Supporting Information

Diarylnitroxide Diradicals: Low-Temperature Oxidation of Diarylamines to Nitroxides

Andrzej Rajca*, Matthew Vale, Suchada Rajca

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304

E-mail: arajca1@unl.edu

Table of Contents

- 1. Materials and general procedures.
- 2. Preparation of amine 4 and diamine 5, precursors to radical 1 and diradical 2 (Scheme S1).
- 3. ¹H NMR, EPR, and IR spectra of nitroxide monoradical **1** (Figures S1A-C, S2, S3).
- 4. Detailed procedure for the EPR and EPR/SQUID/EPR monitoring of oxidation of amine **4**, diamine **5**, and aza[1₄]metacyclophane **6** (Figures S4A-C, S5A-C, S6A-C, and S7).
- 5. Detailed procedure for the ¹H NMR/EPR monitoring of oxidation of diamine **5** and aza[1₄]metacyclophane **6** (Figures S8A-H and S9A-E).
- 6. NMR spectra for synthetic intermediates (Figures S10 S15).
- 7. Complete reference 47 and DFT calculations on diarylnitroxide diradical 2 (Eq. S1 and Table S1).
- 8. References for supporting information.

1. Materials and general procedures.

Materials. Toluene was distilled from sodium in a nitrogen atmosphere. Chloroform-*d* (CDCl₃) for use in oxidation experiments and in NMR experiments was dried over 4-Å molecular sieves. Dichloromethane, GR grade, was used as purchased. Ammonium formate was recrystallized from ethanol and triphenylphoshine was recrystallized from acetone prior to use. *meta*-Chloroperbenzoic acid (*m*-CPBA) was recrystallized from dichloromethane and diethyl ether, and then stored at -20 °C. All major chemicals and perdeuterated solvents were obtained from commercial sources and used without further purification. Vacuum lines (10^{-3} Torr) were used for all air sensitive procedures. Standard techniques for synthesis under inert atmosphere, using Schlenk glassware, vacuum lines, and gloveboxes were employed.

Dimethyldioxirane (DMDO). Solution of DMDO in acetone (ca. 0.05–0.10 M) was prepared as reported previously.^{S1} Extraction and concentration into a solution in dichloromethane/acetone (~6:1, ca. 0.35–0.1 M) was carried out as reported in the literature.^{S2} Concentrations of DMDO were periodically determined by titrations carried out in duplicate with triphenylphosphine; molar ratio of unreacted phosphine to the corresponding oxide was determined by ¹H NMR spectroscopy.

Solutions of DMDO in acetone (ca. 0.05-0.10 M) were stored at -20 °C under a nitrogen atmosphere. Concentrated solutions of DMDO in dichloromethane/acetone (ca. 0.3 M) were either stored at -20 °C under a nitrogen atmosphere or were degassed three times using the pump and thaw method and stored frozen in liquid nitrogen under vacuum in a closed Schlenk vessel. The degassed DMDO solutions were carefully thawed and stored in an ice bath (0 °C) during all vacuum transfers. Concentrations of DMDO were periodically determined by titrations carried out in duplicate with triphenylphoshine. Two methods were used to determine concentration of DMDO in a degassed solution.

Titration of DMDO: method I. Chloroform-*d* (0.50 mL) was added to an NMR tube fitted with a Schlenk tap and degassed. A small portion of the DMDO solution was vacuum transferred, and then 1 H

NMR spectrum was recorded. The molar ratio of dichloromethane to acetone to DMDO ($\delta = 1.65$ ppm) was found to be 1 : 0.25 : 0.025. Triphenylphosphine (13.5 mg, 0.0515 mmol) was weighed into an oven dried and pre-weighed Schlenk vessel with a magnetic stirrer bar. After 5 min under vacuum, the weight of the vessel and contents were recorded. Dichloromethane (251.0 mg, 0.19 mL), and then DMDO in dichloromethane and acetone (30.0 mg) were vacuum transferred; after each transfer, the mass of the vessel and contents were recorded. The contents were stirred for 5 min at 0 °C, and then solvent was removed and ¹H NMR spectrum was recorded. The ratio of triphenylphospine to the converted corresponding oxide was 6.14 : 1.00; using the estimate of density for the transferred DMDO solution (d = 1.2), a concentration of 0.29 M was determined. Another titration performed in the same manner gave a concentration of 0.31 M.

Titration of DMDO: method II. Dichloromethane (0.025 mL) was vacuum transferred into a homemade SQUID sample tube. The SQUID sample tube is described in the Experimental Section, main text. (The volume was determined using the calibration in which 1 mm in height corresponds to 0.0125 mL). DMDO in dichloromethane and acetone solution was then vacuum transferred (0.025 mL). Under a gentle stream of nitrogen triphenylphosphine in chloroform-*d* (0.094 M, 0.3 mL, 0.0282 mmol) was added by syringe, and then the walls of the vessel were washed with a further portion of chloroform-*d* (0.3 mL). The reaction mixture was mixed thoroughly at 0 °C for 5 min using a magnetic stirrer bar, and then ¹H NMR spectra recorded. The concentration of the DMDO solution was found to be 0.27 M.

NMR spectroscopy. Routine NMR spectra were obtained on commercial spectrometers (¹H, 500 MHz and 400 MHz) using chloroform-*d* (CDCl₃) as solvent. The chemical shift references were as follows: (¹H) CDCl₃, 7.260 ppm (CHCl₃); (¹³C) CDCl₃, 77.0 ppm (CDCl₃). Typical 1D FID was subjected to exponential multiplication with an exponent of 0.3 Hz (for ¹H) and 1.0 Hz (for ¹³C).

Other routine analyses. IR spectra were obtained using an FT-IR instrument, equipped with an ATR sampling accessory. A few drops of the compound in CH_2Cl_2 were applied to the surface of a ZnSe ATR plate horizontal parallelogram (45°). After the solvent evaporated, the spectrum was acquired.

Routine MS analyses were carried out at the Nebraska Center for Mass Spectrometry. In FAB-MS data, 3-NBA is 3-nitrobenzyl alcohol and % RA is percent relative amplitude. ESI MS data were obtained on a time-of-flight mass spectrometer.

All melting points were obtained using a sealed tube under an atmosphere of argon.

Chromatographic separations. TLC grade silica gel was used for column chromatography. Preparative TLC plates (silica gel GF) were used. For selected separations, treated silica was prepared. Preparative TLC plates were treated 3–5% triethylamine in hexanes. After removal most of the solvents under a stream of nitrogen, the plates were heated at 100 °C for 30 min, and then evacuated in a vacuum dessicator over anhydrous calcium sulphate at 10 mmHg for 24 h. TLC grade silica (~50 g) for column chromatography was treated with 5% triethylamine in hexanes (500 mL). Solvents were removed under vacuo (10 mmHg) at 60 °C for 2 h), and then at 150–175 °C for 24 h. Treated silica was used when indicated below.

2. Preparation of amine 4 and diamine 5, precursors to radical 1 and diradical 2 (Scheme S1).

Scheme S1.^a

^a Conditions: (i) Pd(OAc)₂ (5 mol %), DPPF (15 mol %), *t*-BuONa (3 equiv), ArBr (~10 equiv); (ii) ammonium formate (~15 equiv per monoamine), Pd/C (~0.2 equiv); (iii) Pd(OAc)₂ (4 mol %), (*t*-Bu)₃P (12 mol %), *t*-BuONa (3 equiv), ArBr (~20 equiv).

Bis(4-*tert***-butylphenyl)benzylamine 8.** 4-*Tert*-butylbromobenzene (3.52 g, 16.5 mmol), benzylamine (161 mg, 1.50 mmol), *t*-BuONa (432 mg, 4.50 mmol), Pd(OAc)₂ (16.8 mg, 74.9 μmol), DPPF (125 mg, 0.225 mmol), and toluene (15 mL) were added in turn into an oven dried screw cap

Schlenk vessel (evacuated and back filled with dry nitrogen 2 times) in an atmosphere of nitrogen. After 18 h at 90–100 °C, the reaction mixture was allowed to attain room temperature. The usual aqueous workup with ammonium chloride (2 M) and extraction with ethyl acetate, gave a brown solid (3.67 g). Column chromatography (silica, 4% ethyl acetate in hexane), followed by recrystallization from chloroform and methanol, produced two crops of white crystals (430 mg, 77%) of the product. M.p. 132–134 °C; ¹H NMR (500 MHz, chloroform-*d*): δ = 7.361 (d, *J* = 7.6, 2 H,), 7.299 (t, *J* = 7.5, 2 H), 7.210 (t, *J* = 7, 1 H), 7.238 (d, *J* = 9, 4 H), 6.985 (d, *J* = 9, 4 H), 4.958 (s, 2 H), 1.288 (s, 18 H); ¹³C NMR (125 MHz, chloroform-*d*): δ = 145.7, 143.8, 139.7, 128.5, 126.61, 126.46, 126.0, 120.0, 56.5, 34.1, 31.4; IR (ZnSe, cm⁻¹): 1604 (Ar); HR-FAB MS (3-NBA) cluster, *m/z* (ion type, % RA for *m/z* 200–650, deviation from the formula) at 372.2644 ([*M*+1]⁺, 40, 0.6 ppm for ¹³C₁¹²C₂₆¹H₃₃¹⁴N₁).

Bis(4-*tert***-butylphenyl)amine 4.** Using the general procedure for de-benzylation as described previously,^{S3} diarylamine **8** (72.7 mg, 0.196 mmol) was refluxed in ethanol for 2 h to give an off-white solid (65.0 mg). Recrystallization from hexane produced (54.0 mg, 96%) white crystals of secondary diarylamine 4. From two other reactions, diarylamine **8** (501 mg), gave (316 mg, 84%) of secondary diarylamine **4**. M.p. 108–110 °C (lit.^{S4} m.p. 107–108 °C, under air); ¹H NMR (500 MHz, chloroform-*d*): δ = 7.295 (d, *J* = 8.6, 4 H), 7.019 (d, *J* = 8.6, 4 H), 5.571 (s (br), 1 H), 1.333 (s, 18 H).

5-tert-Butyl-N,N'-bis(4-tert-butyl-phenyl)benzene-1,3-diamine 5. Under an atmosphere of nitrogen, diamine **9** (379 mg, 1.10 mmol), ^{S3} 4-tert-butylbromobenzene (4.26 g, 20.0 mmol), Pd(OAc)₂ (9.0 mg, 40.0 μ mol), (t-Bu)₃P (24.3 mg, 0.120 mmol), and t-BuONa (96.1 mg, 1.00 mmol) were weighed in turn into an oven dried screw tap Schlenk vessel equipped with a magnetic stirrer bar. Toluene (10 mL) was syringed into the reaction vessel under a flow of nitrogen. After stirring at 100 °C for 24 h, the crude reaction mixture was allowed to cool, and then diluted with dichloromethane. The usual aqueous workup with ammonium chloride gave a yellow solid (4.20 g). Following the removal of the excess 4-tert-butylbromobenzene by vacuum distillation (100 mTorr/65–75 °C), diamine **10** was

obtained as an off-white solid (682 mg), which was used without further purification. ¹H NMR (500 MHz, chloroform-*d*): δ = 7.28–7.21 (m, 10 H), 7.178 (d, *J* = 9, 4 H), 6.915 (d, *J* = 9, 4 H), 6.680 (d, *J* = 2.0, 2 H), 4.875 (s, 4 H), 1.274 (s, 18 H), 1.141 (s, 9 H); ESI MS (0.3% CF₃COOH in dichloromethane), *m/z* (ion type (% RA for *m/z* 250–700)) at [*M*+H]⁺ 609.5 (100), 610.4 (48), 611.4 (10); [*M*+H]⁺, calcd. for C₄₄H₅₃N₂ at 609.4 (100), 610.4 (50), 611.4 (12).

Using the general procedure for de-benzylation, which was reported previously,⁸³ diamine **10** (34.7 mg, 57.0 µmol) was refluxed in ethanol for 4 h, to give a red/white solid (23.5 mg); the remaining diamine **10** (647 mg) from the previous step gave similar crude product (353 mg). Column chromatography (silica, toluene/hexanes, 40:60, v/v), followed by crystallization from ethanol, produced two crops of white crystals (170 mg, 38%) of secondary diamine **5**. M.p. 161–163 °C; ¹H NMR (400 MHz, chloroform-*d*): δ = 7.272 (d, *J* = 9, 4 H), 7.016 (d, *J* = 9, 4 H), 6.625 (d, *J* = 2, 2 H), 6.605 (t, *J* = 2, 1 H), 5.600 (br s, 2 H), 1.305 (s, 18 H), 1.273 (s, 9 H); ¹³C NMR (100 MHz, chloroform-*d*): δ = 153.6, 144.2, 143.7, 140.6, 126.1, 117.9, 107.5, 103.0, 34.76, 34.12, 31.46, 31.28; IR (ZnSe, cm⁻¹): 3389 (NH), 1596 (Ar); LR-HR-FAB MS (3-NBA) cluster, *m/z* (ion type, % RA for *m/z* 200–1500, deviation from the formula) at 429.3252 ([*M*+H]⁺, 57, 4.0 ppm for ¹²C₃₀¹H₄₁¹⁴N₂), 428.3198 ([*M*]⁺, 100, -1.4 ppm for ¹²C₃₀¹H₄₀¹⁴N₂).

Figure S1A. EPR (X-band, 9.4229 GHz, diethyl ether) spectrum of 8×10^{-5} M nitroxide radical 1 (label: MV-686-38-1). Hyperfine splitting in mT (number of nuclei): $a_{\rm N} = 0.965$ (1), $a_{\rm H} = 0.185$ (4), $a_{\rm H} = 0.080$ (4); 100% Lorentzian linewidth = 0.035 mT, $g \approx 2.005$, R = 0.998 (simulation label: simdata_mono5).

Figure S1B. EPR (X-band, 9.4900 GHz, toluene) spectrum of 7×10^{-5} M nitroxide radical 1 (label: MV-570-41-rest2-matt2). Hyperfine splitting in mT (number of nuclei): $a_{\rm N} = 0.974$ (1), $a_{\rm H} = 0.185$ (4), $a_{\rm H} = 0.082$ (4); 100% Lorentzian linewidth = 0.036 mT, $g \approx 2.005$, R = 0.989.

Figure S1C. EPR (X-band, 9.4891 GHz, ethanol) spectrum of 2×10^{-3} M nitroxide radical 1 (label: MV-570-41-rest2-Matt1). Hyperfine splitting in mT (number of nuclei): $a_N = 1.051$ (1), $a_H = 0.195$ (4), $a_H = 0.085$ (4); 100% Lorentzian linewidth = 0.033 mT, $g \approx 2.005$, R = 0.989.

Figure S2. ¹H NMR (300 MHz, chloroform-*d*) spectrum of ~0.1 M nitroxide radical **1** (label: MV-266-27-1xst; NMR file: MV-5-monoradical). Chemical shifts are not corrected for bulk susceptibility. The singlet at 3.89 ppm corresponds to a residual solvent of crystallization (methanol); also, singlets corresponding to residual chloroform (7.27 ppm) and water (~1.5 ppm) are present.

Figure S3. IR (ZnSe, cm⁻¹) spectrum for nitroxide radical **1** (label: Mononitroxide mv_137_23).

4. Detailed procedure for the EPR and EPR/SQUID/EPR monitoring of oxidation for amine 4, diamine 5, and aza[14]metacyclophane 6 (Figures S4A-C, 5A-C, and S6A-C).

Preparation of monoradical 1 (EPR monitoring). Dichloromethane (~0.1 mL) was added by vacuum transfer to amine **4** (2.5 mg, 1 equiv) in a 4-mm O.D. EPR quartz sample tube equipped with high-vacuum stopcock. Subsequently, DMDO (~0.25 M solution in dichloromethane, 0.04 – 0.05 mL, 2 - 2.5 equiv) was added. After stirring for 10 min at -95 °C, EPR spectrum for the faint orange reaction mixture was obtained at 140 K, as illustrated in Figure S4A (MV583-45-1). Subsequently, the reaction mixture was stirred -78 °C for several time consecutive intervals, and after each interval, EPR spectra were obtained, as selectively illustrated in Figures S4B and S4C (MV583-45-2 and MV583-45-8). Although the intense EPR spectra were obtained, the quantitative integration was not carried out because the reaction mixture was inhomogeneous with a precipitate above the orange solution. (The entire sample could not be contained in the EPR cavity.) After recording the EPR spectra, the sample tube was re-attached to vacuum line, and the reaction mixture was concentrated at -78 °C (~2 h). ¹H NMR (500 MHz, CDCl₃) spectrum (label: MV583-45-1) showed a broad peak for the *tert*-butyl group of the monoradical and sharp peaks 1.1 – 1.4 ppm region for the *t*-Bu groups of the diamagnetic byproducts, with relative integration of 3:1.

Preparation of diradical 2 (EPR/SQUID/EPR monitoring). Dichloromethane (~0.1 mL) was added by vacuum transfer to diamine 5 (2.5 mg, 1 equiv) in a SQUID sample tube. Subsequently, DMDO (~0.27 M solution in dichloromethane, ~0.1 mL, ~4.5 equiv) was added. After stirring for 2 h at -78 °C, EPR spectra for the red brown, homogeneous reaction mixture were obtained at 140 K, as illustrated in Figure S5A (MV559-32-3). After recording the EPR spectra, the SQUID sample tube was re-attached to vacuum line, and the reaction mixture was concentrated at -78 °C until the volume decreased to about 0.08 mL; subsequently, the sample tube was flame sealed. The sample tube, which was kept in liquid nitrogen, was transferred to a helium filled glove bag, and then rapidly inserted (<15 s) into the sample chamber of SQUID magnetometer at 10 K. The first set of magnetic data, obtained without melting the matrix in the 1.8–150 K range, is shown in Figure S5B (label: MV559r1G).

Following the magnetic measurements, the sample tube was rapidly withdrawn, and then EPR spectra were obtained as illustrated in Figure S5C (label: MV559-32-5).

For another sample, which was prepared in an EPR tube and following similar procedure to that outlined for the EPR/SQUID/EPR sample above, except that the oxidation was carried out at –90 °C, similar EPR spectra were obtained as illustrated in Figure 5, main text (label: MV562-33-6 and MV562-33-8). The initial concentration of the diamine was ~30 mM.

Attempted preparation of tetraradical 3 (EPR/SQUID/EPR monitoring). Dichloromethane (~0.05 mL, ~4-mm height) was added by vacuum transfer to $aza[1_4]metacyclophane 6$ (2.60 mg, 1 equiv) in a SQUID sample tube. The mixture was briefly stirred at -95 °C, and then DMDO (~0.32 M solution in dichloromethane, ~0.15 mL, ~16-mm height, ~10 equiv) was added by vacuum transfer. After mixing for 3 h at (-90)–(-95) °C, the first set of EPR spectra at 140 K for red brown reaction mixture were obtained. After additional 1.5 h at -90 °C, the second set of EPR spectra was obtained as illustrated in Figure S6A (MV610/612-05-2). After recording the EPR spectra, the sample tube was reattached to vacuum line, and the reaction mixture was concentrated at -78 °C until the volume decreased to about 0.08 mL; subsequently, the sample tube was flame sealed. The SQUID sample tube, which was kept in liquid nitrogen, was transferred to a helium filled glove bag, and then rapidly inserted (<15 s) into the sample chamber of SQUID magnetometer at 10 K. The first set of magnetic data, obtained without melting the matrix in the 1.8–150 K range, is shown in Figure S6B (label: MV612r1F). Following the magnetic measurements, the sample tube was rapidly withdrawn, and then EPR spectra were obtained as illustrated in Figure S6C (label: MV610/612-05-9).

For another sample, which was prepared in an EPR tube and following similar procedure to that outlined for the EPR/SQUID sample above, similar EPR spectra were obtained as illustrated in Figure S7 (label: MV608-03-7).

Figure S4A. EPR (X-Band, v = 9.485 GHz, 140 K) spectra of the reaction mixture for generation of nitroxide radical **1** in CH₂Cl₂ ((label: MV583-45-1). Amine **4** was reacted with DMDO (2 – 2.5 equiv) for 10 min at 178 K.

Figure S4B. EPR (X-Band, v = 9.487 GHz, 140 K) spectrum of the reaction mixture for generation of nitroxide radical 1 in CH₂Cl₂ ((label: MV583-45-2). Amine 4 was reacted with DMDO (2 – 2.5 equiv) for 10 min at 178 K, and then for 10 min at 195 K.

Figure S4C. EPR (X-Band, v = 9.488 GHz, 140 K) spectrum of the reaction mixture for generation of nitroxide radical **1** in CH₂Cl₂ ((label: MV583-45-8). Amine **4** was reacted with DMDO (2 – 2.5 equiv) for 10 min at 178 K, and then for 110 min at 195 K. (Significant amount precipitate was observed.)

Figure S5A. EPR (X-Band, v = 9.4763 GHz, 140 K) spectra of the reaction mixture for generation of nitroxide diradical **2** in CH₂Cl₂ ((label: MV559-32-3). Diamine **5** was reacted with DMDO (4.5 equiv) for 2 h at 195 K. Based upon double integration of the spectrum, the side bands and the center peaks (334.3 – 341.8 mT) correspond have relative intensitites of 0.3 and 0.7 respectively. The simulation parameters for the S = 1 state are: $|D/hc| = 8.6 \times 10^{-3}$ cm⁻¹, $|E/hc| = 1.3 \times 10^{-3}$ cm⁻¹, $|A_{yy}/2hc| = 8.5 \times 10^{-4}$ cm⁻¹, $g_x \approx 2.005$, $g_y = 2.0028$, $g_z = 2.0072$, Gaussian line ($L_x = 0.8$, $L_y = 0.65$, $L_z = 1.0$ mT). The most outer side bands correspond to the S = 1 state with the greater $|D/hc| = 1.10 \times 10^{-2}$ cm⁻¹ (simulation not shown). The center lines correspond to an $S = \frac{1}{2}$ product. Following these EPR spectra, the magnetic data (Figure S5B) were obtained.

Figure S5B. SQUID magnetic data (label: MV559r1G) for the reaction mixture for generation of nitroxide diradical **2** in CH₂Cl₂, following EPR spectra in Figure S5A. Main and inset plots: M/M_{sat} vs. H/T and χT vs. T, with $M_{sat} \approx 0.006 \ \mu_{B}$, $S \approx 0.5 - 0.8$, and $\chi T \approx 0.006 \ \text{emu K mol}^{-1}$.

Figure S5C. EPR (X-Band, v = 9.4764 GHz, 140 K) spectra of the reaction mixture for generation of nitroxide diradical **2** in CH₂Cl₂ (label: MV559-32-5), following the magnetic data in Figure S5B. Based upon double integration of the spectrum, the side bands and the center peaks (334.3 – 341.8 mT) correspond have relative intensities of 0.3 and 0.7 respectively.

Figure S6A. EPR (X-Band, v = 9.4710 GHz, 140 K) spectra of the reaction mixture of attempted generation of nitroxide tetraradical **3** in CH₂Cl₂. Aza[1₄]metacyclophane **6** was reacted with DMDO (11 equiv) for 1.5 h at 183 K (label: MV610-05-2). The side bands were simulated with the following parameters for the S = 1 state: $|D/hc| = 8.9 \times 10^{-3}$ cm⁻¹, $|E/hc| = 1.15 \times 10^{-3}$ cm⁻¹, $|A_{yy}/2hc| = 0.0 \times 10^{-4}$ cm⁻¹, $g_x \approx 2.005$, $g_y = 2.0055$, $g_z = 2.0065$, Gaussian line ($L_x = 2.0$, $L_y = 2.2$, $L_z = 1.6$ mT) (label: SM610-2). The center lines correspond to an $S = \frac{1}{2}$ product. Following these EPR spectra, the magnetic data (Figure S6B) were obtained.

Figure S6B. SQUID magnetic data (label: MV612r1F) for the reaction mixture of attempted generation of nitroxide tetraradical **3** in CH₂Cl₂, following EPR spectra in Figure S6A. Main and inset plots: M/M_{sat} vs. $H/(T - \theta)$ and χT vs. T, with $\theta \approx -0.3$ K, $M_{\text{sat}} \approx 0.006 \mu_{\text{B}}$, $S \approx 0.8$, and $\chi T \approx 0.013$ emu K mol⁻¹.

Figure S6C. EPR (X-Band, v = 9.4771 GHz, 140 K) spectra of the reaction mixture of attempted generation of nitroxide tetraradical **3** in CH₂Cl₂ (label: MV610-05-9), following the magnetic data in Figure S6B.

Figure S7. EPR (X-Band, v = 9.4877 GHz, 140 K) spectra of the reaction mixture of attempted generation of nitroxide tetraradical **3** in CH₂Cl₂. Aza[1₄]metacyclophane **6** was reacted with DMDO (11 equiv) for 290 min at 183 K, and then for 85 min at 193 K (label: MV608-03-7). The side bands were simulated with the following parameters for the S = 1 state: $|D/hc| = 8.9 \times 10^{-3}$ cm⁻¹, $|E/hc| = 1.15 \times 10^{-3}$ cm⁻¹, $|A_{yy}/2hc| = 0.0 \times 10^{-4}$ cm⁻¹, $g_x \approx 2.005$, $g_y = 2.0055$, $g_z = 2.0065$, Gaussian line ($L_x = 2.0$, $L_y = 2.2$, $L_z = 1.6$ mT) (label: SM608-7). The center lines correspond to an $S = \frac{1}{2}$ product.

5. Detailed procedure for the ¹H NMR/EPR monitoring of oxidation for diamine 5 and aza[1₄]metacyclophane 6 (Figures S8A-H and S9A-E).

Preparation of diradical 2. Dichloromethane- d_2 (~0.09 mL) and DMDO (~0.11 mL of ~0.32 M solution in dichloromethane, ~5 equiv) were added by vacuum transfer to diamine **5** (3.0 mg, 1 equiv) in a 3-mm NMR sample tube, equipped with high-vacuum stopcock (Kontes or Chemglass). After the tube was flame sealed, the reaction mixture was thoroughly mixed at –95 °C, and then stored in liquid nitrogen. After 90 min at –78 °C, the sample tube was inserted to the NMR instrument at –87 °C, and then series of ¹H NMR spectra at –87 °C were obtained, as illustrated in Figure S8A-C (label: MV636-17ex1, MV636-17ex3, MV636-17ex8). After recording the first set of NMR spectra, the sample was ejected cold from the NMR instrument, and then EPR spectrum at 140 K (label: MV636-17-1) was obtained (Figure S8D). Subsequently, the reaction mixture was allowed to attain room temperature, and then immediately, ¹H NMR spectrum (MV637-17-2ex4) was obtained (Figure S8F), followed by EPR spectra at 140 K (MV636-17-4) and 296 K (MV636-17-7) as illustrated in Figure S8G and S8H.

Attempted preparation of tetraradical 1. Dichloromethane (~0.16 mL) and DMDO (~0.32 M solution in dichloromethane, ~0.31 mL, ~10 equiv) were added by vacuum transfer to aza[14]metacyclophane 6 (5.9 mg, 1 equiv) in a 5-mm NMR sample tube, equipped with high-vacuum stopcock (Kontes or Chemglass). After stirring for 2 h at –95 °C, the reaction mixture was concentrated at –78 °C for 2 h, to attain about half of the original volume. Subsequently, the volume of the reaction mixture was approximately doubled by vacuum transfer of dichloromethane- d_2 . The NMR sample tube was flame sealed and stored in liquid nitrogen. The sample tube was inserted to the NMR instrument at –86 °C, and then ¹H NMR spectra at –86 °C (MV618-08ex2) were obtained (Figure S9A). After recording the first set of NMR spectra, the sample was ejected cold from the NMR instrument, and then EPR spectrum at 140 K (label: MV618-08-1) was obtained (Figure S9B). Subsequently, the reaction mixture was allowed to attain room temperature for 3 h, and then another ¹H NMR spectrum (MV619-

Figure S8A. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 186 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV636-17ex1). The spectrum is obtained after oxidation of diamine **5** with DMDO (~5 equiv) for 90 min at -78 °C. The sample was inserted frozen, from liquid nitrogen to the instrument at -87 °C (186 K).

Figure S8B. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 186 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV636-17ex3). The spectrum is obtained 20 min after the initial ¹H spectrum in Figure S8A.

Figure S8C. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 186 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV636-17ex8). The spectrum is obtained 60 min after the initial ¹H spectrum in Figure S8A.

Figure S8D. EPR (X-Band, v = 9.4908 GHz, 140 K) spectrum of the reaction mixture of attempted generation of nitroxide diradical **2** (label: MV636-17-1), following the ¹H NMR spectrum in Figure S8C.

Figure S8E. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 295 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV637-17-2ex4). The spectrum is obtained following the EPR spectrum in Figure S8D and after the reaction mixture is allowed to attain room temperature for about 5 min.

Figure S8F. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 295 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV637-17ex1). The spectrum is obtained following the ¹H NMR spectrum in Figure S8E and after the reaction mixture is allowed to attain room temperature for about 3 h.

Figure S8G. EPR (X-Band, v = 9.4938 GHz, 140 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV636-17-4), following the ¹H NMR spectrum in Figure S8F. (The reaction mixture was already at room temperature for 4 h.)

Figure S8H. EPR (X-Band, v = 9.4896 GHz, modulation amplitude of 0.01 mT, 297 K) spectrum of the reaction mixture for generation of nitroxide diradical **2** (label: MV636-17-7), following the ¹H NMR spectrum in Figure S8F and the EPR spectrum in Figure S8G. (The reaction mixture was already at room temperature for 4 h.) Spectral simulation parameters: hyperfine splitting in mT (number of nuclei), $a_{\rm N} = 1.020$ (1), $a_{\rm H} = 0.185$ (2), $a_{\rm H} = 0.082$ (2), $a_{\rm H} = 0.189$ (1), $a_{\rm H} = 0.188$ (1), $a_{\rm H} = 0.190$ (1), 100% Lorentzian linewidth = 0.028 mT, $g \approx 2.005$, R = 0.957 (label: simulata_dirad).

Figure S9A. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 187 K) spectrum of the reaction mixture of attempted generation of nitroxide tetraradical **3** (label: MV618-08ex2). The spectrum is obtained after oxidation of aza[1₄]metacyclophane **6** with DMDO (10 equiv) for 2 h at -90 °C and 2 h at -78 °C. The sample was inserted frozen, from liquid nitrogen to the instrument at -86 °C (187 K).

Figure S9B. EPR (X-Band, v = 9.4640 GHz, 140 K) spectra of the reaction mixture of attempted generation of nitroxide tetraradical **3** (label: MV618-08-1), following the ¹H NMR spectrum in Figure S9A.

Figure S9C. ¹H NMR (500 MHz, dichloromethane- h_2 /dichloromethane- d_2 , 187 K) spectrum of the reaction mixture of attempted generation of nitroxide tetraradical **3** (label: MV619-08ex1). The spectrum is obtained following the EPR spectrum in Figure S9B and after the reaction mixture is allowed to attain room temperature for 3 h.

Figure S9D. EPR (X-Band, v = 9.4604 GHz, 140 K) spectrum of the reaction mixture of attempted generation of nitroxide tetraradical **3** (label: MV618-08-4), following the ¹H NMR spectrum in Figure S9C. (The reaction mixture was already at room temperature for 3 h.)

Figure S9E. EPR (X-Band, v = 9.4920 GHz, modulation amplitude of 0.05 mT, 297 K) spectrum of the reaction mixture of attempted generation of nitroxide tetraradical **3** (label: MV618-08-7), following the ¹H NMR spectrum in Figure S9C and the EPR spectrum in Figure S9D. (The reaction mixture was already at room temperature for 3 h.) Spectral simulation parameters: hyperfine splitting in mT (number of nuclei), $a_{\rm N} = 1.011$ (1), $a_{\rm H} = 0.1798$ (2), $a_{\rm H} = 0.182$ (2), $a_{\rm H} = 0.1800$ (2), 100% Lorentzian linewidth = 0.062 mT, $g \approx 2.005$, R = 0.919 (label: simdata3_tetra2).

6. NMR spectra for synthetic intermediates (Figures S10 – S15).

 $mv_{113_{05}}$.

Figure S11. ¹³C NMR (125 MHz, chloroform-*h*) spectrum of *N*-benzylated amine **8** (label: mv_113_05-Carbon).

Figure S12. ¹H NMR (500 MHz, chloroform-*h*) spectrum of secondary diarylamine **4** for generation of nitroxide radical **1**.

Figure S13. ¹H NMR (500 MHz, chloroform-*h*) spectrum of *N*-benzylated diamine **10** for generation of nitroxide diradical **2** (label: mv_148_31-cr2).

Figure S14. ¹H NMR (400 MHz, chloroform-*h*) spectrum of secondary diamine **5** for generation of nitroxide diradical **2** (label: mv_157_37_xst1).

Figure S15. ¹³C NMR (100 MHz, chloroform-*h*) spectrum of secondary diamine **5** for generation of nitroxide diradical **2** (label: mv_157_37_xst1-C).

7. Complete reference 47 and DFT calculations on diarylnitroxide diradical 2.

Complete Ref. 47, "More Frisch et. al."

(47) Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

DFT Calculations. Triplet states of diarylnitroxide diradical **2** were subjected to full geometry optimization using the UB3LYP/6-31G(d) level of theory. At the fully optimized geometries for the triplet states, the single-point energies for open-shell singlet states were calculated using the broken-symmetry approximation. As the broken-symmetry singlets are approximately 1:1 mixtures of singlet and triplet states, the singlet-triplet energy gap (2*J*) is given by equation S1, in which ${}^{S}E_{BS}$ and ${}^{T}E$ correspond to the energy of the lowest energy broken symmetry singlet and triplet states, respectively.

$$2J = 2({}^{8}E_{\rm BS} - {}^{\rm T}E)$$
(S1)

	2A-anti	2B-endo	2C-exo
Optimized geometry for triplets	t-Bu N α β N • O t-Bu	$t-Bu$ $\alpha \beta$ 0	$ \begin{array}{c} t-Bu\\ \bullet\\ \bullet\\$
NN, OO distances (Å) for triplets	4.9, 6.2	4.8, 4.9	4.9, 7.0
α , β torsion angles (°) for triplets	25.2, 154.3	26.6, 26.3	-151.5, -151.7
Dipole moment ^a for triplets	2.87	5.51	3.42
Total energy for triplets $(^{T}E)^{b}$	-1425.92486953	-1425.92309079	-1425.92419925
Relative energy for triplets ^c	0	1.11	0.42
Zero-point-energy (ZPE) for triplets ^c	388.646	388.589	388.656
Relative energy with ZPE for triplets ^c	0	1.05	0.43
Electronic and thermal free energy for triplets ^b	-1425.373211	-1425.371473	-1425.372801
Relative free energy for triplets ^c	0	1.09	0.26
Total energy for BS singlets $({}^{S}E_{BS})^{b,d,e}$	-1425.92343452	-1425.92187961	-1425.92287864
Singlet-triplet energy gap, $2({}^{8}E_{BS} - {}^{T}E)^{c,e}$	1.8	1.5	1.7

^a Dipole moment in Debeye. ^b in Hartree/molecule. ^c in kcal mol⁻¹. ^d Broken-symmetry singlet with $S(S + 1) \approx 1.0$ at the geometry optimized for the triplet.⁴⁸⁻⁵⁰ ^e Full geometry optimization of the broken-symmetry singlet for **2A-anti** lowers the energy by 0.08 kcal mol⁻¹ only. ^e The UB3BLYP (broken symmetry with $S(S + 1) \approx 1.0$ singlets and $S(S + 1) \approx 2.0$ triplets) level of theory usually overestimates the singlet-triplet gaps, $2({}^{S}E_{BS} - {}^{T}E)$, for the triplet ground state organic diradicals, and undestimates such gaps for the singlet ground state diradicals.^{49,50}

(a) Diarylnitroxide diradical, conformer 2A-anti: full geometry optimization of the triplet followed by frequency calculation of the triplet and by the energy calculation of broken symmetry singlet at the geometry of the triplet (UB3LYP/6-31G(d) level). For reference, full geometry optimization of the broken symmetry singlet was included.

Full geometry optimization of the triplet Standard orientation:

Center Number	At N	omic At Jumber	omic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	0.650516	2.862194	-0.101779
2	6	0	1.371600	1.665747	-0.270484
3	6	0	0.739555	0.428689	-0.146172
4	6	0	-0.623032	0.402728	0.172952
5	6	0	-1.335041	1.591255	0.375441
6	6	0	-0.704369	2.838698	0.230181
7	1	0	1.189648	3.788457	-0.238004
8	1	0	1.257348	-0.506920	-0.301706
9	1	0	-2.375893	1.540543	0.669356
10	7	0	-1.226654	-0.876107	0.340207
11	7	0	2.743519	1.771490	-0.630591
12	6	0	-2.618518	-1.133144	0.165439
13	6	0	-3.194431	-2.179128	0.899490
14	6	0	-3.402767	-0.429851	-0.755010
15	6	0	-4.537920	-2.483253	0.730499
16	1	0	-2.572447	-2.738533	1.588146
17	6	0	-4.751426	-0.753142	-0.910014
18	1	0	-2.963522	0.350076	-1.367088
19	6	0	-5.357583	-1.778757	-0.171709
20	1	0	-4.957536	-3.293045	1.320478
21	1	0	-5.326090	-0.190949	-1.637443
22	6	0	3.711740	0.745775	-0.407431
23	6	0	4.795197	0.659255	-1.292241
24	6	0	3.652828	-0.119102	0.689819
25	6	0	5.777837	-0.299733	-1.089537
26	1	0	4.847923	1.351696	-2.124010
27	6	0	4.652514	-1.074667	0.875424
28	1	0	2.845281	-0.044931	1.409361
29	6	0	5.735062	-1.197222	-0.005685
30	1	0	6.598689	-0.348276	-1.799546
31	1	0	4.573334	-1.725316	1.738868
32	8	0	3.138708	2.851022	-1.207369
33	8	0	-0.472377	-1.861257	0.680638
34	6	0	-1.519408	4.126189	0.458321

35	6	0	-2.062980	4.141461	1.906834	
36	1	0	-1.243231	4.117266	2.633651	
37	1	0	-2.646422	5.053294	2.082573	
38	1	0	-2.715556	3.285679	2.109749	
39	6	0	-2.705131	4.165597	-0.534805	
40	1	0	-2.348929	4.16346/	-1.5/1280	
41	1	0	-3.3/525/	5.308495	-0.40/363	
42 43	1	0	-3.29/2/4	5.075728	-0.381420	
43	1	0	0 166768	5 449866	0.247272	
45	1	Ő	-0.275206	5.457169	-0.771233	
46	1	Ő	-1.297394	6.282938	0.412015	
47	6	0	-6.842826	-2.152561	-0.314972	
48	6	0	-6.961669	-3.626885	-0.770236	
49	1	0	-8.016568	-3.910637	-0.868483	
50	1	0	-6.476776	-3.778325	-1.741244	
51	1	0	-6.497745	-4.313832	-0.054846	
52	6	0	-7.549490	-1.980458	1.051126	
53	1	0	-7.105557	-2.616819	1.823809	
54	1	0	-7.487872	-0.942240	1.396840	
55	l	0	-8.609722	-2.248449	0.967813	
56	6	0	-7.571754	-1.271202	-1.346/55	
57 59	1 1	0	-/.548/02	-0.211430	-1.068021	
50 50	1	0	-7.139221	-1.572115	-2.346074	
60	6	0	6 844464	-2 247746	0 170713	
61	6	0	8 211303	-1 536542	0.313606	
62	1	Ő	9.013724	-2.274649	0.433543	
63	1	Ő	8.448836	-0.927008	-0.564412	
64	1	0	8.221024	-0.878301	1.189778	
65	6	0	6.626727	-3.124209	1.418930	
66	1	0	5.684766	-3.681952	1.367580	
67	1	0	7.438707	-3.855301	1.501736	
68	1	0	6.623462	-2.529763	2.339753	
69	6	0	6.874822	-3.172501	-1.069777	
70	1	0	7.069990	-2.612764	-1.990572	
71	1	0	7.664375	-3.926591	-0.964058	
72	1	0	5.919416	-3.695158	-1.192201	
Rotati	onal cons	stants (G	H Z)· 0.16	59127 0	0508247 0.04104	191
SCF D	one [.] E(I	JB+HF-I	(YP) = -142	5 92486952	A U after 8 cv	cles
ber b	Convg	= 0.66	21D-08	-V/T = 2	2.0097	0105
	S**2 =	= 2.029	5			
Annih	ilation of	f the first	spin contam	inant:		
S**2 ł	before an	nihilation	n 2.0296,	after 2.0	006	
Item			Value	e Thres	hold Converged?	
Maxin	num Fore	e	0.000	004 0.000	9450 YES	
RMS	Force		0.000	001 0.000	300 YES	
Maxin	num Disp	placemen	t 0.003	439 0.001	800 NO	
RMS	Displa	cement	0.000	570 0.001	200 YES	
Ontim	ted chan	ge in Ene	ergy = -2.1338	882D-08 s of pogligih	la faraaa	
Optim	Stationa	ry point t	found	s of negligit	le loices.	
	Stationa	ry point i	lound.			
Freat	iencv c	alculati	on of the i	triplet		
SCF D	one: E(l	JB+HF-I	(YP) = -142	5.92486953	A.U. after 21 cy	cles
	Convg	= 0.43	55D-08	-V/T = 2	2.0097	
	S**2 =	= 2.029	5			
Annih	ilation of	f the first	spin contam	inant:		
S**2 ł	pefore an	nihilatio	n 2.0296,	after 2.0	006	
Dinole	moment	(field-in	dependent h	asis. Debve)	:	
2.10.0	monit	(11010 111	-pendent of			

 Three lowest frequencies:

	1	2		3
	А	А		А
Frequencies	13.0590	20.1519) 25	.4154
This molecule is an a	asymmetric top).		
Rotational symmetr	y number 1.			
Warning assumpt	ion of classica	l behavior f	or rotation	
may cause sig	nificant error			
Rotational temperat	ures (Kelvin)	0.00796	0.00244	0.00197
Rotational constants	s (GHZ):	0.16591	0.05082	0.04105
Zero-point vibration	al energy 16	526095.0 (Jo	oules/Mol)	
-	388.64602 (K	(cal/Mol)		
Warning explicit	consideration	of 60 degre	es of freed	om as
vibrations ma	y cause signifi	cant error		
Zero-point correction	n=	0.6193	47 (Hartree	e/Particle)
Thermal correction	to Energy=	0.	653496	
Thermal correction	to Enthalpy=	0.	.654440	
Thermal correction	to Gibbs Free	Energy=	0.55165	8
Sum of electronic an	nd zero-point I	Energies=	-1425.3	305523
Sum of electronic an	nd thermal Ene	ergies=	-1425.2	71374
Sum of electronic an	nd thermal Ent	halpies=	-1425.2	270430
Sum of electronic an	nd thermal Fre	e Energies=	-1425	.373211

Energy Calculation of the Broken-Symmetry Singlet

Linear equations converged to $1.378D-10\ 1.378D-09$ after 19 iterations. SCF Done: E(UB+HF-LYP) = -1425.92343452 a.u. after 12 cycles Convg = 0.7617D-06 91 Fock formations. S**2 = 1.0150 -V/T = 2.0097 Annihilation of the first spin contaminant: S**2 before annihilation 1.0150, after 0.1219

Full Geometry Optimization of the Broken-Symmetry Singlet

Standard orientation:

Center Number	At N	omic Atc Jumber	отіс Гуре	Coordinate X Y	s (Angstroms) Z
1	6	0	0.659697	2.836028	-0.126608
2	6	0	1.356944	1.631876	-0.317956
3	6	0	0.715275	0.403827	-0.170923
4	6	0	-0.634155	0.396966	0.196206
5	6	0	-1.323354	1.591526	0.419726
6	6	0	-0.683693	2.831517	0.250492
7	1	0	1.205256	3.755408	-0.284319
8	1	0	1.218731	-0.537729	-0.339775
9	1	0	-2.355397	1.552201	0.745798
10	7	0	-1.251327	-0.877114	0.393528
11	7	0	2.721489	1.718635	-0.728559
12	6	0	-2.637769	-1.131603	0.197518
13	6	0	-3.225220	-2.187007	0.910141
14	6	0	-3.411773	-0.412220	-0.720394
15	6	0	-4.567413	-2.484755	0.721980
16	1	0	-2.612643	-2.757274	1.598154
17	6	0	-4.759147	-0.730049	-0.894291
18	1	0	-2.965655	0.376609	-1.315737
19	6	0	-5.376193	-1.765012	-0.178231
20	1	0	-4.995019	-3.301864	1.296051
21	1	0	-5.324533	-0.154612	-1.618712
22	6	0	3.699534	0.713946	-0.472809
23	6	0	4.791609	0.618781	-1.347370

24	6	0	3.642267	-0.127581	0.643645	
25	6	0	5.784222	-0.322489	-1.113987	
26	1	0	4.842026	1.290943	-2.195564	
27	6	0	4.652259	-1.065588	0.858990	
28	1	0	2.827969	-0.048906	1.354906	
29	6	0	5.744132	-1.194970	-0.009716	
30	1	0	6.611361	-0.376896	-1.816319	
31	1	0	4.573572	-1.697656	1.736207	
32	8	0	3.085345	2.766444	-1.380231	
33	8	0	-0.502333	-1.848187	0.783430	
34	6	0	-1.475736	4.129285	0.499219	
35	6	0	-1.986379	4.150465	1.959558	
36	1	0	-1.151313	4.113195	2.668138	
37	1	0	-2.552294	5.070520	2.148995	
38	I	0	-2.647210	3.304460	2.176215	
39	6	0	-2.682903	4.184398	-0.46/012	
40	1	0	-2.350016	4.1/9338	-1.5111/8	
41	1	0	-3.3598/1	5.101221	-0.325232	
42	I	0	-3.260/29	5.101221	-0.299433	
43	0	0	-0.618//4	5.388500	0.269982	
44	1	0	0.240417	5.42/850	0.948839	
43	1	0	-0.244303	5.440550	-0.738100	
40	1	0	-1.224912 6 861017	0.282809	0.432333	
47	6	0	6 080725	2.131400	-0.342203	
48	1	0	-0.980723	-3.877234	-0.019981	
49 50	1	0	-6.033030	-3.737171	-0.931389	
51	1	0	-6 525094	-4 297279	-0 110819	
52	6	0	-7 581177	-1 976193	1 018900	
53	1	0	-7 147847	-2 625561	1 786767	
54	1	Ő	-7 518715	-0.943366	1 380297	
55	1	Ő	-8 641675	-2 238259	0.920969	
56	6	Ő	-7.575933	-1.232363	-1.368563	
57	1	Ő	-7.551967	-0.176882	-1.074095	
58	1	0	-7.133032	-1.320202	-2.367185	
59	1	0	-8.627868	-1.528394	-1.448107	
60	6	0	6.865498	-2.225991	0.201811	
61	6	0	8.220949	-1.492979	0.342883	
62	1	0	9.032070	-2.216877	0.488314	
63	1	0	8.459601	-0.900349	-0.546352	
64	1	0	8.212112	-0.814737	1.203682	
65	6	0	6.646091	-3.077195	1.467097	
66	1	0	5.712208	-3.648586	1.418224	
67	1	0	7.466802	-3.795176	1.574994	
68	1	0	6.624829	-2.462460	2.374241	
69	6	0	6.922183	-3.178322	-1.016701	
70	1	0	7.118368	-2.637015	-1.948180	
71	1	0	7.721629	-3.917998	-0.886092	
72	1	0	5.975912	-3.717980	-1.136443	
			177) 0.14		0505754	0.0410410
Rotati	onal con	stants (GF	1Z): 0.16	0.00000000000000000000000000000000000	.0505754	0.0410419
SCF D	one: E(JB+HF-L	(YP) = -142	23.92355948	a.u. after	4 cycles
	Convg	= 0.145	9D-06	49 F	ock formatic	ons.
A	S**2 =	= 1.0162	- '	V/I = 2.009	9/	
Annin	nation o	I the first	10162	inant:	214	
5''Z l	tom	miniation	i 1.0102, Volue	Threshold	J14 1 Converse	49
Mavin	um For	20			a Converger	u :
RMC	Force		0.000002		0 IES 0 VES	
Mavin	num Die	nlacement			0 VFS	
RMS	Disnla	cement	0 000146	5 0.00130	0 YES	
11110	Lishia	it	0.000140	0.00120	. 100	

Predicted change in Energy=-6.959201D-09

(b) Diarylnitroxide diradical, conformer 2B-endo: full geometry optimization of the triplet followed by frequency calculation of the triplet and by the energy calculation of broken symmetry singlet at the geometry of the triplet (UB3LYP/6-31G(d) level).

Full geometry optimization of the triplet Standard orientation:

Center	Atomic	A	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-1.158868	0.611461	0.285312
2	6	0	-1.161013	-0.790290	0.274279
3	6	0	0.009055	-1.504338	0.004596
4	6	0	1.176359	-0.792739	-0.267782
5	6	0	1.177296	0.613709	-0.287635
6	6	0	0.010681	1.330739	-0.004346
7	1	0	-2.070007	1.137657	0.541668
8	1	0	0.008653	-2.584948	0.007255
9	1	0	2.090023	1.131723	-0.547096
10	7	0	2.342536	-1.540247	-0.598313
11	7	0	-2.326947	-1.537858	0.607164
12	6	0	3.674228	-1.078764	-0.379974
13	6	0	4.686265	-1.556103	-1.223950
14	6	0	4.010600	-0.233715	0.682640
15	6	0	6.001315	-1.164967	-1.014738
16	1	0	4.420562	-2.233362	-2.026975
17	6	0	5.339690	0.144696	0.876654
18	1	0	3.247935	0.108358	1.373604
19	6	0	6.368153	-0.303016	0.036229
20	1	0	6.761655	-1.544138	-1.691445
21	1	0	5.563985	0.793040	1.716254
22	6	0	-3.658764	-1.079900	0.383566
23	6	0	-4.672247	-1.556971	1.226028
24	6	0	-3.993940	-0.238401	-0.682404
25	6	0	-5.987579	-1.169531	1.011710
26	1	0	-4.407360	-2.231192	2.031854
27	6	0	-5.323393	0.136161	-0.881472
28	1	0	-3.230337	0.103505	-1.372392
29	6	0	-6.353383	-0.311640	-0.042905
30	1	0	-6.749019	-1.548604	1.687242
31	1	0	-5.546619	0.781516	-1.723666
32	8	0	-2.170697	-2.696017	1.142981
33	8	0	2.188433	-2.703485	-1.123506
34	6	0	-0.028149	2.871356	0.002724
35	6	0	-1.074626	3.366939	-1.023369
36	1	0	-2.080780	3.002084	-0.791291
37	1	0	-1.112151	4.463005	-1.027829

38	1	0	-0.820771	3.031855	-2.035596	
39	6	0	1.332902	3.493222	-0.363322	
40	1	0	2.118034	3.206802	0.345550	
41	1	0	1.657635	3.204757	-1.369528	
42	l	0	1.254775	4.585888	-0.343341	
45	0	0	-0.420208	2.00/291	1.413027	
44	1	0	-1.403082	2.994525	1./2184/	
45	1	0	0.310221	5.059205 A 463122	2.105502	
40	6	0	7 841095	0.098847	0 224245	
48	6	0	8 696104	-1 169677	0.457726	
49	1	Ő	9.750875	-0.898377	0.587658	
50	1	0	8.368726	-1.703222	1.357188	
51	1	0	8.633611	-1.866417	-0.384661	
52	6	0	8.341725	0.826314	-1.046784	
53	1	0	8.264491	0.193203	-1.936911	
54	1	0	7.760651	1.736788	-1.232962	
55	1	0	9.394348	1.112243	-0.931813	
56	6	0	8.042153	1.040060	1.426822	
57	1	0	7.481509	1.974903	1.312448	
58	1	0	7.737043	0.569756	2.368545	
59	1	0	9.102415	1.301180	1.517474	
60	6	0	-7.826775	0.085715	-0.236752	
61	6	0	-8.333403	0.815630	1.030489	
62	1	0	-9.386464	1.098224	0.911390	
63	1	0	-8.257129	0.185462	1.922785	
64	l	0	-7.755516	1.728335	1.215695	
65	6	0	-8.026473	1.022732	-1.442826	
66	l	0	-/./1/168	0.550331	-2.382123	
67	1	0	-9.08/105	1.280866	-1.53/61/	
68	l	0	-7.468568	1.959351	-1.329586	
69 70	6	0	-8.677636	-1.185809	-0.469115	
/0	1	0	-8.616036	-1.8/9851	0.3/55/2	
/1	1	0	-9./32682	-0.91/684	-0.603292	
12	1	0	-8.343913	-1./21189	-1.303889	
Rotatio	onal con	stants (G	HZ)· 031	34598 0	0402246 0 0	0374879
SCF D	one: E	UB+HF-	LYP) = -142	25.9230907	9 A.U. after	6 cycles
	Convg	= 0.73	83D-08	-V/T = 2	2.0097	5
	S**2	= 2.028	1			
Annihi	lation o	f the first	spin contam	inant:		
S**2 b	efore an	nnihilation	n 2.0281,	after 2.0	005	
Item			Value	e Three	shold Conver	rged?
Maxim	num For	ce	0.000	009 0.000	0450 YES	
RMS	Force		0.000	001 0.000	0300 YES	
Maxim	um Dis	placemen	t 0.0004	441 0.001	800 YES	
RMS	Displa	acement	0.000	102 0.001	200 YES	
Predict	ted char	ige in Ene	rgy=-1.8760)23D-09		
Optimi	ization o	completed				
Sta	ationary	point fou	nd.			
Dipole	momen	t (field-in	dependent ba	asis, Debye)): T	
Х=	-0.015	5 Y=	5.5085 Z=	-0.0203	10t = 5.5086	
Fucar	010 010	aloulas	on of the	twinlat		
rrequ Initial	ency C	ucuuuu	on of the l	unipiel	a internal and	root
	onverge		$(\mathbf{V}\mathbf{D}) = 14$	veu. increas	se integral accu	1acy.
SCF D	Conve	ຸບອ⊤ກr- = ^ າາ	LIFJ - 14. 14D.08	23.9230908 	0 A.U. alter	20 cycles
	Convg	= 0.82 = 2.029	14D-08	- v / I — .	2.0097	
Annihi	lation o	 2.028 f the first 	snin contam	inant [.]		
	nativii U	T UIC THAT	JULI COLLARD	IIIGHIL.		

Annihilation of the first spin contaminant: S**2 before annihilation 2.0281, after 2.0005

Three lowest frequencies: 2 3 Α А А 9.9849 Frequencies --17.7796 31.7608 This molecule is an asymmetric top. Rotational symmetry number 1. Warning -- assumption of classical behavior for rotation may cause significant error 0.01504 0.00193 Rotational temperatures (Kelvin) 0.00180 Rotational constants (GHZ): 0.31346 0.04022 0.03749 Zero-point vibrational energy 1625856.0 (Joules/Mol) 388.58891 (Kcal/Mol) Warning -- explicit consideration of 60 degrees of freedom as vibrations may cause significant error Zero-point correction= 0.619256 (Hartree/Particle) Thermal correction to Energy= 0.653415 Thermal correction to Enthalpy= 0.654359 Thermal correction to Gibbs Free Energy= 0.551618 Sum of electronic and zero-point Energies= -1425.303835 Sum of electronic and thermal Energies= -1425.269676 Sum of electronic and thermal Enthalpies= -1425.268732 Sum of electronic and thermal Free Energies= -1425.371473

Energy Calculation of the Broken-Symmetry Singlet SCF Done: E(UB+HF-LYP) = -1425.92187961 a.u. after 12 cycles Convg = 0.7220D-06 91 Fock formations. S**2 = 1.0145 -V/T = 2.0097 Annihilation of the first spin contaminant:

S**2 before annihilation 1.0145, after 0.1228

(c) Diarylnitroxide diradical, conformer 2C-exo: full geometry optimization of the triplet followed by frequency calculation of the triplet and by the energy calculation of broken symmetry singlet at the geometry of the triplet (UB3LYP/6-31G(d) level).

	Full geometry	optimization	of the	tripl
--	---------------	--------------	--------	-------

Standard orientation:

Center Number	Atomic Numb	A	tomic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	-3.535854	1.053824	0.440870
2	6	0	-2.136664	1.082938	0.426535
3	6	0	-1.401478	-0.029348	-0.003050
4	6	0	-2.100668	-1.159614	-0.435770
5	6	0	-3.504750	-1.173695	-0.459406

6	6	0	-4.238511	-0.072055	-0.012140
7	1	0	-4.049226	1.931871	0.811795
8	1	0	-0.320382	-0.013044	0.000142
9	1	0	-3.984260	-2.066748	-0.834109
10	7	0	-1.423027	-2.316123	-0.917753
11	7	0	-1.493191	2.257075	0.914262
12	6	0	-0 194322	2 684388	0.508692
13	ő	Ő	0.313012	2,435105	-0 770743
14	6	Ő	0.563341	3 444471	1 410619
15	6	Ő	1 572858	2 918523	-1 126138
16	1	Ő	-0 276288	1 889103	-1 499060
17	6	Ő	1 814424	3 914573	1.036729
18	1	Ő	0.150870	3 658013	2 389580
19	6	Ő	2 358762	3 664217	-0 237304
$\frac{1}{20}$	1	Ő	1 929286	2 710297	-2 128570
21	1	0	2 381167	4 493596	1 760349
$\frac{21}{22}$	8	0	-2 121617	2 979097	1 773624
22	8	0	-2.121017	-3.058444	1.775024
$\frac{23}{24}$	6	0	5 778534	0.058061	-1.///021
24	6	0	6 27/201	-0.038901	1 452100
25	1	0	5 000466	1.066723	1.455155
20	1	0	-3.909400	0.154000	1.009907
21	1	0	-7.370474	0.134909	1.4/9622
20	1	0	-3.930833	-0.091302	2.093384
29	0	0	-0.3/833/	-1.300983	-0.34639/
30 21	1	0	-0.080090	-1.349272	-1.38/2/3
21	1	0	-0.081014	-2.255008	0.049810
32 22		0	-/.4/2040	-1.30/23/	-0.525280
22 24	0	0	-0.28/9/2	1.111545	-0.8/3962
34 25	1	0	-5.954842	2.080368	-0.506055
35	1	0	-5.951055	1.002643	-1.91113/
36	l	0	-/.38438/	1.134489	-0.8/3/38
37	6	0	3.750876	4.208847	-0.600485
38	6	0	3.744299	5./52244	-0.488932
39	1	0	4./33104	6.155813	-0./38858
40	1	0	3.013631	6.191//0	-1.1//322
41	l	0	3.493875	6.08/851	0.522873
42	6	0	4.800057	3.629228	0.3/8452
43	1	0	4.830017	2.535293	0.318698
44	1	0	5.799297	4.010580	0.135579
45	l	0	4.583598	3.901684	1.416/63
46	6	0	4.1/1/64	3.832973	-2.033780
47	l	0	3.484502	4.243242	-2.782412
48	1	0	5.16/3/0	4.239623	-2.243363
49	l	0	4.222865	2.747109	-2.173595
50	6	0	-0.111987	-2.703790	-0.510502
51	6	0	0.386553	-2.439157	0.769267
52	6	0	0.668820	-3.441102	-1.411523
53	6	0	1.660099	-2.884482	1.125794
54	l	0	-0.219492	-1.911095	1.497045
55	6	0	1.933052	-3.8/3581	-1.036486
56	l	0	0.263668	-3.66/14/	-2.390723
57	6	0	2.468612	-3.606/16	0.23/84/
58	l	0	2.009327	-2.665476	2.128492
59	l	0	2.517343	-4.435850	-1.759330
60	6	0	3.875847	-4.110040	0.602041
61	6	0	4.908495	-3.499771	-0.375851
62	1	0	5.918016	-3.852856	-0.132661
63	1	0	4.700486	-3.777456	-1.414523
64	1	0	4.907261	-2.405488	-0.315243
65	6	0	4.284273	-3.722562	2.035889
66	1	0	4.304953	-2.635711	2.175852
67	1	0	3.607718	-4.151890	2.783583

68 1 0 5.290522 -4.101290 2.246829 69 0 6 3.915065 -5.652941 0.489804 70 1 0 3.199032 -6.114436 1.179193 71 1 0 3.673101 -5.995429 -0.521760 72 1 0 4.915951 -6.026918 0.737660 0.1037608 0.0844256 0.0513663 Rotational constants (GHZ): SCF Done: E(UB+HF-LYP) = -1425.92419925 A.U. after 7 cycles Convg = 0.7053D-08-V/T = 2.0097 $S^{**2} = 2.0291$ Annihilation of the first spin contaminant: S**2 before annihilation 2.0291, after 2.0005 Value Threshold Converged? Item Maximum Force 0.000010 0.000450 YES YES RMS Force 0.000002 0.000300 Maximum Displacement 0.000578 0.001800 YES Displacement 0.000145 RMS 0.001200 YES Predicted change in Energy=-3.375205D-09 Optimization completed. -- Stationary point found. Dipole moment (field-independent basis, Debye): X= 3.4144 Y= 0.0780 Z= 0.0033 Tot= 3.4153 Frequency calculation of the triplet Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(UB+HF-LYP) = -1425.92419926 A.U. after 20 cycles Convg = 0.7605D-08-V/T = 2.0097 $S^{**2} = 2.0291$ Annihilation of the first spin contaminant: S**2 before annihilation 2.0291, after 2.0005 Three lowest frequencies: 2 3 1 А А А Frequencies ---9.3913 19.6789 26.1438 Red. masses --4.4056 3.4259 4.5874 0.0002 Fre consts --0.0010 0.0014 IR Inten --0.1528 0.5328 0.0439 This molecule is an asymmetric top. Rotational symmetry number 1. Warning -- assumption of classical behavior for rotation may cause significant error Rotational temperatures (Kelvin) 0.00498 0.00405 0.00247 0.10376 0.08443 Rotational constants (GHZ): 0.05137 Zero-point vibrational energy 1626135.9 (Joules/Mol) 388.65581 (Kcal/Mol) Warning -- explicit consideration of 60 degrees of freedom as vibrations may cause significant error Zero-point correction= 0.619362 (Hartree/Particle) Thermal correction to Energy= 0.653522 0.654466 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.551398 Sum of electronic and zero-point Energies= -1425.304837 Sum of electronic and thermal Energies= -1425.270677 Sum of electronic and thermal Enthalpies= -1425.269733 Sum of electronic and thermal Free Energies= -1425.372801

Energy Calculation of the Broken-Symmetry Singlet

Linear equations converged to 1.311D-10 1.311D-09 after 18 iterations. SCF Done: E(UB+HF-LYP) = -1425.92287864 a.u. after 12 cycles Convg = 0.7346D-06 87 Fock formations.

8. References for supporting information.

- S1. Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 2377.
- S2. Gilbert, M.; Ferrer, M.; Sanchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, 53, 8643-8650.
- S3. Vale, M.; Pink, M.; Rajca, S.; Rajca, A. J. Org. Chem. 2008, 73, 27-35.
- S4. Ivanov, Y. A.; Kokorin, A. I.; Shapiro, A. B.; Rozantsev, E. G. *Izv. Akad. Nauk SSSR, Ser. Khim.*1976, 10, 2217–2222.