz, 1H, H-10), 2.36 (d, *J* = 17.7 Hz, 1H, H-9), 2.42

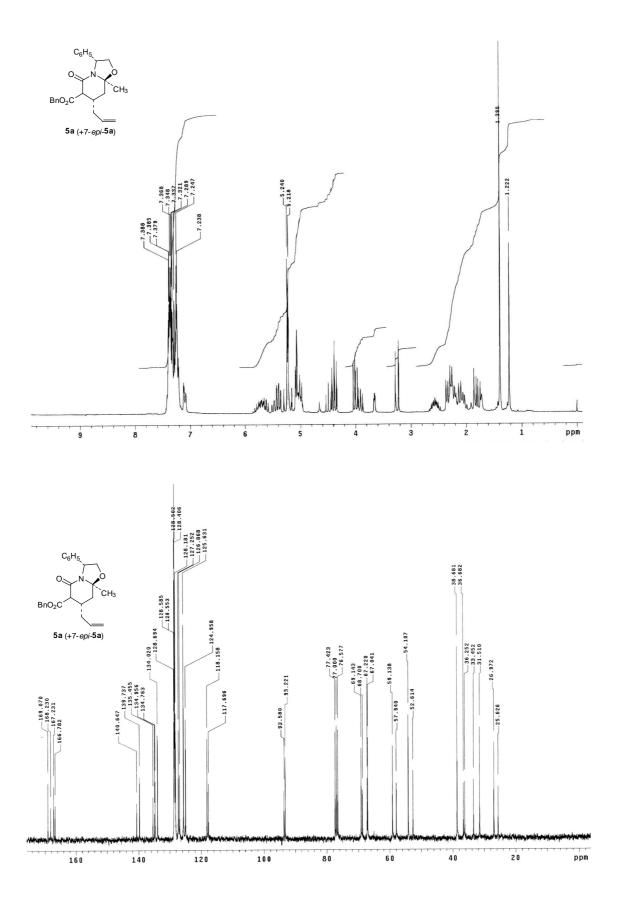

(m, 1H, H-1), 2.68 (dd, J = 17.7, 7.8 Hz, 1H, H-9), 3.64 (d, J = 4.8 Hz, 1H, H-6), 4.07 (ddd, J = 12.0, 6.9, 2.4 Hz, 1H, H-2'), 4.30 (dd, J = 12.0, 6.9 Hz, 1H, H-2'), 4.64 (dd, J = 6.9, 2.4 Hz, 1H, H-1'), 7.27-7.31 (m, 5H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 24.3, 24.9 (CH₂), 28.3 (C-1), 32.1 (C-10), 33.0, 34.8 (CH₂), 39.2 (C-7), 56.7 (C-6), 64.5 (C-2'), 65.6 (C-1'), 127.4, 128.6 (C-*o*, *m*), 127.4 (C-*p*), 137.2 (C-*i*), 172.6 (NCO); $[\alpha]^{22}_{D} + 53.7$ (*c* 0.2, CHCl₃); *m/z*: 275 (M+2, 22), 274 (M+1, 100), 272 (1), 258 (2), 256 (4), 255 (2), 243 (1), 242 (3); HMRS calcd for [C₁₇H₂₃NO₂ + H]: 274.1790, found: 274.1801.

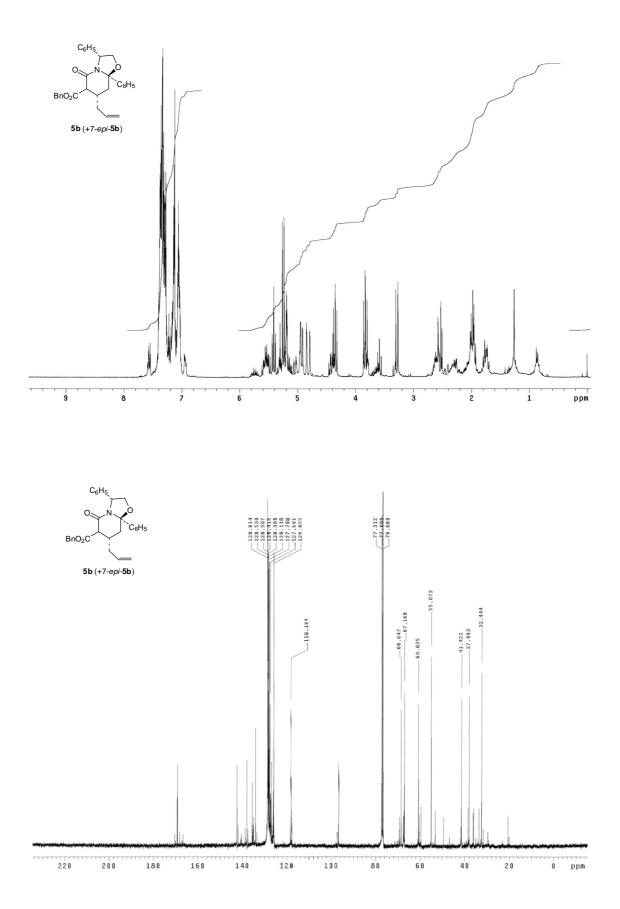

(15,6*R*)-7-Azabicyclo[4.3.1]decan-8-one (21). Into a three-necked, 100 mL roundbottomed flask equipped with a coldfinger condenser charged with dry ice-acetone were condensed 10 mL of NH₃ at -78 °C, and a solution of 20 (30 mg, 0.11 mmol) in THF (3 mL) was added. The temperature was raised to -33 °C, and then sodium metal was added in small portions until the blue color persisted. The mixture was stirred at -33 °C for 1 min. The reaction was quenched by addition of solid NH₄Cl until the blue color disappeared, and then the mixture was stirred at rt for 4 h. The resulting residue was digested at rt with CH₂Cl₂, and the suspension was filtered throw Celite[®] and concentrated. Flash chromatography (1:9 EtOAc-hexane to 95:5 EtOAc-MeOH) afforded 21 (19 mg, 90% yield): IR (NaCl) 1664, 3190 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, COSY, HETCOR) δ 1.20-1.77 (m, 7H, CH₂), 1.84 (br, J = 14.4 Hz, 1H, CH₂), 1.98 (m, 2H, CH₂), 2.17 (d, J = 16.8Hz, 1H, H-9), 2.35 (m, 1H, H-1), 2.43 (dd, J = 16.8, 6.0 Hz, 1H, H-9), 3.86 (d, J = 4.0 Hz, 1H, H-6), 6.15 (br,1H, NH); ¹³C NMR (100.6 MHz, CDCl₃) δ 24.3 (CH₂), 26.3 (CH₂), 27.7 (C-1), 28.9 (CH₂), 35.3 (CH₂), 35.6 (CH₂), 39.4 (C-9), 50.8 (C-6), 172.6 (NCO); $[\alpha]^{22}_{D}$ + 46.9 (*c* 0.8, CHCl₃); HMRS calcd for [C₉H₁₅NO + H]: 154.1225, found: 154.1226.

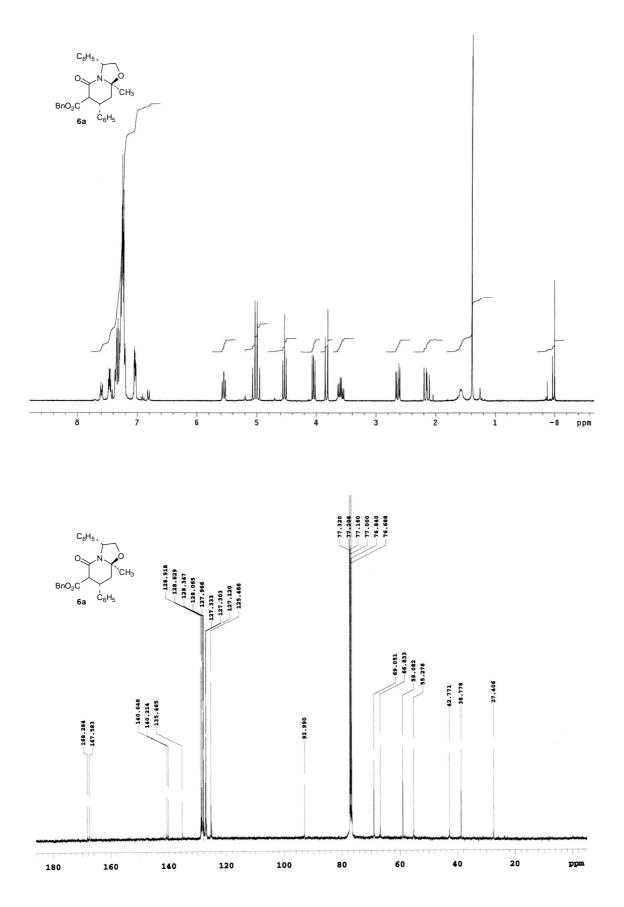


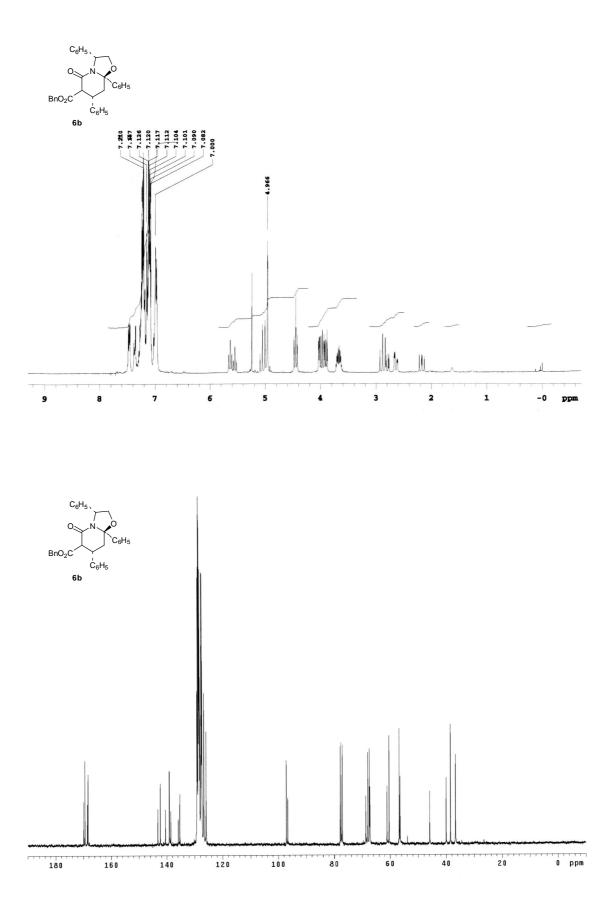


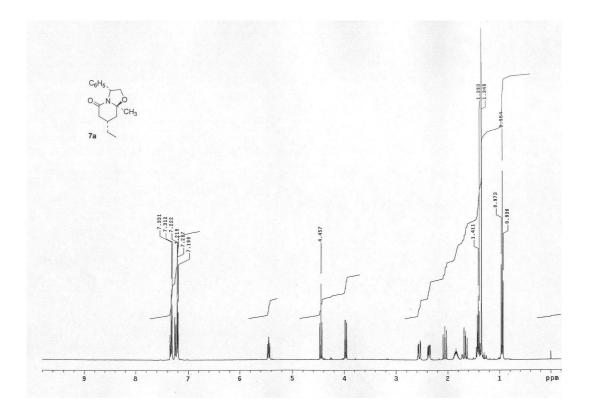


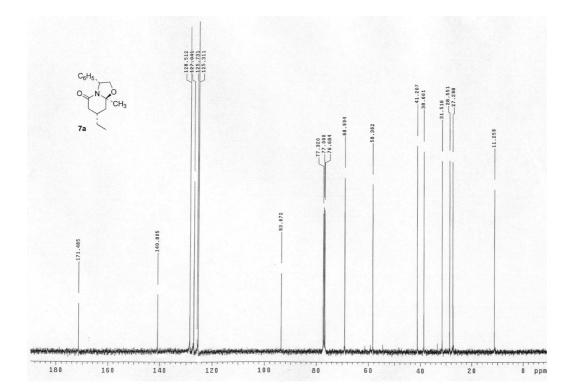


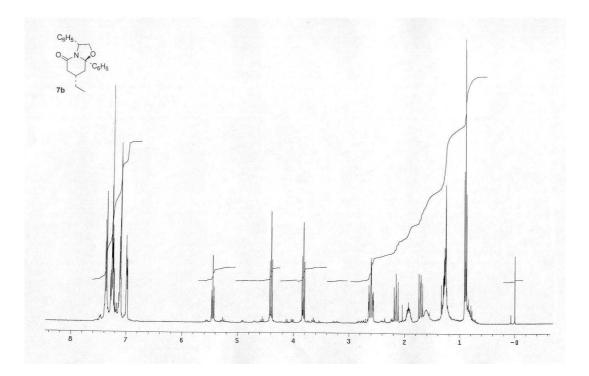


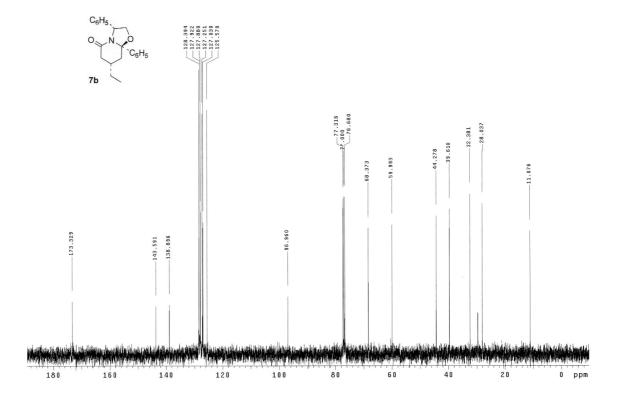


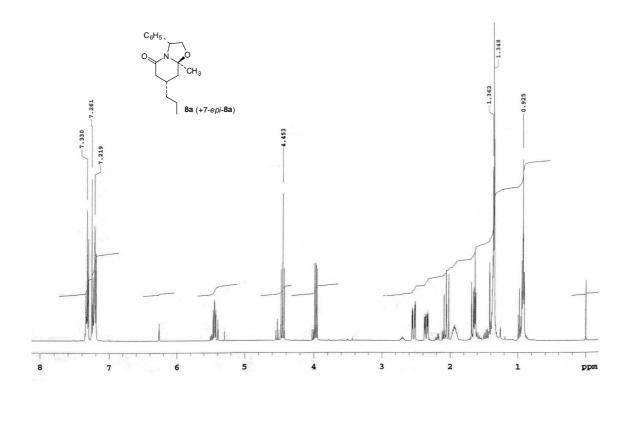


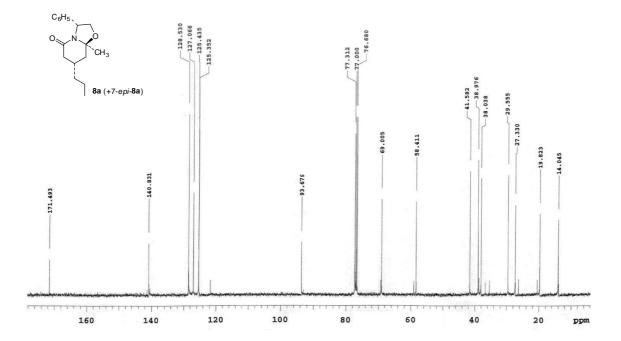


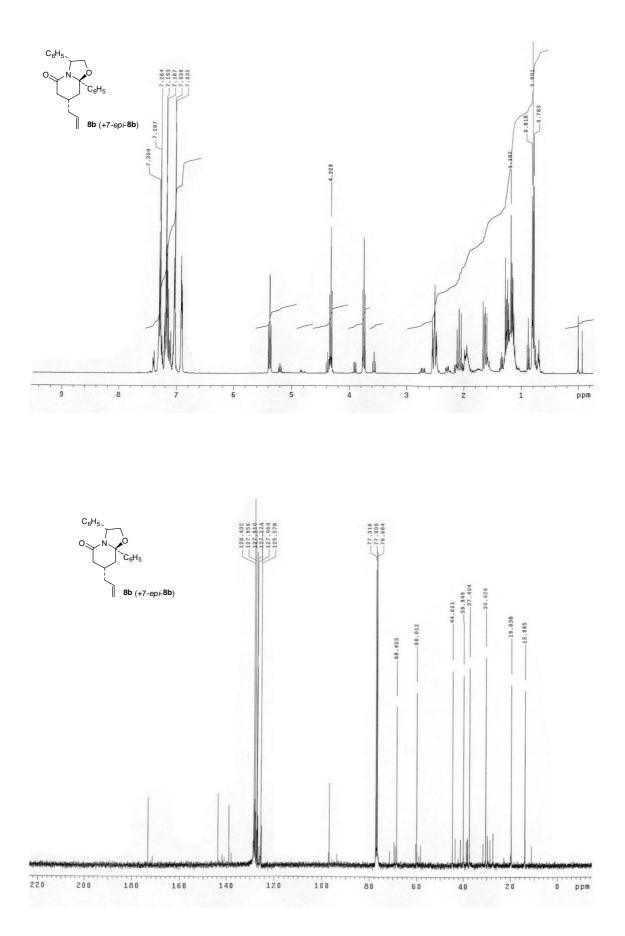


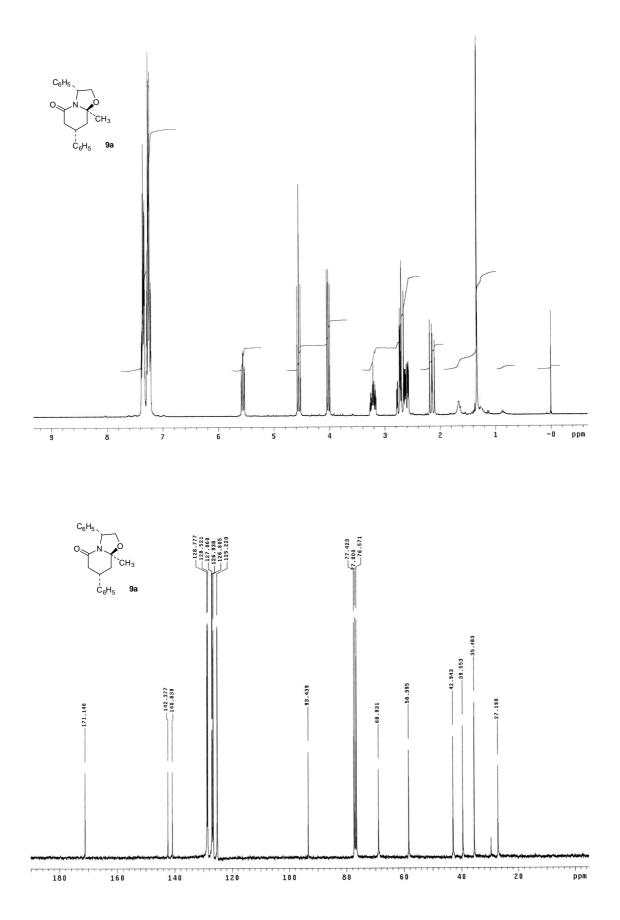


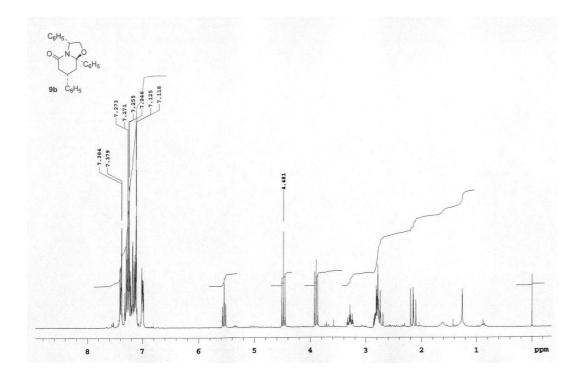


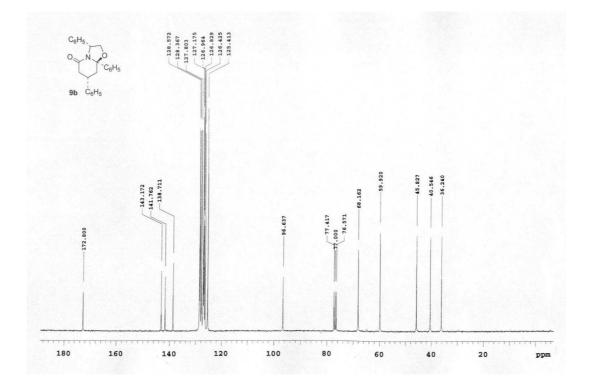


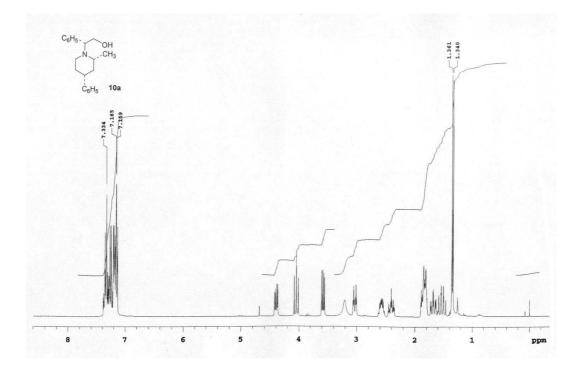


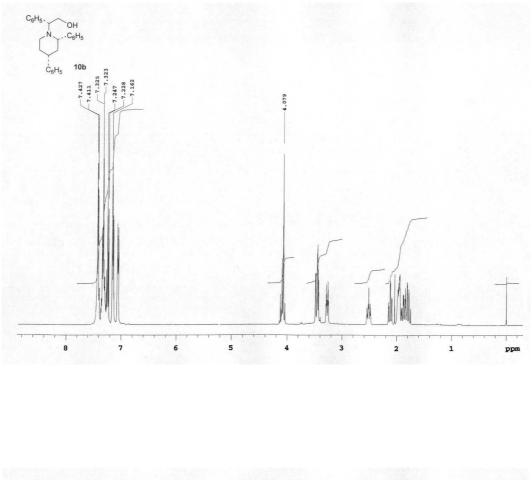


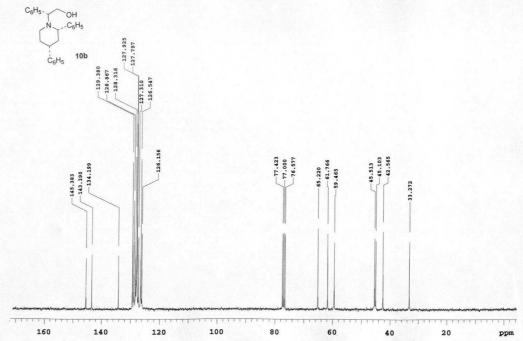


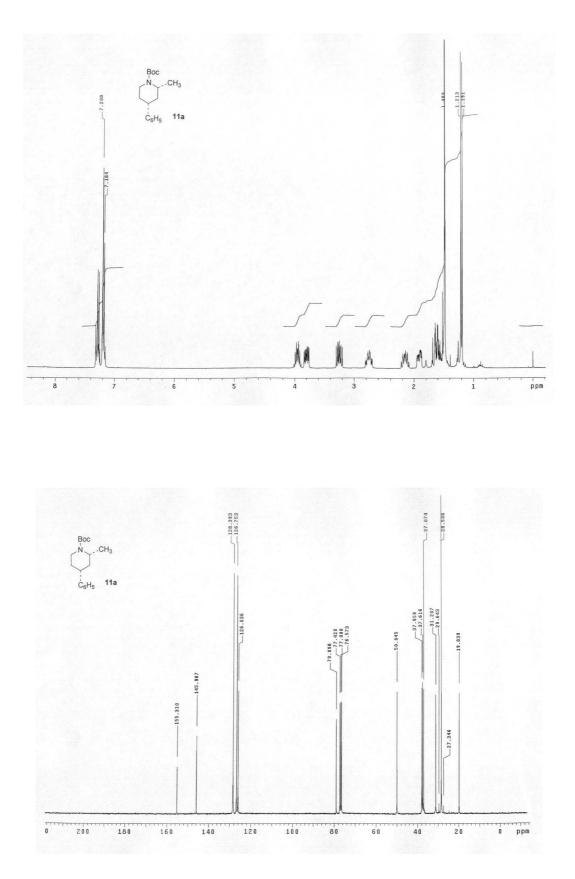


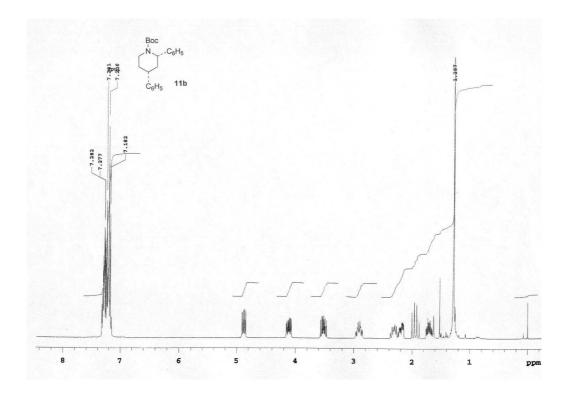














¹ Munchhof, M. J.; Meyers, A. I. *J. Org. Chem.* **1995**, 60, 7084–7085 ² Amat, M.; Bassas, O.; Llor, N.; Cantó, M.; Pérez, M.; Molins, E.; Bosch, J. *Chem. Eur. J.* **2006**, *12*, <sup>7872–7881.
 ³ Munchhof, M. J.; Meyers, A. I. *J. Org. Chem.* **1995**, 60, 7084–7085.
 ⁴ Mazur, P.; Nakanishi, K. *J. Org. Chem.* **1992**, *57*, 1047–1051
</sup>