Supporting Information For:

Concise Synthesis of the CDE Ring System of Tetrahydroisoquinoline Alkaloids Using Carbophilic Lewis Acid-Catalyzed Hydroamidation and Oxidative Friedel-Crafts Cyclization Shingo Obika, ${ }^{\dagger}$ Yoshizumi Yasui, ${ }^{\dagger}$ Reiko Yanada ${ }^{\dagger}$ and Yoshiji Takemoto ${ }^{*}{ }^{\dagger}$
Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Faculty of Pharmaceutical Sciences, Hiroshima International University, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
takemoto@pharm.kyoto-u.ac.jp

Table of contents

Lewis acid-catalyzed hydroamidation of 1a-d and their spectral data: \quad S2.

Synthesis of $\mathbf{5}$ from $\mathbf{3}$ and their spectral data: S3.

Synthesis of $\mathbf{1 1}$ from $\mathbf{6}$ and their spectral data: S3.

Synthesis of $\mathbf{1 7}$ from $\mathbf{3}$ and $\mathbf{6}$ and their spectral data: S5.
Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compounds 1a-d, 2a-d, and 5-18 S8.

[^0]
General procedure for $\mathbf{P t}(\mathrm{II})$ and $\mathrm{Au}(\mathrm{I})$-catalyzed 6-exo mode cyclization of 1a-d

To a solution of compound $1(0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ were added $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(0.010$ $\mathrm{mmol})$ and $\mathrm{AgNTf}_{2}(0.010 \mathrm{mmol})$ and the mixture was stirred at room temperature for 6 h . After being quenched with aqueous NaHCO_{3} solution $(0.5 \mathrm{ml})$, the mixture was extracted with CHCl_{3} $(3 \times 1 \mathrm{ml})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt $=3 / 1 \sim 1 / 1$) to give the desired product 2.
2-(4-Nitro- N -(3-phenylprop-2-ynyl)phenylsulfonamido)-3-phenylpropanamide (1a): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.38-7.07(10 \mathrm{H}, \mathrm{m}), 6.36$ $(1 \mathrm{H}, \mathrm{br}), 5.56(1 \mathrm{H}, \mathrm{br}), .4 .75-4.69(2 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{d}, J=18.6 \mathrm{~Hz}), 3.42(2 \mathrm{H}, \mathrm{dd}, J=14.6,5.5$ Hz), 2.98-2.94 ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.2, 149.7, 145.2, 137.0, 131.3, 129.4, $129.1,128.6,128.5,128.4,126.8,123.8,121.7,85.9,83.5,62.6,60.3,34.8,34.5,20.9,14.1$; IR $\left(\mathrm{CHCl}_{3}\right) 3492,3381,3222,3108,1697,1654,1607,1590,1525,1496,1455 \mathrm{~cm}^{-1}$; MS (FAB) m/z $464\left(\mathrm{MH}^{+}, 100\right), 419$ (14), 277 (47), 186 (12), 154 (35), 115 (97); HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 464.1280$, found 464.1269 .
3-Phenyl-2-(3-phenylprop-2-ynylamino)propanamide (1b): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45-7.14(5 H, m), 7.14-6.93(1 H, b r), 6.35-6.11(1 H, b r), 3.68(1 H, d d, J=9.8,4.1 \mathrm{~Hz}), 3.61(1 \mathrm{H}$, d, $J=17.3 \mathrm{~Hz}$), $3.46-3.39(1 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{dd}, J=14.0,4.0 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=13.9,9.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,137.0,131.5,129.1,128.8,128.5,128.2,128.1,127.4,126.9$, $122.7,86.4,83.8,62.3,39.3,37.9$; IR $\left(\mathrm{CHCl}_{3}\right) 3388,3183,2928,2857,1659,1594 \mathrm{~cm}^{-1}$; MS (FAB) m/z 279 ($\mathrm{MH}^{+}, 100$), 234 (55), 154 (35), 136 (25), 115 (53), 95 (30), 83 (33); HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$279.1497, found 279.1497.
Methyl 1-Amino-1-oxo-3-phenylpropan-2-yl(3-phenylprop-2-ynyl)carbamate (1c): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.23(5 \mathrm{H}, \mathrm{m}), 6.24(1.0 \mathrm{H}, \mathrm{s}), 5.78(1 \mathrm{H}, \mathrm{s}), 4.94-4.12(2 \mathrm{H}, \mathrm{m}), 3.94-3.90$ $(2 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.37(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.5,131.9,129.3,128.8$, $128.5,127.1,84.5,77.3,63.1,61.4,54.3,39.0,36.6,35.1,34.5,14.2$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3447,3370,2360$, $1683 \mathrm{~cm}^{-1}$; MS (FAB) m/z 337 ($\mathrm{MH}^{+}, 100$), 292 (40), 190 (26), 154 (40), 136 (28), 115 (76); HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 337.1592$, found 337.1562.
\boldsymbol{N}-(4-Methoxybenzyl)-2-(4-nitro- \boldsymbol{N}-(3-phenylprop-2-ynyl)phenylsulfonamido)-3-phenylpropan amide (1d): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33-8.07(1 \mathrm{H}, \mathrm{m}), 7.64-7.55(2 \mathrm{H}, \mathrm{m}), 7.55-7.47(1 \mathrm{H}$, m), 7.33-7.11 (11.2H, m), $6.90(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{d}, J=18.9$ $\mathrm{Hz}), 4.67(1 \mathrm{H}, \mathrm{q}, ~ J=8.8 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.57-3.46(1 \mathrm{H}, \mathrm{m}), 3.23-3.13(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,159.0,136.5,133.8,131.9,131.8,131.5,129.6,129.4,128.7$, $128.6,128.5,128.2,123.9,114.0,83.9,61.6,55.4,42.3,36.7,34.6 . ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3381,1797,1732$, 1681, 1612, 1597, 1541, 1513, $1448 \mathrm{~cm}^{-1}$; MS (FAB) m/z 584 ($\mathrm{MH}^{+}, 27$), 397 (12), 307 (27), 289 (15), 154 (100), 136 (65), 115 (27); HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$584.1855, found 584.1868.
(Z)-3-Benzyl-6-benzylidene-4-(4-nitrophenylsulfonyl)piperazin-2-one (2a): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.39-7.19(10 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{br}), 5.39$ $(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{dt}, J=6.7,2.8 \mathrm{~Hz}), 4.36-4.32(1 \mathrm{H}, \mathrm{m}), 4.16-4.11(1 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}$, dd, $J=14.4,6.4 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=14.4,6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,150.1$,
144.5, 137.1, 136.6, 135.1, 129.8, 129.1, 128.9, 128.8, 128.6, 127.4, 126.0, 124.1, 107.8, 63.6, 43.0, 35.8; IR (CHCl_{3}) 2927, 2360, 1667, $1529 \mathrm{~cm}^{-1}$; MS (FAB) m/z $464\left(\mathrm{MH}^{+}, 18\right), 437$ (15), 393 (15), 307 (32), 289 (17), 154 (100), 136 (63), 89 (20); HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$ 337.1592 , found 337.1594 .
(Z)-Methyl 2-Benzyl-5-benzylidene-3-oxopiperazine-1-carboxylate (2c): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.14(5 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{br}), 5.38(1 \mathrm{H}, \mathrm{br}), 4.93(1 \mathrm{H}, \mathrm{br}), 4.61-4.05(2.0 \mathrm{H}, \mathrm{m})$, $4.05-3.54(3 \mathrm{H}, \mathrm{s}), 3.54-3.09(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,138.2,129.2,128.9$, 126.2, 110.3, 62.2, 53.4, 43.4, 34.8, 29.9; IR $\left(\mathrm{CHCl}_{3}\right) 3061,3028,1660,1603,1494,1445 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (FAB) m/z 337 ($\mathrm{MH}^{+}, 100$), 292 (40), 190 (26), 154 (40), 136 (28), 115 (76); HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 337.1592$, found 337.1594 .
(E)-3-Benzyl-6-benzylidene-1-(4-methoxybenzyl)-4-(4-nitrophenylsulfonyl)piperazin-2-one
(2d): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.89(1 \mathrm{H}, \mathrm{m}), 7.74-7.63(2 \mathrm{H}, \mathrm{m}), 7.63-7.56(1 \mathrm{H}, \mathrm{m})$, $7.50-7.41(3 \mathrm{H}, \mathrm{m}), 7.41-7.16(3 \mathrm{H}, \mathrm{m}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.64(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.09-5.95$ $(1 \mathrm{H}, \mathrm{m}), 5.13-5.07(1 \mathrm{H}, \mathrm{m}), 5.07-5.00(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=8.6,3.4 \mathrm{~Hz}), 3.91-3.78(1 \mathrm{H}, \mathrm{m})$, $3.71(3 \mathrm{H}, \mathrm{s}), 3.33-3.23(1 \mathrm{H}, \mathrm{m}), 3.23-3.03(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,159.2$, $146.0,136.2,134.4,133.6,132.0,131.3,130.6,130.2,130.0,129.3,128.9,128.7,128.3,127.4$, 126.9, 123.9, 115.0, 113.5, 65.8, 55.0, 48.8, 44.0, 40.2 ; IR (CHCl_{3}) 3062, 3027, 2956, 2837, 2359, 1657, 1612, 1586, 1495, $1439 \mathrm{~cm}^{-1}$; MS (FAB) m/z $584\left(\mathrm{MH}^{+}, 15\right), 549$ (10), 154 (78), 121 (100), 69 (83); HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 584.1855$, found 584.1833.

Synthesis of alkynylaldehyde 5

3-(2,4,5-Trimethoxy-3-methylphenyl)propiolaldehyde (5). To a solution of compound 3 (3840 $\mathrm{mg}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{ml})$ were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(350 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{CuI}(143 \mathrm{mg}, 1.0$ mmol), and propargyl alcohol ($624 \mathrm{mg}, 12 \mathrm{mmol}$) and the resulting mixture was stirred under Ar at room temperature for 12 h . After filtration, $\mathrm{Et}_{3} \mathrm{~N}$ was removed in vacuo and the residue was purified by column chromatography on silica gel ($\mathrm{Hexane} / \mathrm{AcOEt}=1 / 1$) to give alcohol ($2010 \mathrm{mg}, 85 \%$). To a solution of alcohol $(920 \mathrm{mg}, 3.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ were added $\mathrm{RuO}_{4} \mathrm{~N}(n-\mathrm{Pr})(68 \mathrm{mg}$, 0.19 mmol), N-methylmorpholine N-oxide ($684 \mathrm{mg}, 5.85 \mathrm{mmol}$), and MS4A and the resulting mixture was stirred for 24 h under Ar. After filtration through Celite pad, the mixture was diluted with water (10 ml) and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 5/1) to give compound $5(834 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,156.4,151.3,148.7,126.0,114.2,107.1,92.5,91.8,61.2,60.1,55.7,9.1$; IR $\left(\mathrm{CHCl}_{3}\right) 3586,2938,2851,2183,1715 \mathrm{~cm}^{-1}$; MS (FAB) m/z $234\left(\mathrm{M}^{+}, 100\right), 219(10), 206$ (8), 176 (7), 154 (10); HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$234.0892, found 234.0913.

Synthesis of amino acid derivative 11

1-(Bromomethyl)-2,4,5-trimethoxy-3-methylbenzene (7). To a solution of $\mathbf{6}$ ($2880 \mathrm{mg}, 10.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ were added $\mathrm{PPh}_{3}(3140 \mathrm{mg}, 12.0 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(3980 \mathrm{mg}, 12.0 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 8 h . The mixture was diluted with
water (15 ml) and extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel $($ Hexane $/ \mathrm{AcOEt}=3 / 1)$ to give compound $7(2580 \mathrm{mg}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.73(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,149.4,148.6,125.8,125.8,111.2,61.0,60.2,55.9,29.0$, 9.5; IR $\left(\mathrm{CHCl}_{3}\right) 3565,3280,1282 \mathrm{~cm}^{-1}$; MS (FAB) m/z 276 (10), $274\left(\mathrm{M}^{+}, 10\right), 226$ (25), 195 (100), 149 (22), 136 (15); HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}\left(\mathrm{M}^{+}\right) 274.0205$, found 274.0225.
tert-Butyl 2-Amino-3-(2,4,5-trimethoxy-3-methylphenyl)propanoate (9). To a stirred solution of $7(3500 \mathrm{mg}, 10 \mathrm{mmol})$, iminoester $\mathbf{8}(2360 \mathrm{mg}, 8.00 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$ was slowly added $50 \% \mathrm{KOH}$ aq at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 4.5 h , the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt $=3 / 1$) to give ester ($3560 \mathrm{mg}, 91 \%$). To a stirred solution of ester (2000 mg , $6.2 \mathrm{mmol})$ in THF (50 ml) was slowly added 15% citric acid $(17 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 8 h . After being basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$, the mixture was extracted with AcOEt $(3 \times 30 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/ $\mathrm{AcOEt}=1 / 1$) to give compound $9(1830 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59$ $(1 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.68-3.59(1 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=13.5,8.3 \mathrm{~Hz})$, $2.77(1 \mathrm{H}, \mathrm{dd}, J=13.5,8.3 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4$, $151.0,148.9,146.6,125.5,125.4,111.4,80.9,60.5,60.1,55.9,55.6,36.0,27.9,9.58 ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 3376, 3063, 3030, 2978, 2935, 2826, 1867, $1732 \mathrm{~cm}^{-1}$; MS (FAB) m/z $326\left(\mathrm{MH}^{+}, 55\right), 270$ (97), 224 (33), 195 (100), 181 (17), 57 (13); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right) 326.1967$, found 326.1974.
tert-Butyl 2-(Benzyloxycarbonylamino)-3-(2,4,5-trimethoxy-3-methylphenyl)propanoate (10). To a stirred solution of $9(2000 \mathrm{mg}, 6.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1000 \mu \mathrm{l}, 7.4$ $\mathrm{mmol})$ and $\mathrm{CbzCl}(1050 \mu \mathrm{l}, 7.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 8 h . After being diluted with water and extracted with $\operatorname{AcOEt}(3 \times 30 \mathrm{ml})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt $=1 / 1$) to give $\mathbf{1 0}$ (2700 mg , $95 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,155.6,150.7,148.8,146.8,136.3$, $128.1,127.7,125.0,124.1,111.3,81.3,77.3,66.3,60.3,59.8,55.6,55.3,32.6,27.6,9.4$; IR $\left(\mathrm{CHCl}_{3}\right) 3350,3064,2977,2937,2838,2604,1752,1593 \mathrm{~cm}^{-1}$; MS (FAB) m/z $459\left(\mathrm{M}^{+}, 57\right), 404$ (15), 360 (48), 195 (100), 91 (52); HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{7}\left(\mathrm{MH}^{+}\right) 460.2335$, found 460.2363 .
tert-Butyl 1-Amino-1-oxo-3-(2,4,5-trimethoxy-3-methylphenyl)propan-2-ylcarbamate (11). To a stirred solution of $\mathbf{1 0}(3400 \mathrm{mg}, 7.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was slowly added TFA $(5 \mathrm{ml})$ at 0 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 12 h . After the solvents were evaporated, the crude product was resolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. To the mixture were added ethyl
chloroformate $(700 \mu \mathrm{~g}, 7.4 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1000 \mu \mathrm{l}, 7.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at the same temperature. After addition of 50 ml of aqueous NH_{3}, the resulting mixture was stirred at room temperature for 12 h , and extracted with $\operatorname{AcOEt}(3 \times 15 \mathrm{ml})$. The extracts were washed with water and brine, and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/2) to give compound $\mathbf{1 1}$ ($2230 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{br}, 2 \mathrm{H}), 5.66(\mathrm{br}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.32$ (br, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{br}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.6,156.4,150.5,149.2,146.8,136.2,128.3,127.9,127.6,125.1,124.4,111.3,66.5$, $60.4,59.9,56.2,55.6,32.4,9.4$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3390,3346,3195,3086,3063,3024,2983,2932,2781$, 1683, $1660 \mathrm{~cm}^{-1}$; MS (FAB) m/z $402\left(\mathrm{M}^{+}, 13\right), 359$ (15), 314 (22), 251 (11), 195 (100), 91 (72); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$402.1791, found 402.1833.

Synthesis of tricyclic fragment 17

3-(2,4,5-Trimethoxy-3-methylphenyl)-2-(3-(2,4,5-trimethoxy-3-methylphenyl)prop-2-ynylami

 no)propanamide (12). To a stirred solution of $\mathbf{1 1}(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}(20 \mathrm{mg})$ and the reaction mixture was stirred at room temperature for 12 h under H_{2} balloon. After being filtrated through a pad of Celite, the filtrate was concentrated in vacuo. The obtained residue was resolved in $\mathrm{MeOH}(2 \mathrm{ml})$ and then $\mathbf{5}(63 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to the mixture. After the mixture was stirred at room temperature for $30 \mathrm{~min}, \mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.27 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$ over 1 h and the resulting mixture was stirred at room temperature for 9 h . After the solvents were removed under reduced pressure, water was added to the residue and the crude mixture was extracted with $\mathrm{AcOEt}(3 \times 3 \mathrm{ml})$, The extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/ $\mathrm{AcOEt}=1 / 2$) to give $12(86 \mathrm{mg}, 71 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, $3.81-3.65(\mathrm{~m}, 20 \mathrm{H}), 3.53(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,154.2,150.9,149.4,148.8,148.5$, $146.8,125.7,125.3,125.0,113.4,111.3,111.0,89.6,80.0,62.7,60.7,60.3,60.1,55.9,55.8,38.3$, 33.6, 9.7, 9.3; IR $\left(\mathrm{CHCl}_{3}\right) 3387,3334,3184,3058,2909,2859,1659,1594 \mathrm{~cm}^{-1}$; MS (FAB) m/z $486\left(\mathrm{M}^{+}, 8\right), 425(22), 368(25), 312$ (33), 219 (43), 195 (100), 154 (24), 136 (20); HRMS (FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 486.2366$, found 486.2327 .
Isopropyl

1-Amino-1-oxo-3-(2,4,5-trimethoxy-3-methylphenyl)propan-2-yl(3-(2,4,5-trimethoxy-3-methyl

 phenyl)prop-2-ynyl)carbamate (13). To a solution of $\mathbf{1 2}$ ($60 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 ml) were added diisopropylethylamine ($132 \mu \mathrm{l}, 0.76 \mathrm{mmol}$) and isopropyl chloroformate ($43 \mu \mathrm{l}, 0.35$ mmol) and the mixture was stirred at same temperature for 6 h . After an aqueous NaHCO_{3} solution $(1 \mathrm{ml})$ was added, the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 3/1~1/1) to give 13 ($61 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H})$, $3.82-3.63(\mathrm{~m}, 18 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.2,173.0,154.8,154.7,154.3,154.1,150.6,149.0,148.9,148.7,146.6,146.5,125.8$,125.6, 125.2, 113.0, 111.5, 111.2, 110.6, 110.5, 88.0, 87.7, 80.9, 80.3, 77.2, 69.8, 69.5, 61.0, 60.6, $60.5,60.1,60.0,55.8,55.7,38.6,37.2,30.0,29.5,29.1,21.9,21.6,9.4,9.2$; IR ($\left.\mathrm{CHCl}_{3}\right) 2961,2875$, $2839,1784,1716 \mathrm{~cm}^{-1}$; MS (FAB) m/z $573\left(\mathrm{MH}^{+}, 5\right), 529$ (5), 485 (8), 346 (12), 321 (8), 271 (22), 209 (78), 195 (100), 91 (33); HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right)$573.2812, found 573.2789.

(Z)-Isopropyl

3-Oxo-2-(2,4,5-trimethoxy-3-methylbenzyl)-5-(2,4,5-trimethoxy-3-methylbenzylidene)piperazi ne-1-carboxylate (14). To a solution of $\mathbf{1 3}(60 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ were added $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(5.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $\mathrm{AgNTf}_{2}(4.8 \mathrm{mg}, 0.010 \mathrm{mmol})$ and the mixture was stirred at room temperature for 6 h . After being quenched with an aqueous NaHCO_{3} solution (0.5 ml), the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt $=3 / 1 \sim 1 / 1)$ to give $14(48 \mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 4 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,155.7,150.8,149.1,149.0,148.3$, $146.7,133.5,126.9,126.2,125.2,124.9,111.5,110.9,110.5,77.2,69.6,61.3,60.7,60.4,60.2,60.1$, $56.0,55.8,44.8,29.5,22.0,9.5,9.3$; IR $\left(\mathrm{CHCl}_{3}\right) 3235,2983,2840,1772,1700,1635 \mathrm{~cm}^{-1}$; MS (FAB) m/z 573 ($\mathrm{MH}^{+}, 8$), 529 (5), 485 (10), 346 (10), 321 (10), 271 (15), 219 (55), 195 (100), 181 (17), 165 (15), 91 (25); HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right)$573.2812, found 573.2766.

(Z)-Isopropyl

4-Benzyl-3-oxo-2-(2,4,5-trimethoxy-3-methylbenzy)-5-(2,4,5-trimethoxy-3-methylbenzylidene)piperazine-1-carboxylate (16). To a solution of $\mathbf{1 4}(60 \mathrm{mg}, 0.10 \mathrm{mmol})$ in DMF (0.5 ml) were added $\mathrm{BnBr}(5.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $\mathrm{NaH}(4.8 \mathrm{mg}, 0.010 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 1 h . After being quenched with an aqueous NaHCO_{3} solution $(0.5 \mathrm{ml})$, the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 3/1~1/1) to give 16 ($63 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.47(\mathrm{~m}, 3 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 4 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.23(\mathrm{~m}$, $1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{br}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.2,155.2,150.7,148.9,148.8,148.4,146.5,140.0,137.7,128.2,127.9,127.1,126.2$, $126.0,125.0,124.8,118.4,111.4,111.0,77.3,69.3,61.9,60.4,60.3,60.1,60.1,55.9,55.7,48.9$, $44.6,30.9,22.1,21.8,9.7,9.6$; IR $\left(\mathrm{CHCl}_{3}\right) 2979,1698,1650 \mathrm{~cm}^{-1}$; MS (FAB) m/z $663\left(\mathrm{MH}^{+}, 45\right)$, 571 (27), 467 (27), 381 (16), 326 (100), 195 (50), 154 (47), 136 (35), 91 (65); HRMS (FAB) calcd for $\quad \mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{9} \quad\left(\mathrm{MH}^{+}\right) \quad 663.3238$, found 663.3285. (E)-3-Benzyl-2-[(2,4,5-trimethoxy-3-methylphenyl)-methylene]-7,9,10-trimethoxy-8-methyl-4-oxo-1,2,3,4,5,6-hexahydro-1,5-imino-3-benzazocine-11-carboxylic acid isopropyl ester (17). To a solution of $\mathbf{1 6}(33 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeCN}(0.10 \mathrm{ml})$ was added NBS $(11 \mathrm{mg}, 0.06 \mathrm{mmol})$ and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 15 min . After being quenched with an aqueous NaHCO_{3}
solution (0.5 ml), the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/ $\mathrm{AcOEt}=3 / 1 \sim 1 / 1$) to give compound $\mathbf{1 7}(23 \mathrm{mg}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.08$ $(\mathrm{s}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 1 \mathrm{H})$, $2.98(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,152.9,152.7,150.7,150.3,149.2,146.8,146.4,136.3$, 134.6, 128.4, 126.7, 126.1, 125.4, 125.2, 125.1, 124.7, 121.7, 110.2, 107.6, 77.2, 69.6, 60.3, 60.1, $59.9,59.5,59.0,56.5,53.4,45.8,43.7,28.2,22.2,9.3,9.2$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2936,2830,1698,1672$, $1639 \mathrm{~cm}^{-1}$; MS (FAB) m/z 661 (M ${ }^{+}, 100$), 575 (5), 278 (22), 234 (33), 204 (15), 91 (22); HRMS (FAB) calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9} \quad\left(\mathrm{M}^{+}\right) \quad 660.3047$, found 660.3027. (Z)-4-Benzyl-1-[(isopropyloxy)carbonyl]-6-[(2,4,5-trimethoxy-3-methylphenyl)methyl]-3-[(2,4, 5-trimethoxy-3-methylphenyl)methylene]-2,5-piperazinedione (18). To a solution of $\mathbf{1 6}$ (33 mg , $0.05 \mathrm{mmol})$ in $\mathrm{MeOH}(0.10 \mathrm{ml})$ was added CAN $(11 \mathrm{mg}, 0.06 \mathrm{mmol})$ and the mixture was stirred at room temperature for 1 h . After being quenched with an aqueous NaHCO_{3} solution (0.2 ml), the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The residue was resolved in $\mathrm{HCO}_{2} \mathrm{H}(0.20 \mathrm{ml})$ and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with water and extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{ml})$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt $=3 / 1 \sim 1 / 1)$ to give $\mathbf{1 8}(5.08 \mathrm{mg}, 15 \%)$ and $\mathbf{1 7}(4.95 \mathrm{mg}, 15 \%) .18:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~s}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.7,161.8,152.5,151.5,150.9,149.5,149.0,148.8,147.4,135.8,128.4,128.3,127.4,127.4$, $125.5,125.4,122.4,120.9,120.0,111.9,110.6,77.2,71.6,61.6,60.6,60.2,60.0,59.7,56.0,55.8$, 47.5, 32.4, 21.4, 21.4, 9.5, 9.2; IR $\left(\mathrm{CHCl}_{3}\right) 2959,2874,2836,1775,1722,1689,1615 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (FAB) m/z $677\left(\mathrm{MH}^{+}, 18\right), 591$ (12), 195 (100), 154 (30), 136 (25), 91 (52); HRMS (FAB) calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{10}\left(\mathrm{MH}^{+}\right) 677.3074$, found 677.3062 .

	S6．92T
	88．${ }^{\text {L } 2 \text { T }}$
	TT－8てT
	9T•8てT
	OS＇8てT
	EL•8てT
	6 L 8ZT
．．${ }^{\circ}$	90.6 I
	0T＊62T
	£S＊LET

事

$\downarrow て \cdot \varepsilon \varsigma$
$6 \varepsilon^{\prime} 19$
$8 I^{\prime} \quad 29$
$69^{\circ} 9 L$
$00^{\circ} \angle L$
$1 Z^{\circ} L L$
$2 \varepsilon^{\circ} L L$
$E Z^{\circ} 08$
$1 L^{\circ} 78$
$89^{\circ} 921$
$62^{\circ} 821$
62.821
69.821

69821
20.621
29'181
OS'LEI
$08.2 L 1$
$\left.\right|_{\frac{a}{0}} ^{\sum_{i}^{m}}=0$

$0^{\circ} \mathrm{E}$
\vdots
GS
$99^{\circ} 19$
08．92T
をて・8てT
OS．8てT
$19.82 T$
$\rightarrow L .8 Z T$
$6 L .8 Z I$
$8 V^{\circ} 6 Z \tau$
09.62τ
て・ロてT

$0 S \cdot 9 \varepsilon T$

> bS $\cdot \tau \varepsilon \tau$
> $28^{\circ} \tau \varepsilon \tau$
> $S 8^{\circ} \tau \varepsilon \tau$
> $0 S^{\circ} \varepsilon \varepsilon \tau$
> $69^{\circ} \varepsilon \varepsilon \tau$
\qquad

$9 \angle \varepsilon \angle 8 \cdot 821$

\qquad

96.92I
$2 L^{\circ} 871$
98° ISI
68.991
IZ'92I

98.0
28.0
98.0
88.0
88.0
$68^{\circ} 0$
I6.0
$26^{\circ} 0$
16.0
$26^{\circ} 0$

- - - - -

\qquad
Σ $-$

$86^{\circ} 2$
드국

妈 6
$68^{\circ} 99$

896
$8.2 Z$
$86^{\circ} 9 \varepsilon$
$89^{\circ} 9 \mathrm{~g}$
$98^{\circ} 99$
$60^{\circ} 09$
98.99
60.09
$09^{\circ} 09$ \qquad

$$
\begin{aligned}
& \mp L .9 L \\
& 00 . L L \\
& 9 Z^{\circ} L L \\
& 06.08
\end{aligned}
$$

F:¥2537c¥obika-c_CARBON-3.als
$\boxed{79.97 I}$
$\angle 8.87 I$
$66.09 I$

0ももLI

$67 \cdot 971$
99.97 I

I6．81
00.6 bI
$69^{\circ} 091$
とI．bGI
$99^{\circ} \mathrm{JGI}$
6L゙わ乌I
$66^{\circ} \mathrm{ZLI}$
LI． 8 LI

$00^{\prime 2} \%$

S9.62

28.17

$9 \angle 99$
10.99
15.09
02.09
$\angle 8.09$
$C 9.09$
6.19
19.69
$F L .9 L$
$00 . \angle L$
$02 \angle L$
$92 . L L$

S9.0IT
96.011
$29^{\circ} 111$
06.721
52.921
61.921
26.921

DG. $\varepsilon \varepsilon 1$
0.2 .961
08.8 FI
80.6 FI
81.61

81651
$L L .091$
$69^{\circ} 991$

し「 ๕ \&

99.6
89.6

66.015

88' II I
98.8II

6L'VZI
00.921
LI.9ZI
$90 \angle Z I$
$16.2 Z I$
81.82

GL'LE
96.6ε I
IG. 9 DL

75. 87 I
28 I

96.8 VI

เE.091
8I GSI
'ILI

[^0]: ${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Kyoto University
 ${ }^{\ddagger}$ Faculty of Pharmaceutical Sciences, Hiroshima International University

