Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan

Supporting information

Maciej Skotak¹, Alexei P. Leonov^{1,2}, Gustavo Larsen^{*1,3}, Sandra Noriega¹ and Anuradha Subramanian¹

¹ Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln,

NE 68588-0643

² Current Address: Department of Chemistry, Purdue University, West Lafayette, IN 47907-

2084

³ LNK Chemsolutions, LLC, 4701 Innovation Dr., Lincoln, NE 68521

* Corresponding author: glarsen@unlserve.unl.ed

Degree of deacetylation. %DD of used chitosans was estimated using two methods; the first one is based on the weighted ratio of surface area of methyl protons of acetylated amine (peak CH₃, fig S1) to glucosamine ring protons.^{1, 2} For chitosans with intermediate %DD values, it can be estimated by integrating just acetal peaks of glucosamine and acetylglucosamine units (1 and 1', respectively). In our case both methods gave satisfactory results (method I and II, respectively in Table 1).

	%DD					
	method I	method II				
	$\%DD = \left\{1 - \left(\frac{1}{3}I_{CH3} / \frac{1}{6}I_{H2-H6}\right)\right\} \times 100$	$\% DD = \{I_{H1'} / (I_{H1} + I_{H1'})\} \times 100$				
HMWCHIT	79.4	80.0				
LMWCHIT	81.5	80.2				

Table 1. Degree of deacetylation of chitosans	, based on	¹ H NMR spectra	(fig. S1)
---	------------	----------------------------	-----------

Table 2. Solubility of HMWCHIT based samples. Typically 10-15 mg of each sample was dissolved in 1.0 mL of solvent and kept at room temperature for 24 hours. Dipole moment of each solvent is provided.

CHIT-	Solvent/Dipole moment										
PLA	DMSO	AcN ^a	Acetone	Ethyl	AcOH	THF	CH_2Cl_3	t-BuOH	ether	CCl_4	Benzene
ratio	DMF		MEK	acetate	glacial		CHCl ₃	EtOH			Toluene
	3.96	3.92	2.88	1.78	1.76	1.63	1.60		1.15	0.00	0.00
	3.82		2.78				1.15	1.69			0.36
$1:4^{b}$	+	+	+	+	+	+	+	×	р	×	×
$1:6^{b}$	+	+	+	+	+	+	+	×	р	×	р
1:12	+	+	+	+	+	+	+	×	р	×	+
1:18	+	+	+	+	+	+	+	×	р	×	+
1:24	+	+	+	+	+	+	+	×	р	×	+

Legend:

+ – fully soluble;

p – partially soluble, most probably low molecular fraction;

 \times – insoluble.

a) acetonitrile;

b) both samples were soluble in 1,1,1,3,3,3-hexafluoro-2-propanol and 1,1,1trifluoroethanol;

Figure S1. ¹H NMR spectra of high (HMWCHIT) and low (LMWCHIT) molecular weight chitosans used for L-lactide grafting.

Figure S2. FTIR spectra of chitosans used for L-lactide grafting and polylactic acid (M_W =175 kDa). Spectra of chitosans were collected using pellet method by dispersing of 20.0 mg of dried chitosan in 180.0 mg of KBr (10% w/w). PLA spectrum was recorded using 1% (w/w) solution in chloroform (solvent spectrum subtracted).

Figure S3. HMQC spectrum of HMWCHIT-PLA 1:6 sample in d₆-DMSO, after 3 hours of reaction at 40 °C.

Figure S4. HMQC spectrum of HMWCHIT-PLA 1:6 sample, after 4 hours of reaction at 40 °C. Peak assignments are the same as on Fig. S3.

References

- (1) (2) Hirai, A.; Odani, H.; Nakajima, A. *Polymer Bull.*, **1991**, *26*, 87-94. Rinaudo M. *Prog. Polym. Sci.*, **2006**, *31*, 603-632.