Supporting Information For:

Concise Synthesis of the CDE Ring System of Tetrahydroisoquinoline Alkaloids Using

Carbophilic Lewis Acid-Catalyzed Hydroamidation and Oxidative Friedel-Crafts Cyclization

Shingo Obika,[†] Yoshizumi Yasui,[†] Reiko Yanada[‡] and Yoshiji Takemoto^{*,†}

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto

606-8501, Japan, and Faculty of Pharmaceutical Sciences, Hiroshima International University, Hirokoshingai, Kure, Hiroshima 737-0112, Japan takemoto@pharm.kyoto-u.ac.jp

Table of contents

Lewis acid-catalyzed hydroamidation of 1a-d and their spectral data:	S2.
Synthesis of 5 from 3 and their spectral data:	S3.
Synthesis of 11 from 6 and their spectral data:	S3.
Synthesis of 17 from 3 and 6 and their spectral data:	S5.
Copy of ¹ H NMR and ¹³ C NMR of compounds 1a-d , 2a-d , and 5-18	S8.

[†]Graduate School of Pharmaceutical Sciences, Kyoto University

[‡] Faculty of Pharmaceutical Sciences, Hiroshima International University

General procedure for Pt(II) and Au(I)-catalyzed 6-exo mode cyclization of 1a-d

To a solution of compound **1** (0.10 mmol) in CH₂Cl₂ (0.5 ml) were added AuCl(PPh₃) (0.010 mmol) and AgNTf₂ (0.010 mmol) and the mixture was stirred at room temperature for 6 h. After being quenched with aqueous NaHCO₃ solution (0.5 ml), the mixture was extracted with CHCl₃ (3×1 ml) and the combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = $3/1 \sim 1/1$) to give the desired product **2**.

2-(4-Nitro*N***-(3-phenylprop-2-ynyl)phenylsulfonamido)-3-phenylpropanamide (1a):** ¹H NMR (500 MHz, CDCl₃) δ 7.98 (2H , d, J = 8.9 Hz), 7.69 (2H, d, J = 8.9 Hz), 7.38–7.07 (10 H , m), 6.36 (1H , br), 5.56 (1H, br), 4.75–4.69 (2H, m), 4.39 (1H, d, J = 18.6 Hz), 3.42 (2H, dd, J = 14.6, 5.5 Hz), 2.98–2.94 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 149.7, 145.2, 137.0, 131.3, 129.4, 129.1, 128.6, 128.5, 128.4, 126.8, 123.8, 121.7, 85.9, 83.5, 62.6, 60.3, 34.8, 34.5, 20.9, 14.1; IR (CHCl₃) 3492, 3381, 3222, 3108, 1697, 1654, 1607, 1590, 1525, 1496, 1455 cm⁻¹; MS (FAB) m/z 464 (MH⁺, 100), 419 (14), 277 (47), 186 (12), 154 (35), 115 (97); HRMS (FAB) calcd for C₂₄H₂₂N₃O₅S (MH⁺) 464.1280, found 464.1269.

3-Phenyl-2-(3-phenylprop-2-ynylamino)propanamide (1b): ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.14 (5H, m), 7.14–6.93 (1H, br), 6.35–6.11 (1H, br), 3.68 (1H, dd, *J* = 9.8, 4.1 Hz), 3.61 (1H, d, *J* = 17.3 Hz), 3.46–3.39 (1H, m), 3.29 (1H, dd, *J* = 14.0, 4.0 Hz), 2.78 (1H, dd, *J* = 13.9, 9.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 137.0, 131.5, 129.1, 128.8, 128.5, 128.2, 128.1, 127.4, 126.9, 122.7, 86.4, 83.8, 62.3, 39.3, 37.9; IR (CHCl₃) 3388, 3183, 2928, 2857, 1659, 1594 cm⁻¹; MS (FAB) m/z 279 (MH⁺, 100), 234 (55), 154 (35), 136 (25), 115 (53), 95 (30), 83 (33); HRMS (FAB) calcd for C₁₈H₁₉N₂O (MH⁺) 279.1497, found 279.1497.

Methyl 1-Amino-1-oxo-3-phenylpropan-2-yl(3-phenylprop-2-ynyl)carbamate (1c): ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.23 (5H, m), 6.24 (1.0H, s), 5.78 (1H, s), 4.94–4.12 (2H, m), 3.94–3.90 (2H, m), 3.76 (3H, s), 3.37 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 181.5, 131.9, 129.3, 128.8, 128.5, 127.1, 84.5, 77.3, 63.1, 61.4, 54.3, 39.0, 36.6, 35.1, 34.5, 14.2; IR (CHCl₃) 3447, 3370, 2360, 1683 cm⁻¹; MS (FAB) m/z 337 (MH⁺, 100), 292 (40), 190 (26), 154 (40), 136 (28), 115 (76); HRMS (FAB) calcd for C₂₀H₂₀N₂O₃ (MH⁺) 337.1592, found 337.1562.

N-(4-Methoxybenzyl)-2-(4-nitro-*N*-(3-phenylprop-2-ynyl)phenylsulfonamido)-3-phenylpropan amide (1d): ¹H NMR (500 MHz, CDCl₃) δ 8.33–8.07 (1H, m), 7.64–7.55 (2H, m), 7.55–7.47 (1H, m), 7.33–7.11 (11.2H, m), 6.90 (2H, d, *J* = 7.0 Hz), 6.75 (2H, d, *J* = 7.0 Hz), 4.82 (2H, d, *J* = 18.9 Hz), 4.67 (1H, q, *J* = 8.8 Hz), 4.35 (1H, m), 3.76 (3H, s), 3.57–3.46 (1H, m), 3.23–3.13 (1H, m); ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 159.0, 136.5, 133.8, 131.9, 131.8, 131.5, 129.6, 129.4, 128.7, 128.6, 128.5, 128.2, 123.9, 114.0, 83.9, 61.6, 55.4, 42.3, 36.7, 34.6.; IR (CHCl₃) 3381, 1797, 1732, 1681, 1612, 1597, 1541, 1513, 1448 cm⁻¹; MS (FAB) m/z 584 (MH⁺, 27), 397 (12), 307 (27), 289 (15), 154 (100), 136 (65), 115 (27); HRMS (FAB) calcd for C₃₂H₂₉N₃O₆S (MH⁺) 584.1855, found 584.1868.

(*Z*)-3-Benzyl-6-benzylidene-4-(4-nitrophenylsulfonyl)piperazin-2-one (2a): ¹H NMR (500 MHz, CDCl₃) δ 8.20 (2H, d, *J* = 8.9 Hz), 7.88 (2H, d, *J* = 8.9 Hz), 7.39–7.19 (10H, m), 6.70 (1H, br), 5.39 (1H, t, *J* = 6.3 Hz), 5.02 (1H, dt, *J* = 6.7, 2.8 Hz), 4.36–4.32 (1H, m), 4.16–4.11 (1H, m), 3.31 (1H, dd, *J* = 14.4, 6.4 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 150.1,

144.5, 137.1, 136.6, 135.1, 129.8, 129.1, 128.9, 128.8, 128.6, 127.4, 126.0, 124.1, 107.8, 63.6, 43.0, 35.8; IR (CHCl₃) 2927, 2360, 1667, 1529 cm⁻¹; MS (FAB) m/z 464 (MH⁺, 18), 437 (15), 393 (15), 307 (32), 289 (17), 154 (100), 136 (63), 89 (20); HRMS (FAB) calcd for $C_{20}H_{20}N_2O_3$ (MH⁺) 337.1592, found 337.1594.

(*Z*)-Methyl 2-Benzyl-5-benzylidene-3-oxopiperazine-1-carboxylate (2c): ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.14 (5H, m), 6.85 (1H, br), 5.38 (1H, br), 4.93 (1H, br), 4.61–4.05 (2.0H, m), 4.05–3.54 (3H, s), 3.54–3.09 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 138.2, 129.2, 128.9, 126.2, 110.3, 62.2, 53.4, 43.4, 34.8, 29.9; IR (CHCl₃) 3061, 3028, 1660, 1603, 1494, 1445 cm⁻¹; MS (FAB) m/z 337 (MH⁺, 100), 292 (40), 190 (26), 154 (40), 136 (28), 115 (76); HRMS (FAB) calcd for C₂₀H₂₀N₂O₃ (MH⁺) 337.1592, found 337.1594.

(*E*)-3-Benzyl-6-benzylidene-1-(4-methoxybenzyl)-4-(4-nitrophenylsulfonyl)piperazin-2-one (2d): ¹H NMR (500 MHz, CDCl₃) δ 7.96–7.89 (1H, m), 7.74–7.63 (2H, m), 7.63–7.56 (1H, m), 7.50–7.41 (3H, m), 7.41–7.16 (3H, m), 6.82 (2H, d, *J* = 8.1 Hz), 6.64 (2H, d, *J* = 8.1 Hz), 6.09–5.95 (1H, m), 5.13–5.07 (1H, m), 5.07–5.00 (1H, m), 4.03 (1H, dd, *J* = 8.6, 3.4 Hz), 3.91–3.78 (1H, m), 3.71 (3H, s), 3.33–3.23 (1H, m), 3.23–3.03 (1H, m); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 159.2, 146.0, 136.2, 134.4, 133.6, 132.0, 131.3, 130.6, 130.2, 130.0, 129.3, 128.9, 128.7, 128.3, 127.4, 126.9, 123.9, 115.0, 113.5, 65.8, 55.0, 48.8, 44.0, 40.2 ; IR (CHCl₃) 3062, 3027, 2956, 2837, 2359, 1657, 1612, 1586, 1495, 1439 cm⁻¹; MS (FAB) m/z 584 (MH⁺, 15), 549 (10), 154 (78), 121 (100), 69 (83); HRMS (FAB) calcd for C₃₂H₃₀N₃O₆S (MH⁺) 584.1855, found 584.1833.

Synthesis of alkynylaldehyde 5

3-(2,4,5-Trimethoxy-3-methylphenyl)propiolaldehyde (5). To a solution of compound **3** (3840 mg, 10 mmol) in Et₃N (20 ml) were added PdCl₂(PPh₃)₂ (350 mg, 0.50 mmol), CuI (143 mg, 1.0 mmol), and propargyl alcohol (624 mg, 12 mmol) and the resulting mixture was stirred under Ar at room temperature for 12 h. After filtration, Et₃N was removed *in vacuo* and the residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/1) to give alcohol (2010 mg, 85 %). To a solution of alcohol (920 mg, 3.90 mmol) in CH₂Cl₂ (15 ml) were added RuO₄N(*n*-Pr) (68 mg, 0.19 mmol), *N*-methylmorpholine *N*-oxide (684 mg, 5.85 mmol), and MS4A and the resulting mixture was stirred for 24 h under Ar. After filtration through Celite pad, the mixture was diluted with water (10 ml) and extracted with CHCl₃ (3×15 ml). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 5/1) to give compound **5** (834 mg, 91 %). ¹H NMR (500 MHz, CDCl₃) δ 9.44 (s, 1H), 6.91 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.83 (s, 3H), 2.18 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 156.4, 151.3, 148.7, 126.0, 114.2, 107.1, 92.5, 91.8, 61.2, 60.1, 55.7, 9.1; IR (CHCl₃) 3586, 2938, 2851, 2183, 1715 cm⁻¹; MS (FAB) m/z 234 (M⁺, 100), 219 (10), 206 (8), 176 (7), 154 (10); HRMS (FAB) calcd for C₁₃H₁₄O₄ (M⁺) 234.0892, found 234.0913.

Synthesis of amino acid derivative 11

1-(Bromomethyl)-2,4,5-trimethoxy-3-methylbenzene (7). To a solution of **6** (2880 mg, 10.0 mmol) in CH_2Cl_2 (40 ml) were added PPh₃ (3140 mg, 12.0 mmol) and CBr_4 (3980 mg, 12.0 mmol) and the resulting mixture was stirred at room temperature for 8 h. The mixture was diluted with

water (15 ml) and extracted with CHCl₃ (3×20 ml). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 3/1) to give compound 7 (2580 mg, 94 %). ¹H NMR (500 MHz, CDCl₃) δ 6.73 (s, 1H), 4.56 (s, 2H), 3.84 (d, *J* = 1.1 Hz, 3H), 3.81 (d, *J* = 1.1 Hz, 3H), 3.80 (s, 3H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 149.4, 148.6, 125.8, 125.8, 111.2, 61.0, 60.2, 55.9, 29.0, 9.5; IR (CHCl₃) 3565, 3280, 1282 cm⁻¹; MS (FAB) m/z 276 (10), 274 (M⁺, 10), 226 (25), 195 (100), 149 (22), 136 (15); HRMS (FAB) calcd for C₁₁H₁₅BrO₃ (M⁺) 274.0205, found 274.0225.

tert-Butyl 2-Amino-3-(2,4,5-trimethoxy-3-methylphenyl)propanoate (9). To a stirred solution of 7 (3500 mg, 10 mmol), iminoester 8 (2360 mg, 8.00 mmol) and Bu₄NHSO₄ (2.0 mmol) in CH₂Cl₂ (20 ml) was slowly added 50 % KOH ag at 0 °C. After being stirred at room temperature for 4.5 h, the mixture was extracted with CHCl₃ (3×20 ml). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 3/1) to give ester (3560 mg, 91 %). To a stirred solution of ester (2000 mg, 6.2 mmol) in THF (50 ml) was slowly added 15 % citric acid (17 ml) at 0 °C and the reaction mixture was stirred at room temperature for 8 h. After being basified with K₂CO₃, the mixture was extracted with AcOEt (3×30 ml). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/1) to give compound 9 (1830 mg, 91 %). ¹H NMR (500 MHz, CDCl₃) δ 6.59 (1H, s), 3.84 (3H, s), 3.78 (3H, s), 3.69 (3H, s), 3.68–3.59 (1H, m), 3.00 (1H, dd, *J* = 13.5, 8.3 Hz), 2.77 (1H, dd, J = 13.5, 8.3 Hz), 2.20 (3H, s), 1.40 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 151.0, 148.9, 146.6, 125.5, 125.4, 111.4, 80.9, 60.5, 60.1, 55.9, 55.6, 36.0, 27.9, 9.58; IR (CHCl₃) 3376, 3063, 3030, 2978, 2935, 2826, 1867, 1732 cm⁻¹; MS (FAB) m/z 326 (MH⁺, 55), 270 (97), 224 (33), 195 (100), 181 (17), 57 (13); HRMS (FAB) calcd for C₁₇H₂₈NO₅ (MH⁺) 326.1967, found 326.1974.

tert-Butyl 2-(Benzyloxycarbonylamino)-3-(2,4,5-trimethoxy-3-methylphenyl)propanoate (10). To a stirred solution of 9 (2000 mg, 6.2 mmol) in CH₂Cl₂ (50 ml) were added Et₃N (1000 μ l, 7.4 mmol) and CbzCl (1050 μ l, 7.4 mmol) at 0 °C and the reaction mixture was stirred at room temperature for 8 h. After being diluted with water and extracted with AcOEt (3×30 ml), the combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/1) to give 10 (2700 mg, 95 %). ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.18 (m, 5H), 6.59 (s, 1H), 5.80 (d, *J* = 7.4 Hz, 1H), 5.11–5.02 (m, 2H), 4.50–4.41 (m, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.66 (s, 3H), 3.05–2.93 (m, 2H), 2.19 (s, 3H), 1.39 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 155.6, 150.7, 148.8, 146.8, 136.3, 128.1, 127.7, 125.0, 124.1, 111.3, 81.3, 77.3, 66.3, 60.3, 59.8, 55.6, 55.3, 32.6, 27.6, 9.4; IR (CHCl₃) 3350, 3064, 2977, 2937, 2838, 2604, 1752, 1593 cm⁻¹; MS (FAB) m/z 459 (M⁺, 57), 404 (15), 360 (48), 195 (100), 91 (52); HRMS (FAB) calcd for C₂₅H₃₄NO₇ (MH⁺) 460.2335, found 460.2363.

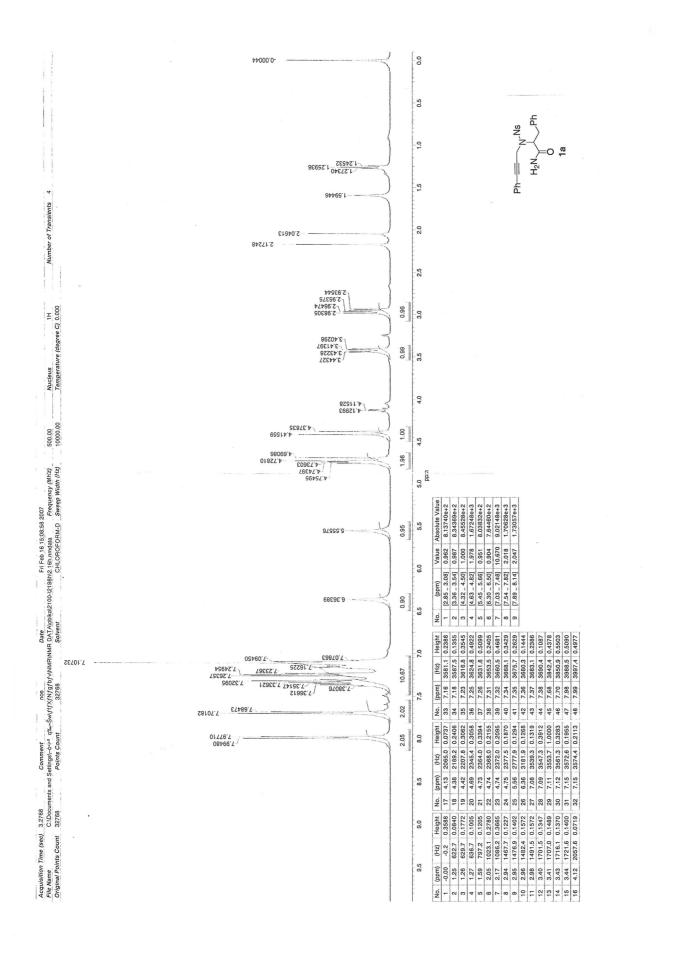
tert-Butyl 1-Amino-1-oxo-3-(2,4,5-trimethoxy-3-methylphenyl)propan-2-ylcarbamate (11). To a stirred solution of 10 (3400 mg, 7.4 mmol) in CH_2Cl_2 (10 ml) was slowly added TFA (5 ml) at 0 °C and the reaction mixture was stirred at room temperature for 12 h. After the solvents were evaporated, the crude product was resolved in CH_2Cl_2 (30 ml). To the mixture were added ethyl chloroformate (700 µg, 7.4 mmol) and Et₃N (1000 µl, 7.4 mmol) at 0 °C and the mixture was stirred for 30 min at the same temperature. After addition of 50 ml of aqueous NH₃, the resulting mixture was stirred at room temperature for 12 h, and extracted with AcOEt (3×15 ml). The extracts were washed with water and brine, and then concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/2) to give compound **11** (2230 mg, 75 %). ¹H-NMR (CDCl₃) δ 7.34–7.25 (m, 5H), 6.61 (s, 1H), 6.12 (br, 2H), 5.66 (br, 1H), 5.06 (s, 2H), 4.32 (br, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.68 (s, 3H), 3.04 (br, 2H), 2.20 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 156.4, 150.5, 149.2, 146.8, 136.2, 128.3, 127.9, 127.6, 125.1, 124.4, 111.3, 66.5, 60.4, 59.9, 56.2, 55.6, 32.4, 9.4; IR (CHCl₃) 3390, 3346, 3195, 3086, 3063, 3024, 2983, 2932, 2781, 1683, 1660 cm⁻¹; MS (FAB) m/z 402 (M⁺, 13), 359 (15), 314 (22), 251 (11), 195 (100), 91 (72); HRMS (FAB) calcd for C₂₁H₂₆N₂O₆ (M⁺) 402.1791, found 402.1833.

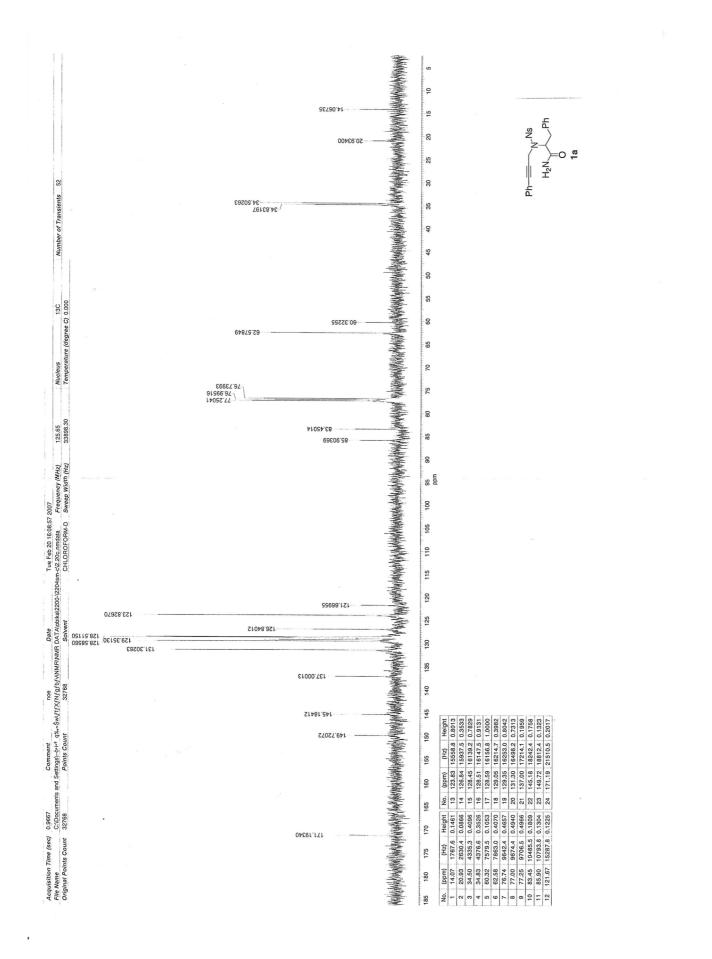
Synthesis of tricyclic fragment 17

3-(2,4,5-Trimethoxy-3-methylphenyl)-2-(3-(2,4,5-trimethoxy-3-methylphenyl)prop-2-ynylami no)propanamide (12). To a stirred solution of 11 (100 mg, 0.25 mmol) in MeOH (2 ml) was added $Pd(OH)_2$ (20 mg) and the reaction mixture was stirred at room temperature for 12 h under H₂ balloon. After being filtrated through a pad of Celite, the filtrate was concentrated in vacuo. The obtained residue was resolved in MeOH (2 ml) and then 5 (63 mg, 0.25 mmol) was added to the mixture. After the mixture was stirred at room temperature for 30 min, NaBH₄ (10 mg, 0.27 mmol) was slowly added at 0 °C over 1 h and the resulting mixture was stirred at room temperature for 9 h. After the solvents were removed under reduced pressure, water was added to the residue and the crude mixture was extracted with AcOEt (3×3 ml), The extracts were dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 1/2) to give 12 (86 mg, 71 %). ¹H NMR (CDCl₃) δ 6.69 (s, 1H), 6.68 (s, 1H), 3.81-3.65 (m, 20H), 3.53 (d, J = 17.2 Hz, 1H), 3.11 (d, J = 9.7 Hz, 1H), 2.96 (d, J = 9.7 Hz, 1H), 2.18 (s, 3H), 2.13 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.8, 154.2, 150.9, 149.4, 148.8, 148.5, 146.8, 125.7, 125.3, 125.0, 113.4, 111.3, 111.0, 89.6, 80.0, 62.7, 60.7, 60.3, 60.1, 55.9, 55.8, 38.3. 33.6, 9.7, 9.3; IR (CHCl₃) 3387, 3334, 3184, 3058, 2909, 2859, 1659, 1594 cm⁻¹; MS (FAB) m/z 486 (M⁺, 8), 425 (22), 368 (25), 312 (33), 219 (43), 195 (100), 154 (24), 136 (20); HRMS (FAB) calcd for $C_{26}H_{34}N_2O_7$ (M⁺) 486.2366, found 486.2327.

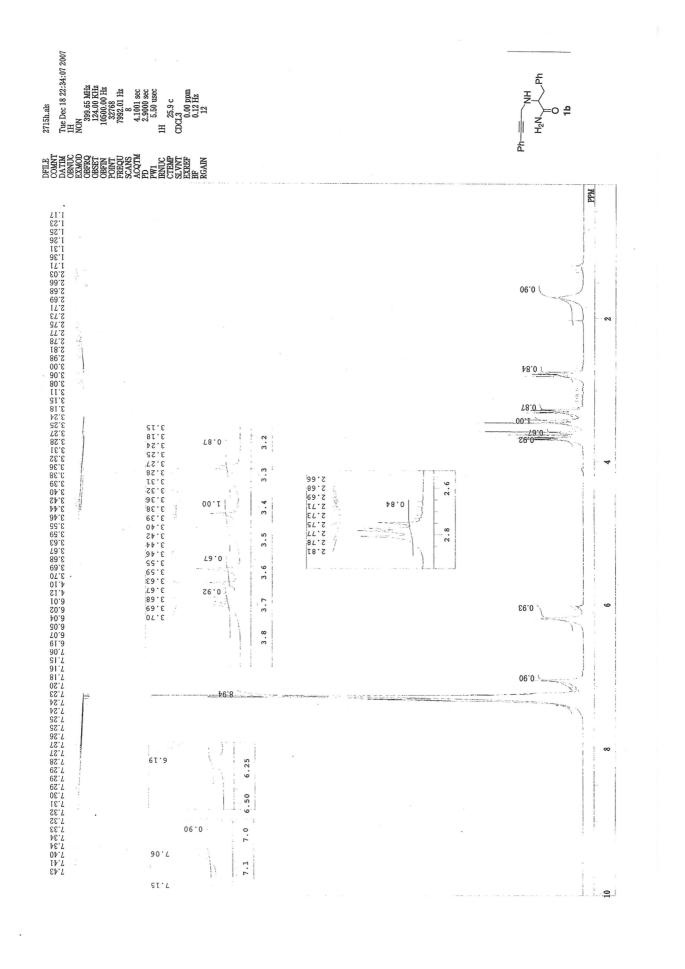
Isopropyl

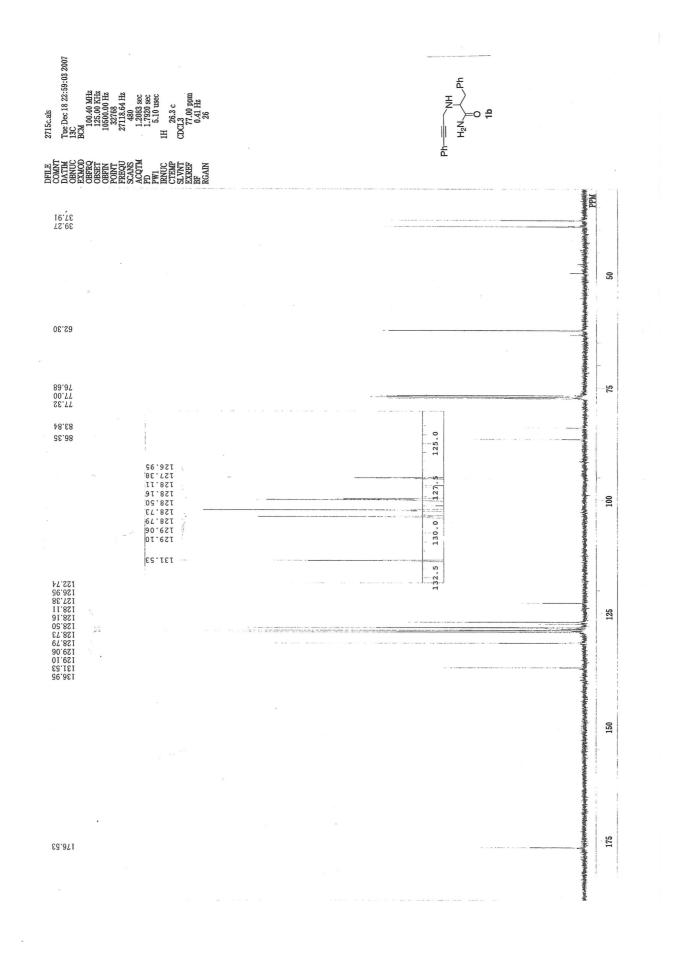
1-Amino-1-oxo-3-(2,4,5-trimethoxy-3-methylphenyl)propan-2-yl(3-(2,4,5-trimethoxy-3-methyl phenyl)prop-2-ynyl)carbamate (13). To a solution of **12** (60 mg, 0.12 mmol) in CH₂Cl₂ (1 ml) were added diisopropylethylamine (132 μ l, 0.76 mmol) and isopropyl chloroformate (43 μ l, 0.35 mmol) and the mixture was stirred at same temperature for 6 h. After an aqueous NaHCO₃ solution (1 ml) was added, the mixture was extracted with CHCl₃ (3×1 ml) and the combined organic layers were dried over Na₂SO₄ and then concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = 3/1 ~ 1/1) to give **13** (61 mg, 88 %). ¹H NMR (500 MHz, CDCl₃) δ : 6.72 (s, 1H), 6.51 (s, 1H), 5.39 (s, 1H), 4.98 (s, 1H), 4.60 (m, 1H), 4.35 (m, 1H), 3.82–3.63 (m, 18H), 3.37 (m, 2H), 2.20 (s, 3H), 2.16 (s, 3H), 1.29 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 173.0, 154.8, 154.7, 154.3, 154.1, 150.6, 149.0, 148.9, 148.7, 146.6, 146.5, 125.8,

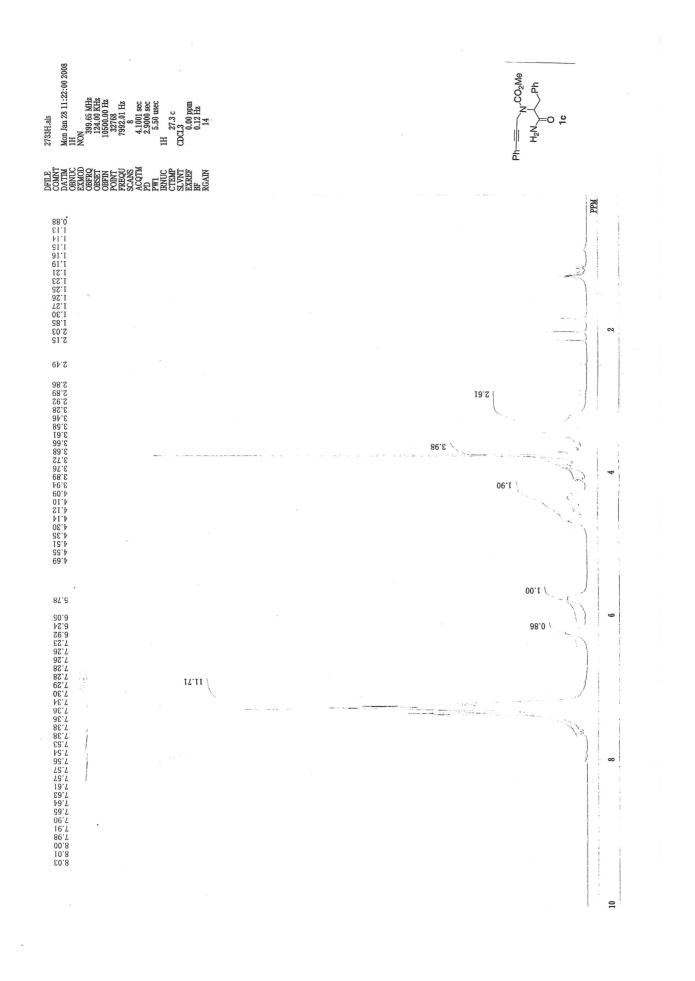

125.6, 125.2, 113.0, 111.5, 111.2, 110.6, 110.5, 88.0, 87.7, 80.9, 80.3, 77.2, 69.8, 69.5, 61.0, 60.6, 60.5, 60.1, 60.0, 55.8, 55.7, 38.6, 37.2, 30.0, 29.5, 29.1, 21.9, 21.6, 9.4, 9.2; IR (CHCl₃) 2961, 2875, 2839, 1784, 1716 cm⁻¹; MS (FAB) m/z 573 (MH⁺, 5), 529 (5), 485 (8), 346 (12), 321 (8), 271 (22), 209 (78), 195 (100), 91 (33); HRMS (FAB) calcd for $C_{30}H_{41}N_2O_9$ (MH⁺) 573.2812, found 573.2789.

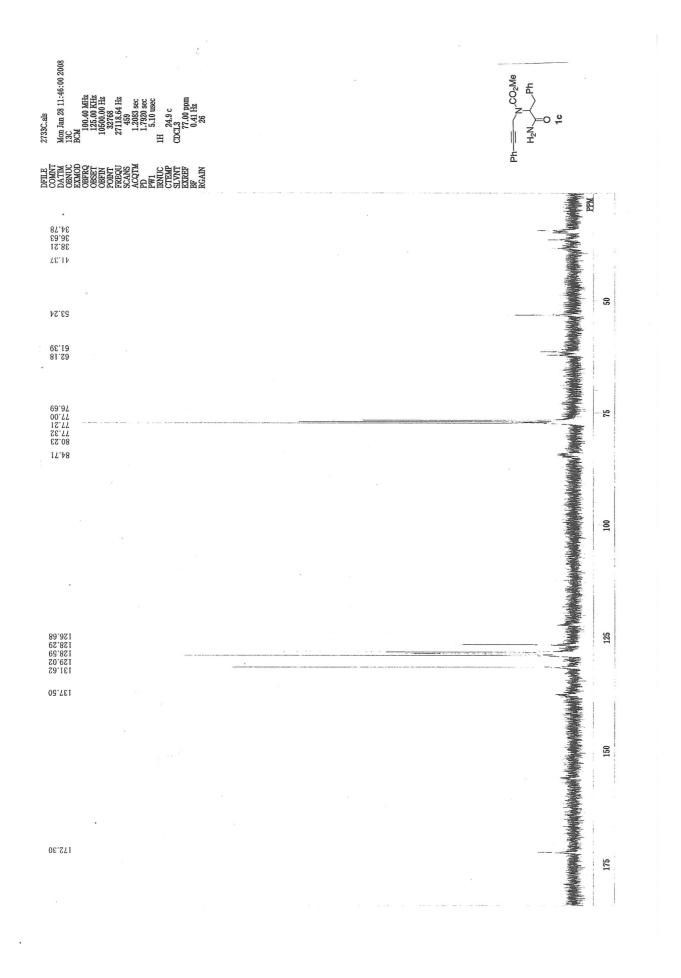

(Z)-Isopropyl

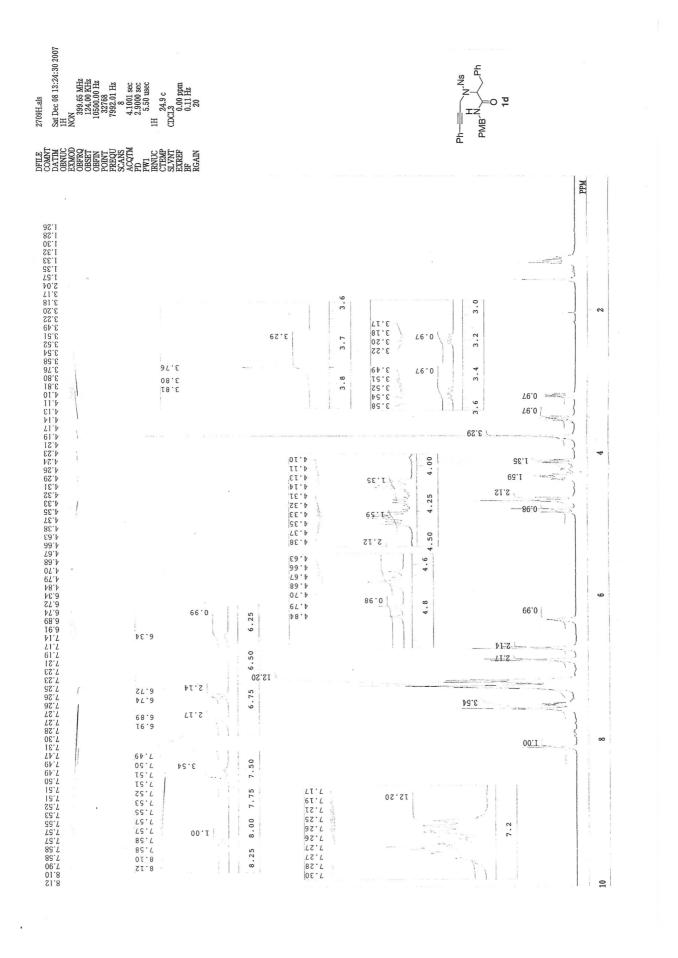
3-Oxo-2-(2,4,5-trimethoxy-3-methylbenzyl)-5-(2,4,5-trimethoxy-3-methylbenzylidene)piperazi ne-1-carboxylate (14). To a solution of **13** (60 mg, 0.10 mmol) in CH₂Cl₂ (0.5 ml) were added AuCl(PPh₃) (5.0 mg, 0.010 mmol) and AgNTf₂ (4.8 mg, 0.010 mmol) and the mixture was stirred at room temperature for 6 h. After being quenched with an aqueous NaHCO₃ solution (0.5 ml), the mixture was extracted with CHCl₃ (3×1 ml) and the combined organic layers were dried over Na₂SO₄ and then concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = $3/1 \sim 1/1$) to give **14** (48 mg, 85 %). ¹H NMR (500 MHz, CDCl₃) δ 6.67 (s, 1H), 6.61 (s, 1H), 5.27 (s, 1H), 4.96–4.86 (m, 2H), 4.18–4.00 (m, 2H), 3.98–3.84 (m, 4H), 3.81 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 3.68 (s, 3H), 3.66 (s, 3H), 3.33 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.34-1.26 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 155.7, 150.8, 149.1, 149.0, 148.3, 146.7, 133.5, 126.9, 126.2, 125.2, 124.9, 111.5, 110.9, 110.5, 77.2, 69.6, 61.3, 60.7, 60.4, 60.2, 60.1, 56.0, 55.8, 44.8, 29.5, 22.0, 9.5, 9.3; IR (CHCl₃) 3235, 2983, 2840, 1772, 1700, 1635 cm⁻¹; MS (FAB) m/z 573 (MH⁺, 8), 529 (5), 485 (10), 346 (10), 321 (10), 271 (15), 219 (55), 195 (100), 181 (17), 165 (15), 91 (25); HRMS (FAB) calcd for C₃₀H₄₁N₂O₉ (MH⁺) 573.2812, found 573.2766. (**Z)-Isopropyl**

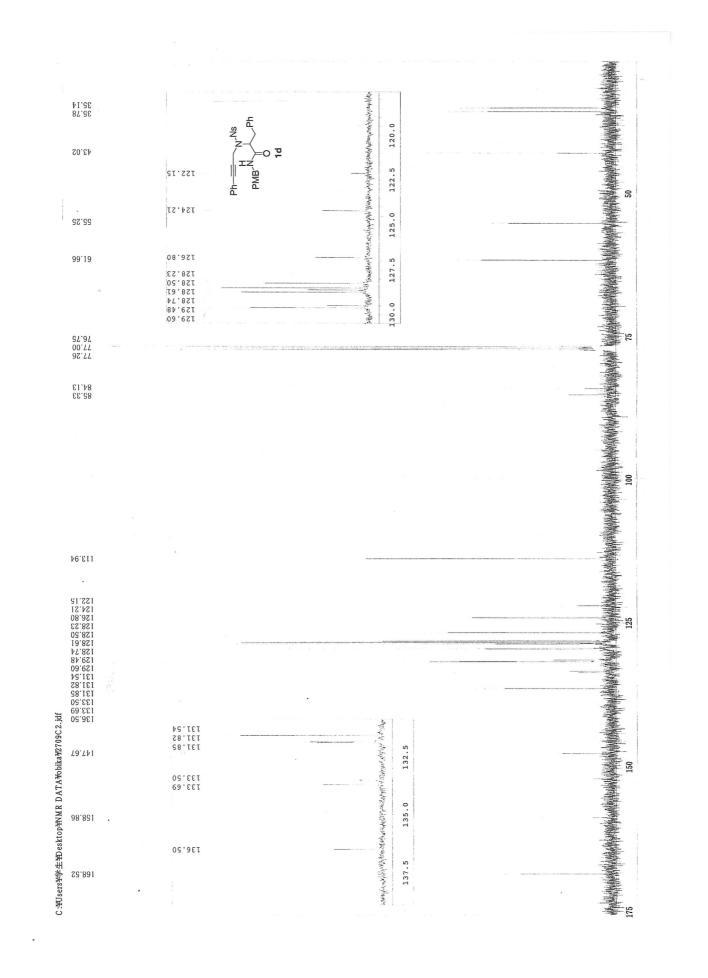

4-Benzyl-3-oxo-2-(2,4,5-trimethoxy-3-methylbenzyl)-5-(2,4,5-trimethoxy-3-methylbenzylidene)piperazine-1-carboxylate (16). To a solution of 14 (60 mg, 0.10 mmol) in DMF (0.5 ml) were added BnBr (5.0 mg, 0.010 mmol) and NaH (4.8 mg, 0.010 mmol) at 0 °C and the mixture was stirred at the same temperature for 1 h. After being quenched with an aqueous NaHCO₃ solution (0.5 ml), the mixture was extracted with CHCl₃ (3×1 ml) and the combined organic layers were dried over Na₂SO₄ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = $3/1 \sim 1/1$) to give 16 (63 mg, 95 %). ¹H NMR (500 MHz, CDCl₃) δ 7.22–7.13 (m, 3H), 7.00 (d, J = 6.9 Hz, 2H), 6.71 (s, 1H), 6.19 (s, 1H), 5.73 (t, J =5.2 Hz, 1H), 5.06 (t, J = 6.9 Hz, 1H), 4.86–4.78 (m, 1H), 4.65–4.47 (m, 3H), 3.95–3.82 (m, 4H), 3.80 (s, 3H), 3.63 (s, 3H), 3.59 (s, 3H), 3.44 (s, 3H), 3.39 (s, 3H), 3.36–3.25 (m, 1H), 3.35–3.23 (m, 1H), 2.20 (s, 3H), 2.18 (s, 3H), 1.22 (d, J = 6.3 Hz, 3H), 1.08 (br, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 155.2, 150.7, 148.9, 148.8, 148.4, 146.5, 140.0, 137.7, 128.2, 127.9, 127.1, 126.2, 126.0, 125.0, 124.8, 118.4, 111.4, 111.0, 77.3, 69.3, 61.9, 60.4, 60.3, 60.1, 60.1, 55.9, 55.7, 48.9, 44.6, 30.9, 22.1, 21.8, 9.7, 9.6; IR (CHCl₃) 2979, 1698, 1650 cm⁻¹; MS (FAB) m/z 663 (MH⁺, 45), 571 (27), 467 (27), 381 (16), 326 (100), 195 (50), 154 (47), 136 (35), 91 (65); HRMS (FAB) calcd for C₃₇H₄₇N₂O₉ (MH^{+}) 663.3238, found 663.3285. (E)-3-Benzyl-2-[(2,4,5-trimethoxy-3-methylphenyl)-methylene]-7,9,10-trimethoxy-8-methyl-4oxo-1,2,3,4,5,6-hexahydro-1,5-imino-3-benzazocine-11-carboxylic acid isopropyl ester (17). To a solution of 16 (33 mg, 0.05 mmol) in MeCN (0.10 ml) was added NBS (11 mg, 0.06 mmol) and the mixture was stirred at 60 °C for 15 min. After being quenched with an aqueous NaHCO₃

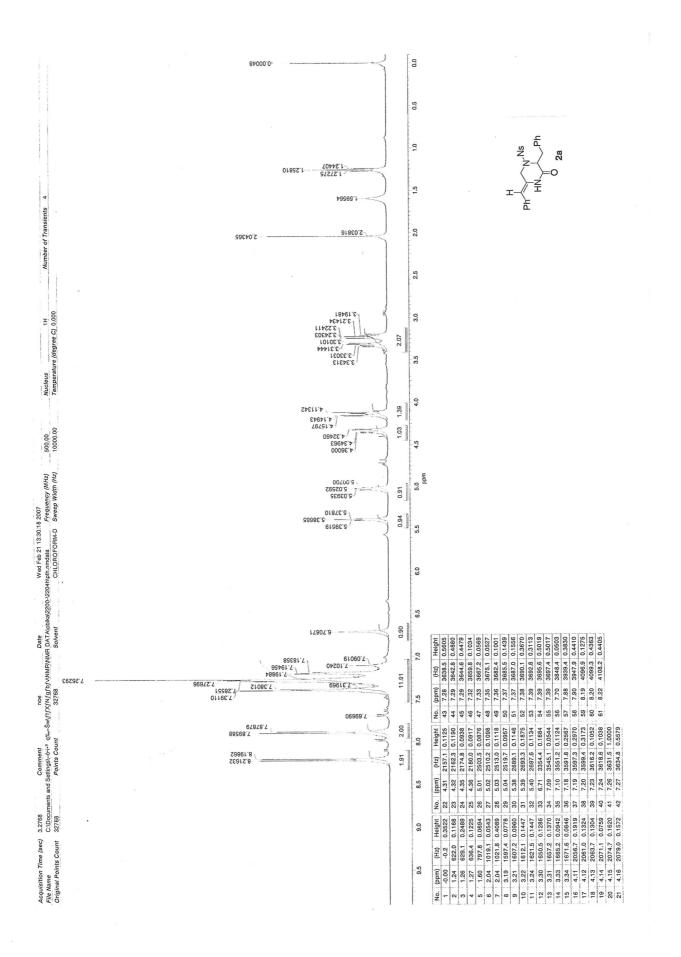

solution (0.5 ml), the mixture was extracted with $CHCl_3$ (3×1 ml) and the combined organic layers were dried over Na₂SO₄ and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = $3/1 \sim 1/1$) to give compound 17 (23 mg, 70 %). ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 7.11–6.99 (m, 3H), 6.79 (s, 1H), 6.72–6.62 (m, 2H), 6.08 (s, 1H), 5.71 (d, J = 14.9 Hz, 1H), 5.33–5.19 (m, 1H), 5.12–4.93 (m, 1H), 4.55 (d, J = 15.5 Hz, 1H), 3.99 (s, 3H), 3.79 (s, 3H), 3.69 (s, 3H), 3.45 (s, 3H), 3.39 (d, J = 17.2 Hz, 1H), 3.14-3.03 (m, 1H), 2.98 (s, 3H), 2.88 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H), 1.33 (d, J = 5.7 Hz, 3H), 1.28 (d, J = 5.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 152.9, 152.7, 150.7, 150.3, 149.2, 146.8, 146.4, 136.3, 134.6, 128.4, 126.7, 126.1, 125.4, 125.2, 125.1, 124.7, 121.7, 110.2, 107.6, 77.2, 69.6, 60.3, 60.1, 59.9, 59.5, 59.0, 56.5, 53.4, 45.8, 43.7, 28.2, 22.2, 9.3, 9.2; IR (CHCl₃) 2936, 2830, 1698, 1672, 1639 cm⁻¹; MS (FAB) m/z 661 (M⁺, 100), 575 (5), 278 (22), 234 (33), 204 (15), 91 (22); HRMS (FAB) calcd for $C_{37}H_{45}N_2O_9$ (M^+) 660.3047, found 660.3027. (Z)-4-Benzyl-1-[(isopropyloxy)carbonyl]-6-[(2,4,5-trimethoxy-3-methylphenyl)methyl]-3-[(2,4, 5-trimethoxy-3-methylphenyl)methylene]-2,5-piperazinedione (18). To a solution of 16 (33 mg, 0.05 mmol) in MeOH (0.10 ml) was added CAN (11 mg, 0.06 mmol) and the mixture was stirred at room temperature for 1 h. After being quenched with an aqueous NaHCO₃ solution (0.2 ml), the mixture was extracted with CHCl₃ (3×1 ml) and dried over Na₂SO₄ and then concentrated *in vacuo*. The residue was resolved in HCO₂H (0.20 ml) and the mixture was stirred at 60 °C for 1h. The reaction mixture was diluted with water and extracted with CHCl₃ (3×1 ml). The extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexane/AcOEt = $3/1 \sim 1/1$) to give **18** (5.08 mg, 15%) and **17** (4.95 mg, 15%). **18**: ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 2H), 6.95–6.87 (m, 2H), 6.82 (s, 2H), 6.52 (s, 1H), 5.31 (d, J =14.9 Hz, 1H), 5.22 (t, J = 7.1 Hz, 1H), 5.11–4.94 (m, 1H), 4.19 (d, J = 14.9 Hz, 1H), 3.95 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H), 3.65 (s, 3H), 3.64 (s, 3H), 3.48 (s, 3H), 3.34–3.21 (m, 2H), 2.19 (s, 3H), 2.03 (s, 3H), 1.32 (d, J = 6.1 Hz, 3H), 1.26 (d, J = 6.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 161.8, 152.5, 151.5, 150.9, 149.5, 149.0, 148.8, 147.4, 135.8, 128.4, 128.3, 127.4, 127.4, 125.5, 125.4, 122.4, 120.9, 120.0, 111.9, 110.6, 77.2, 71.6, 61.6, 60.6, 60.2, 60.0, 59.7, 56.0, 55.8, 47.5, 32.4, 21.4, 21.4, 9.5, 9.2; IR (CHCl₃) 2959, 2874, 2836, 1775, 1722, 1689, 1615 cm⁻¹: MS (FAB) m/z 677 (MH⁺, 18), 591 (12), 195 (100), 154 (30), 136 (25), 91 (52); HRMS (FAB) calcd for $C_{37}H_{45}N_2O_{10}$ (MH⁺) 677.3074, found 677.3062.

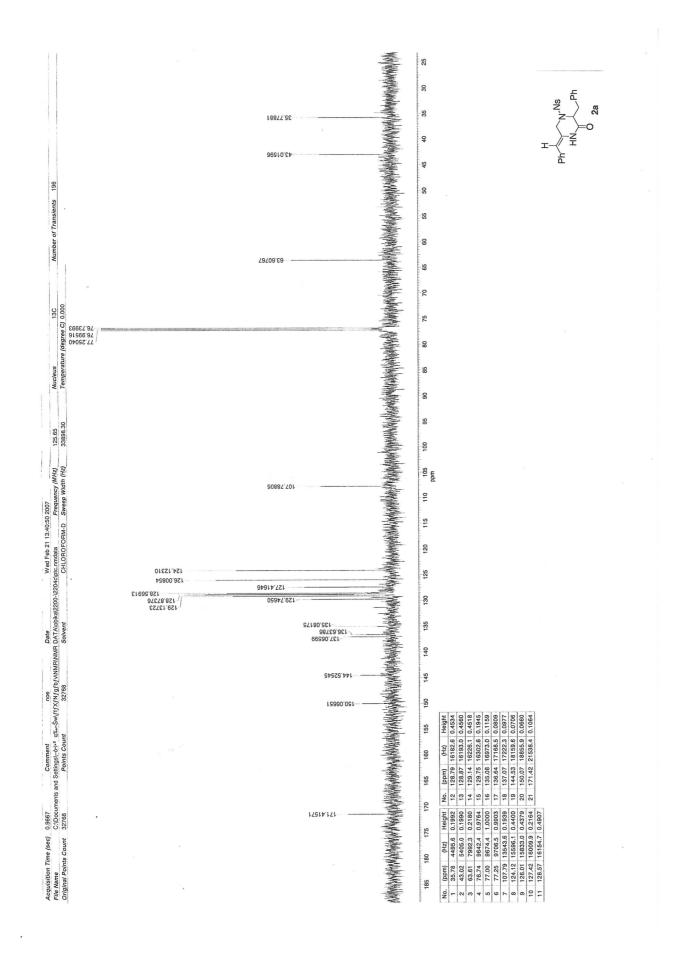


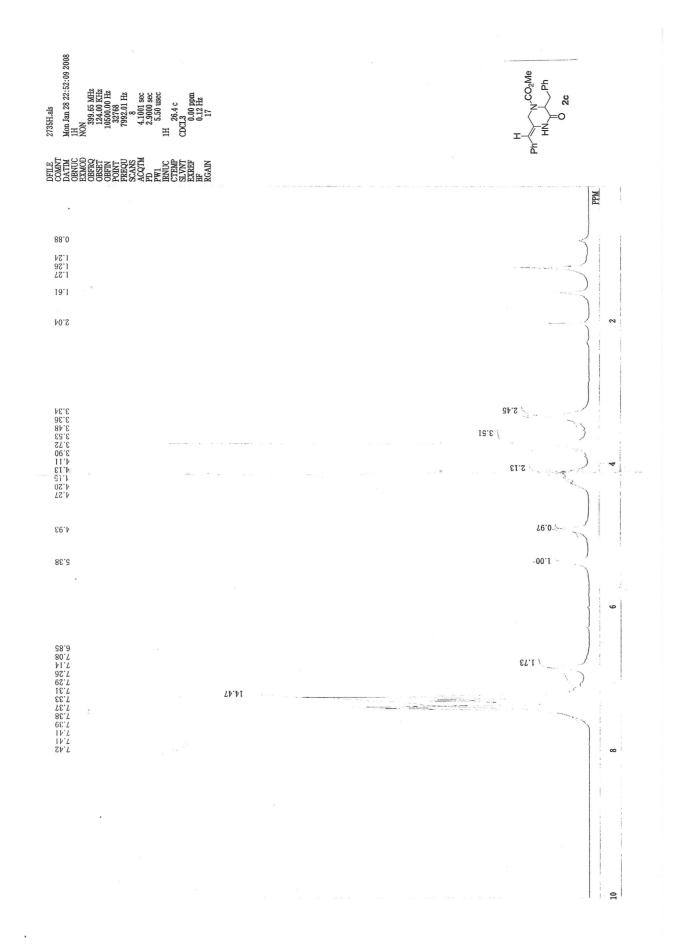


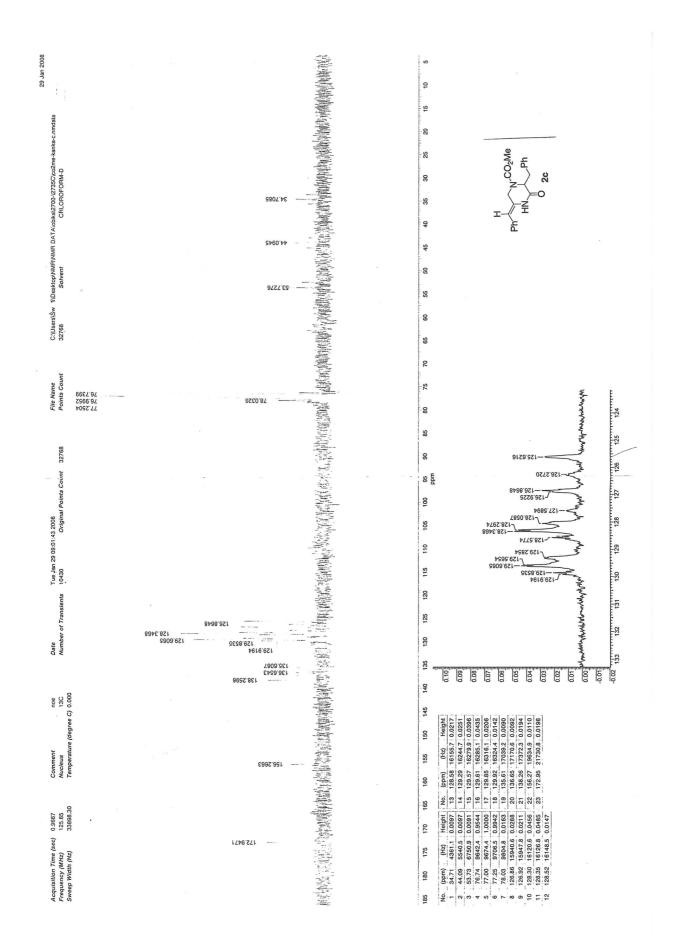

S-9

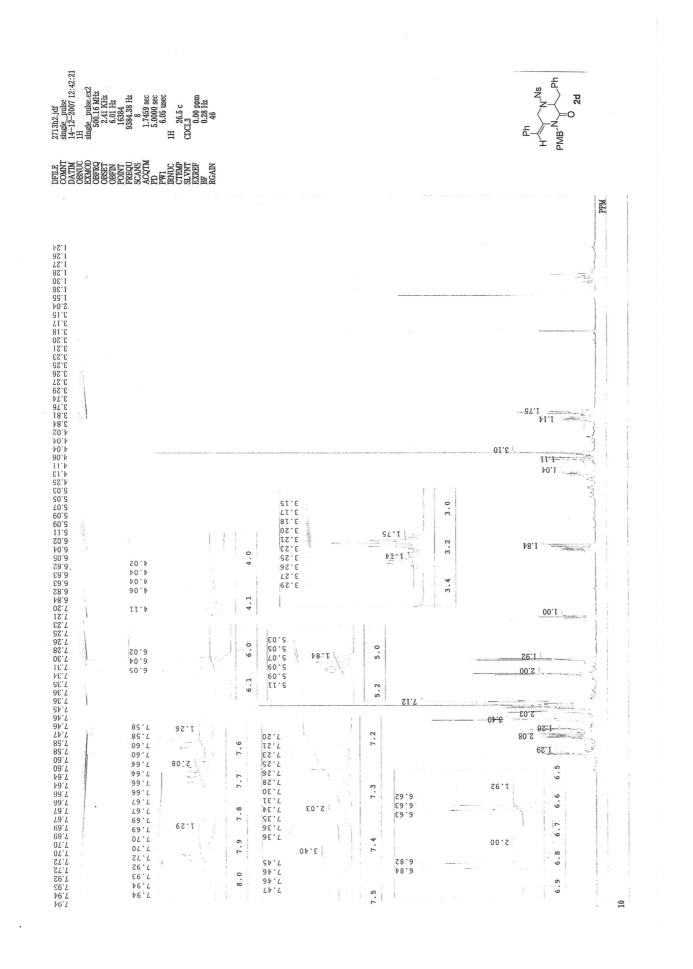


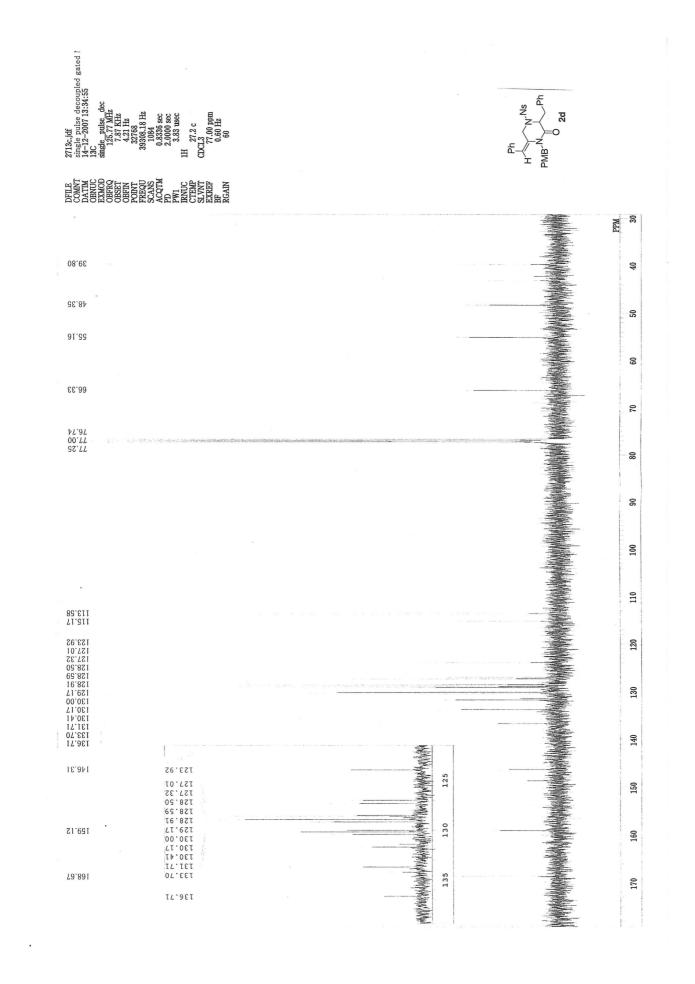


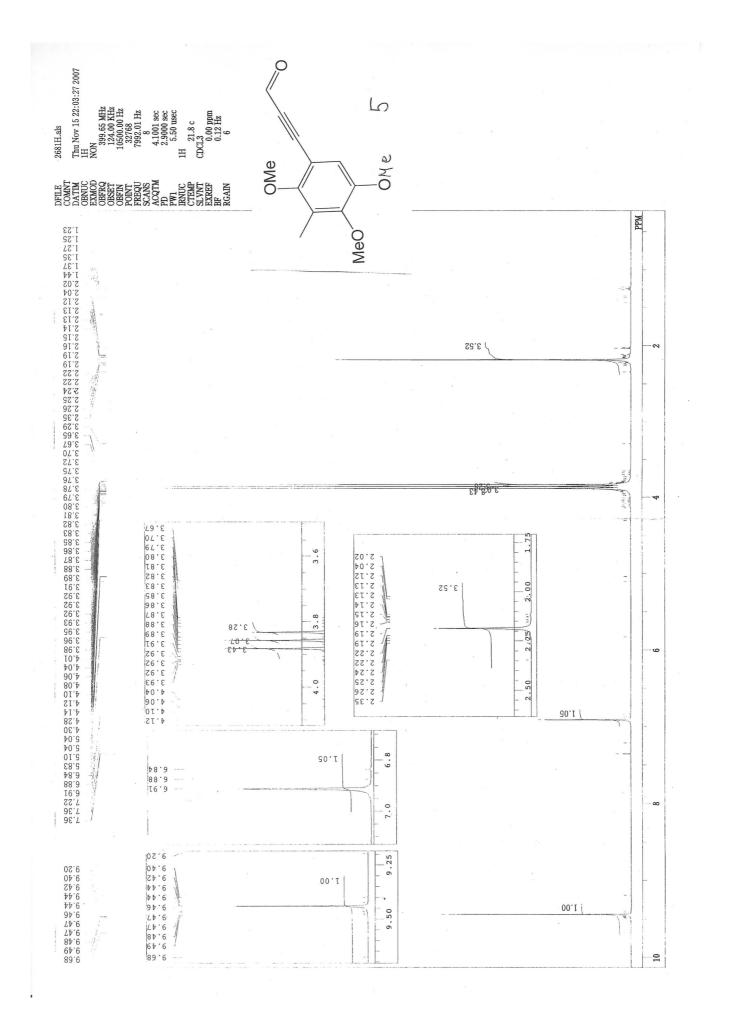


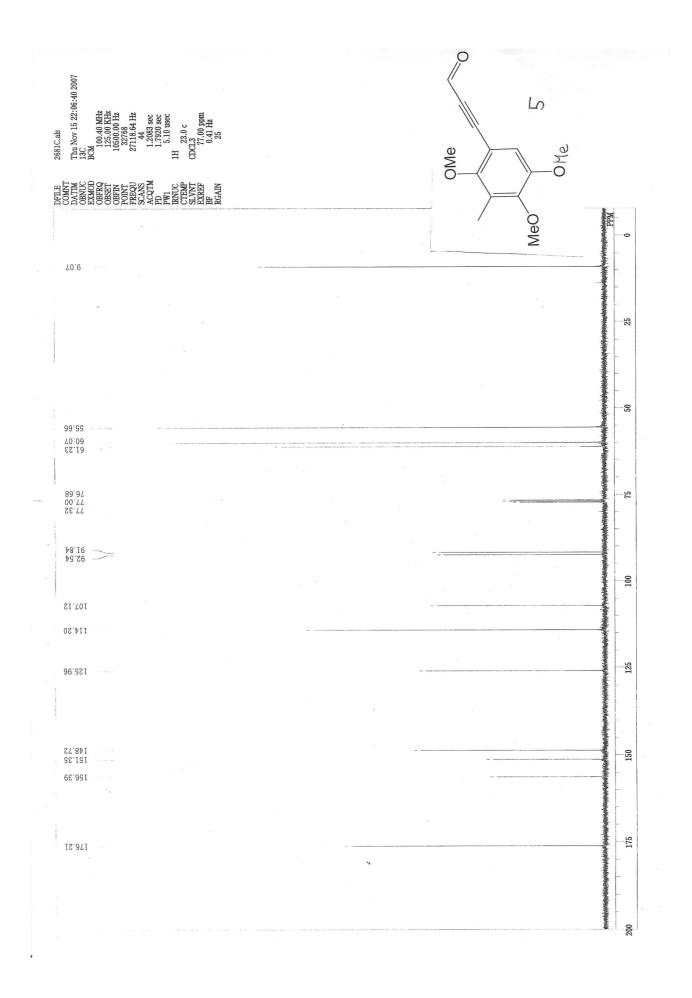


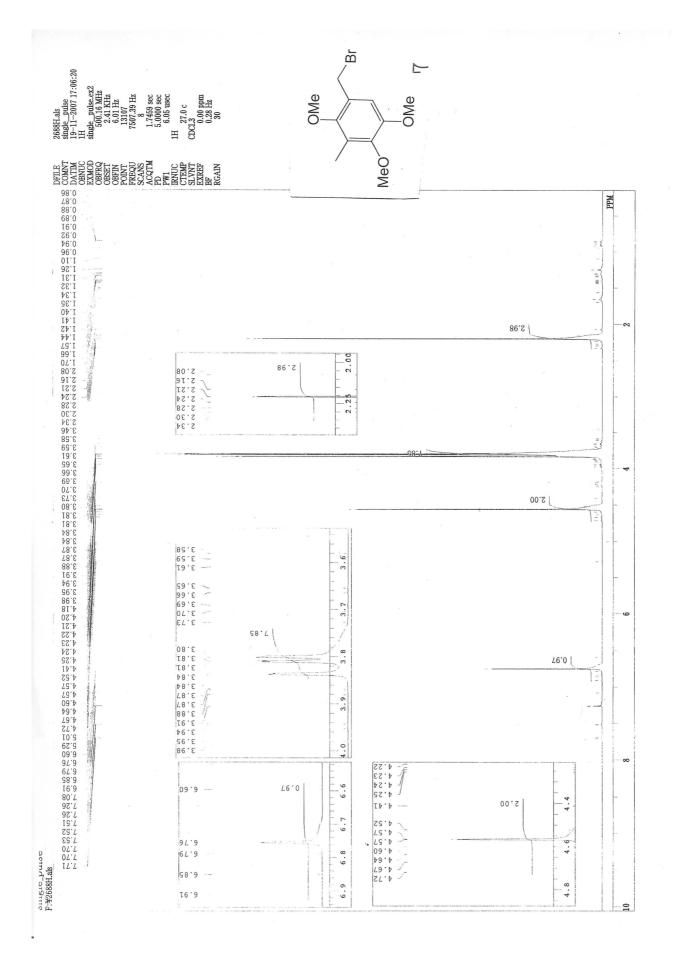




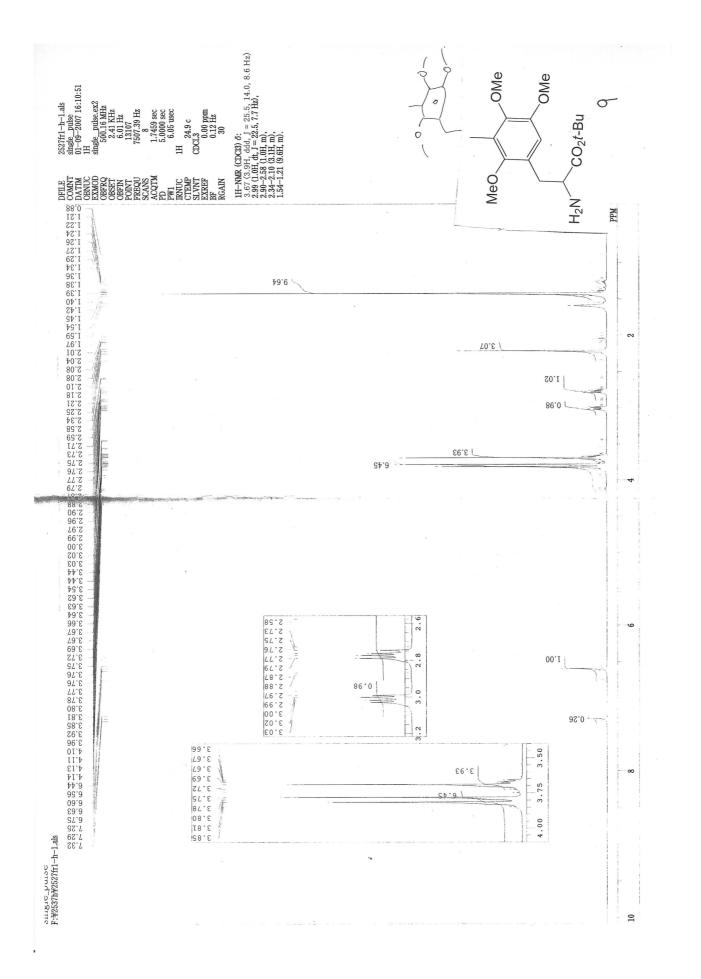


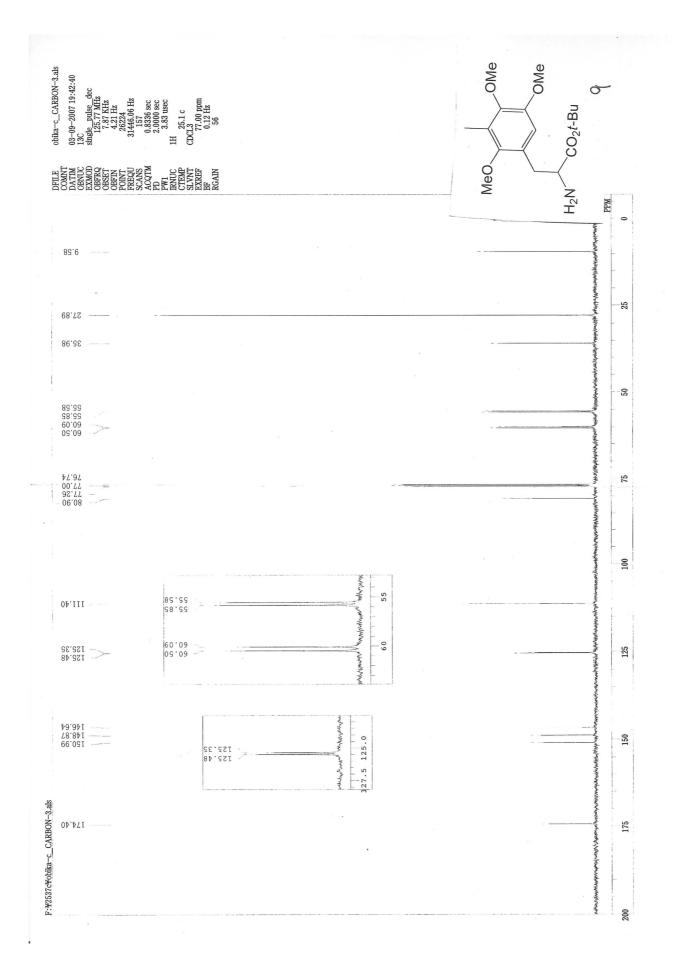


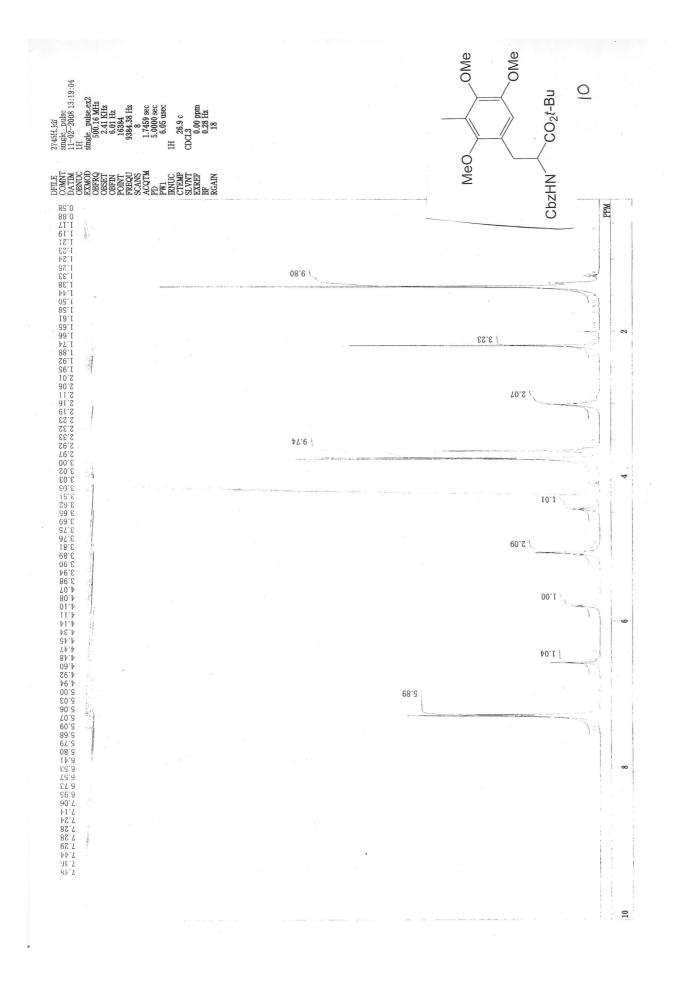


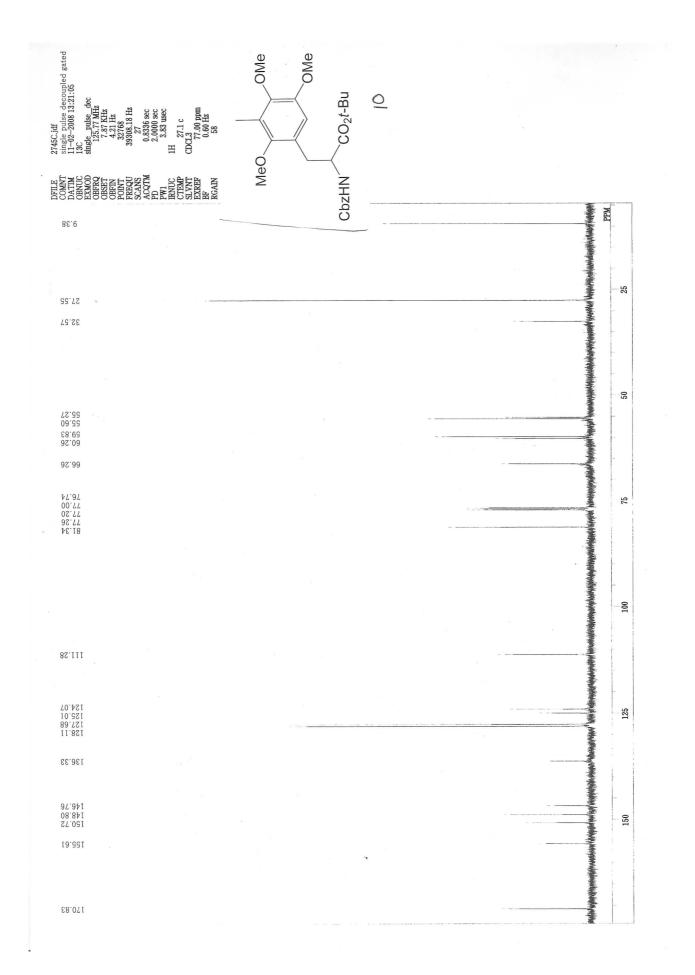


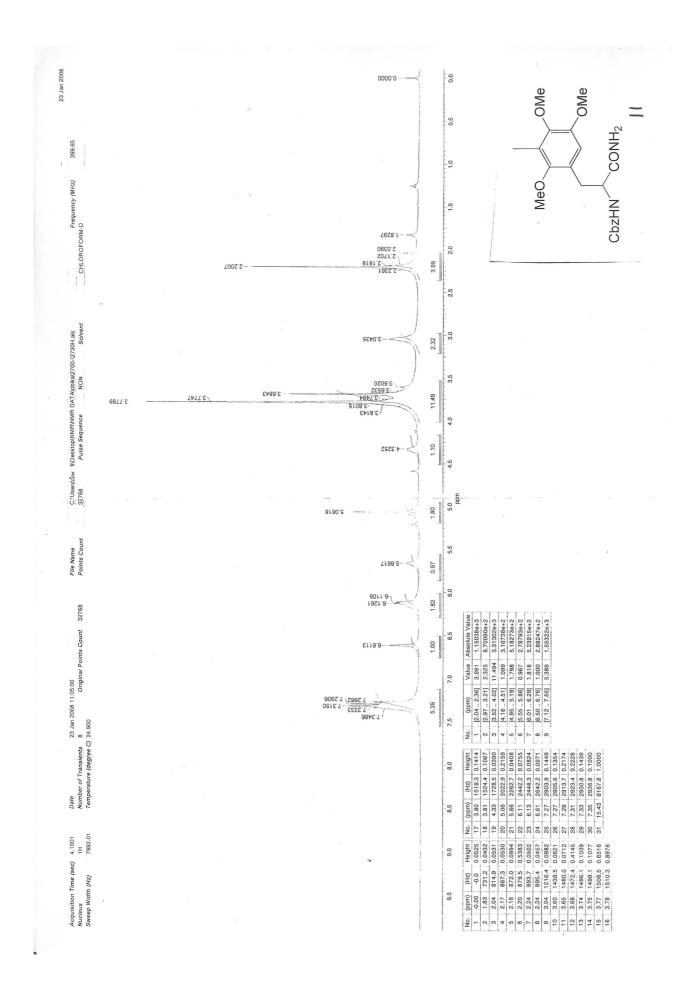


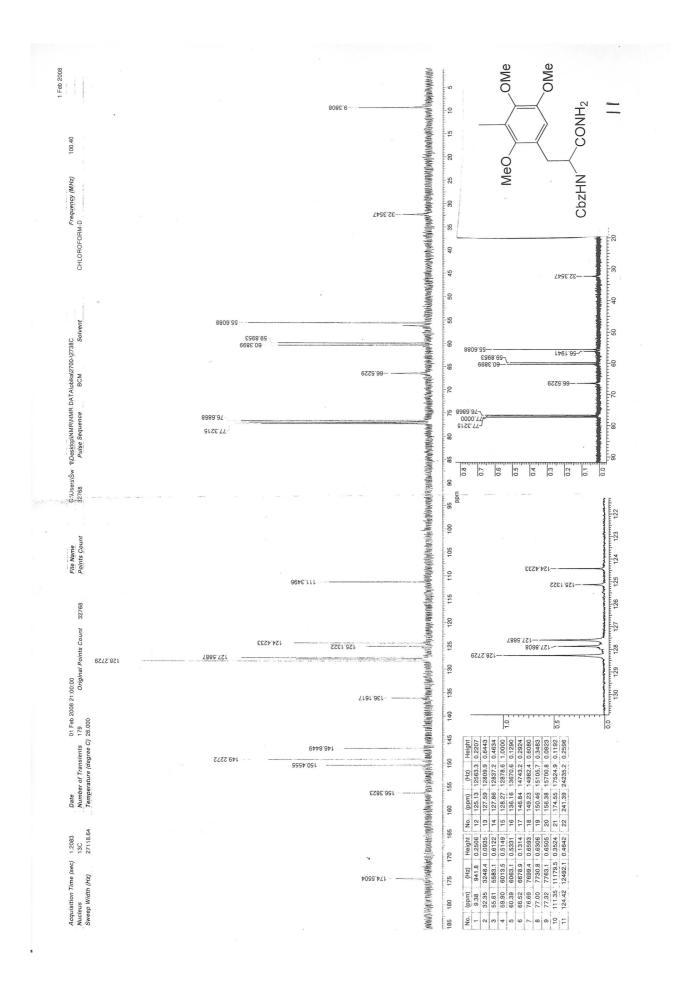


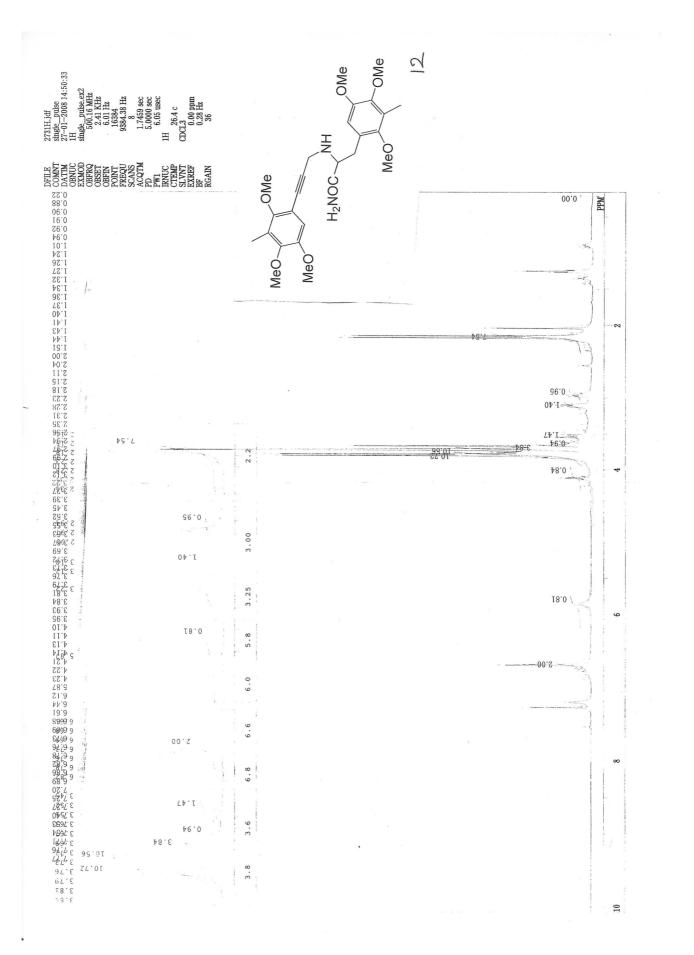


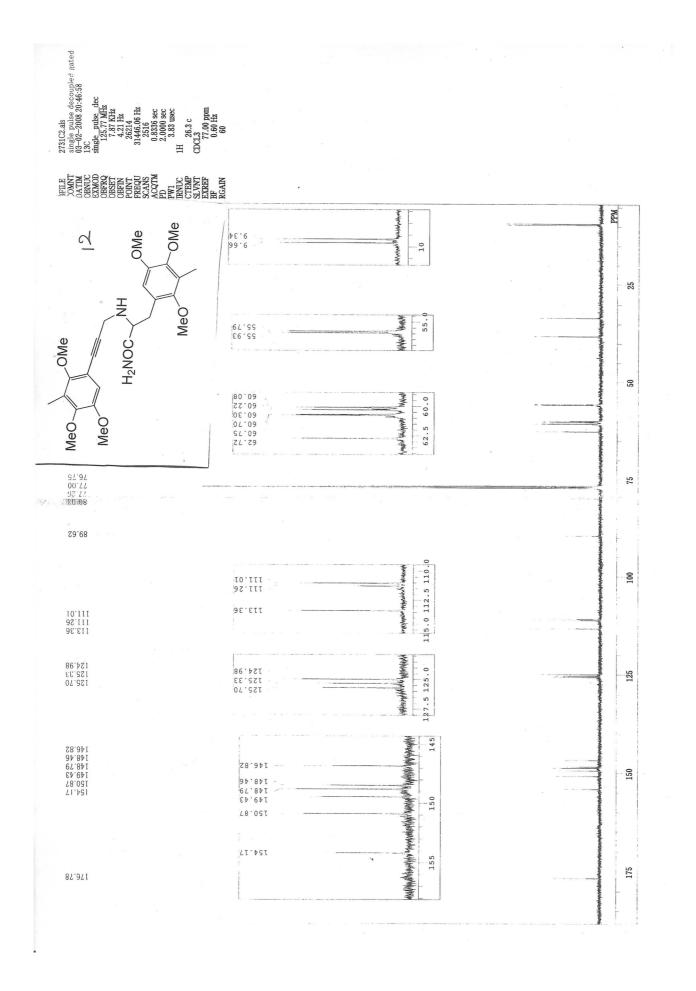


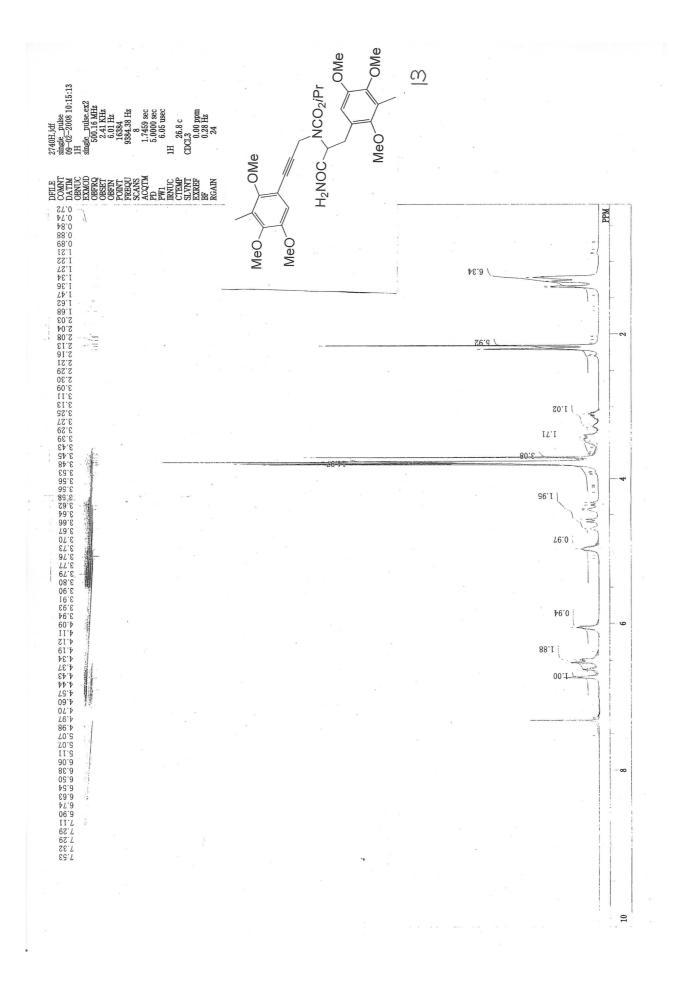


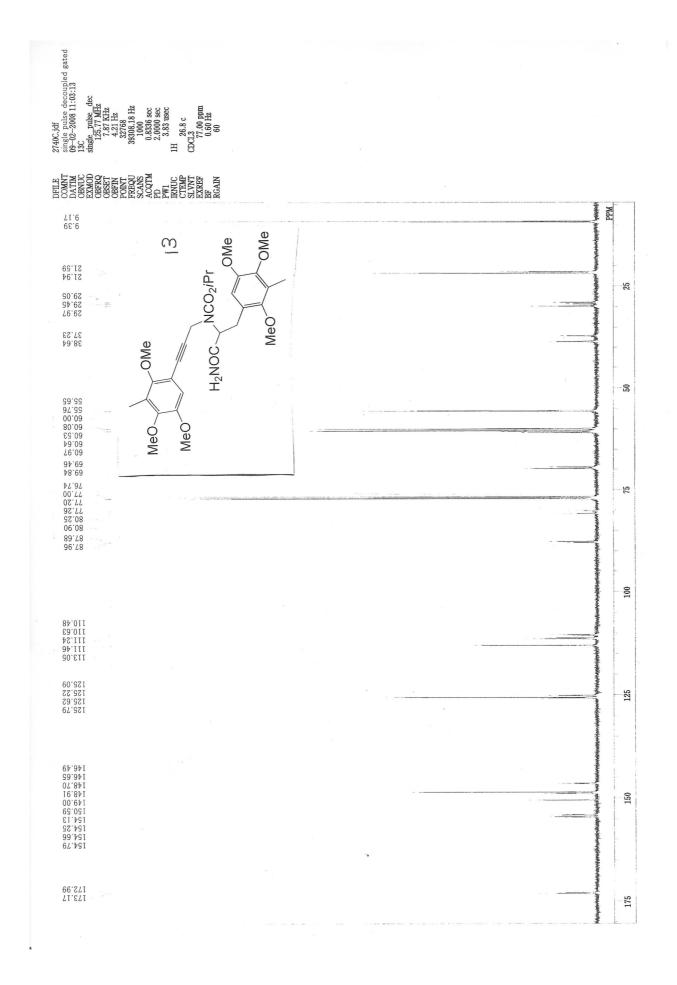


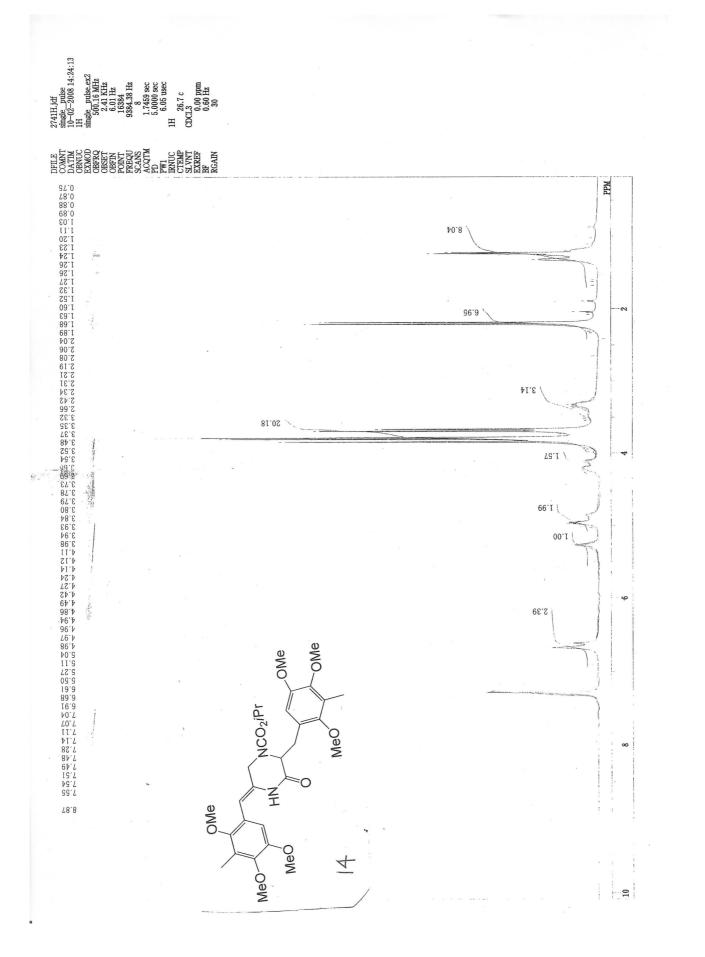


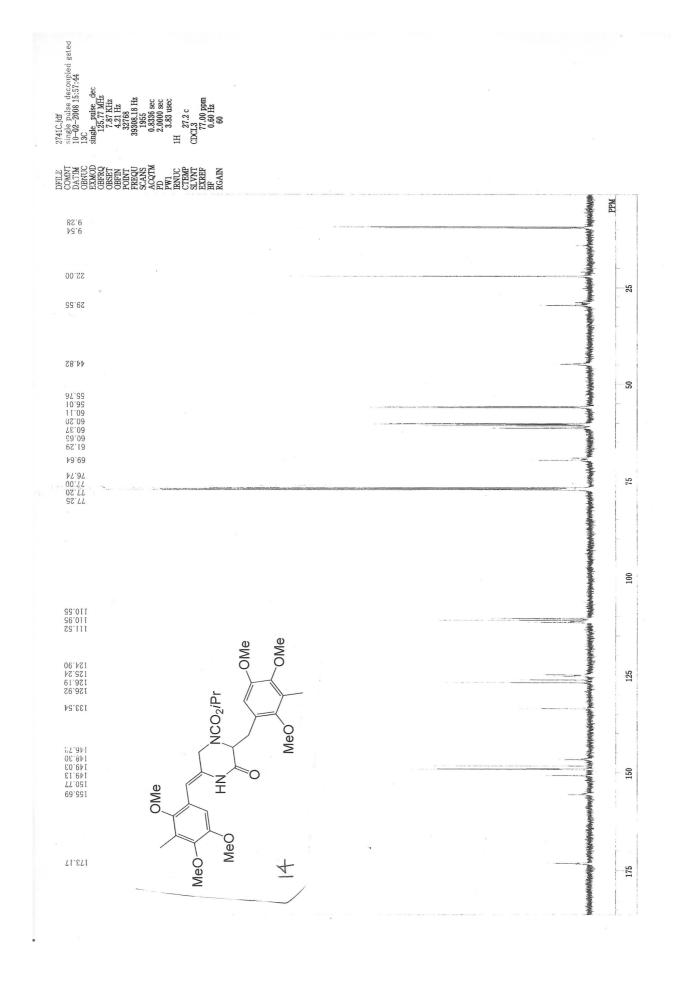


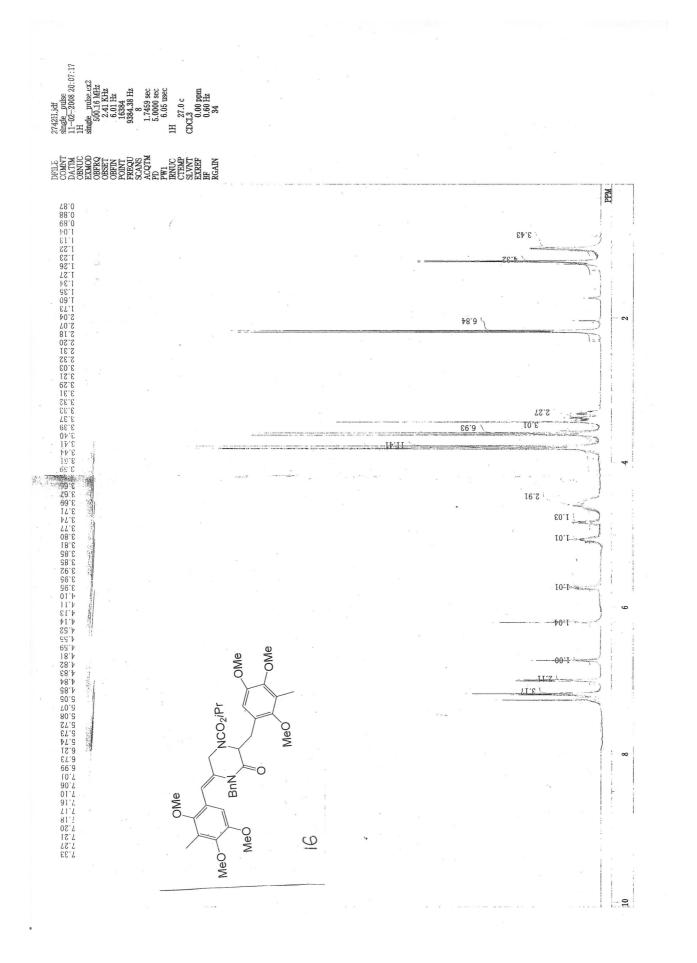


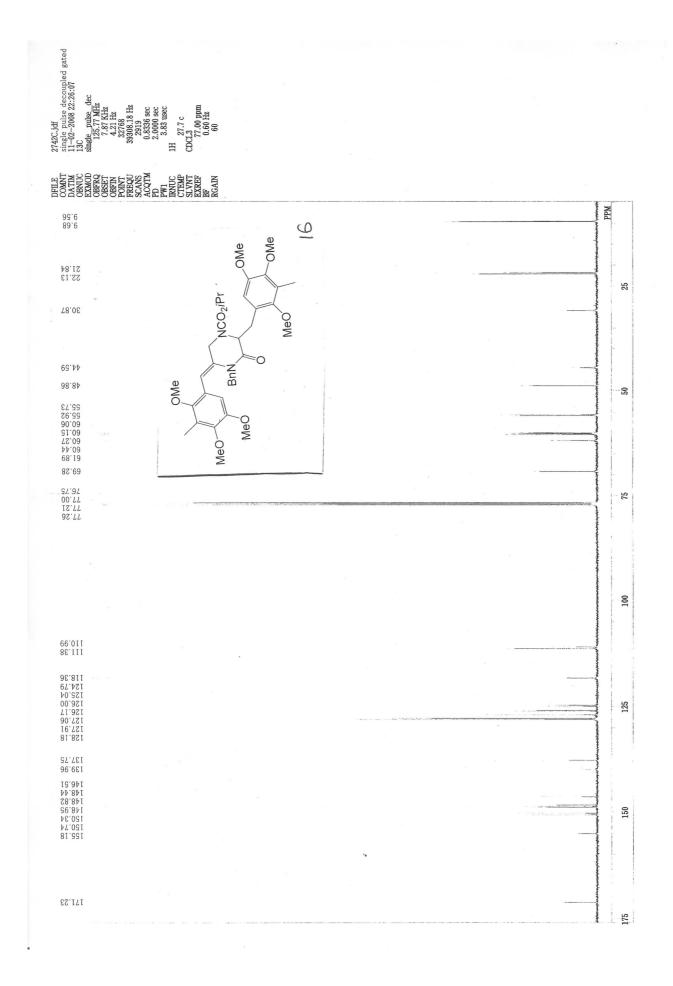


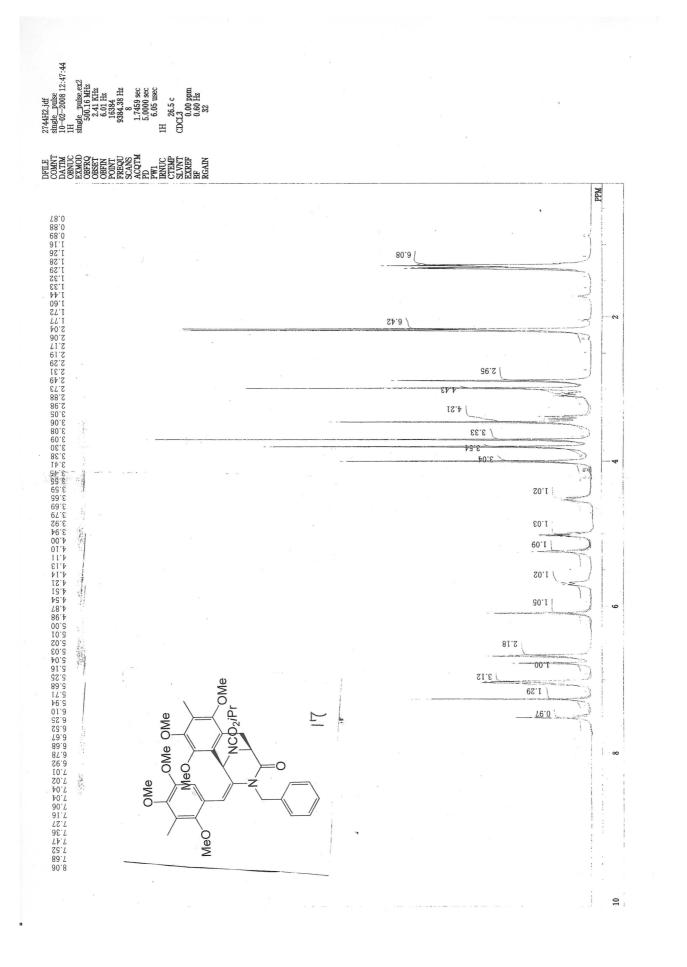


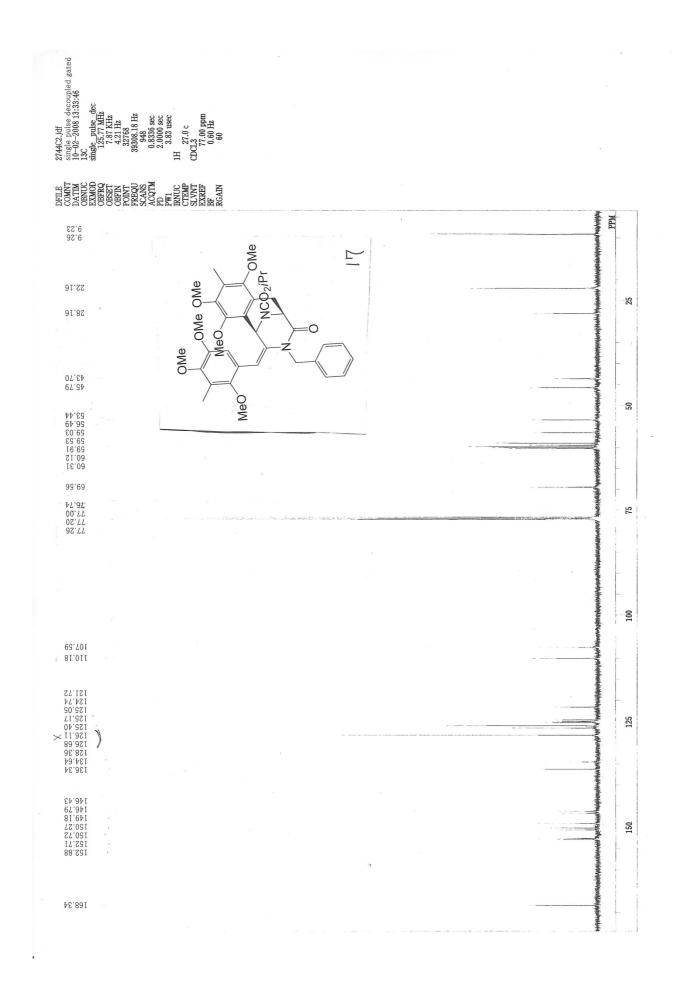


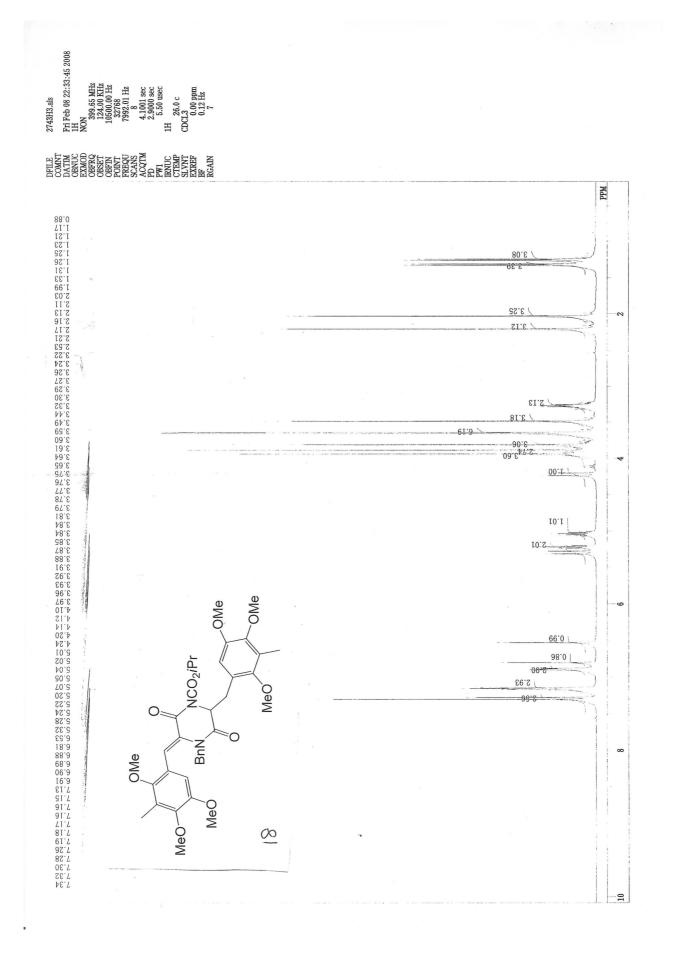


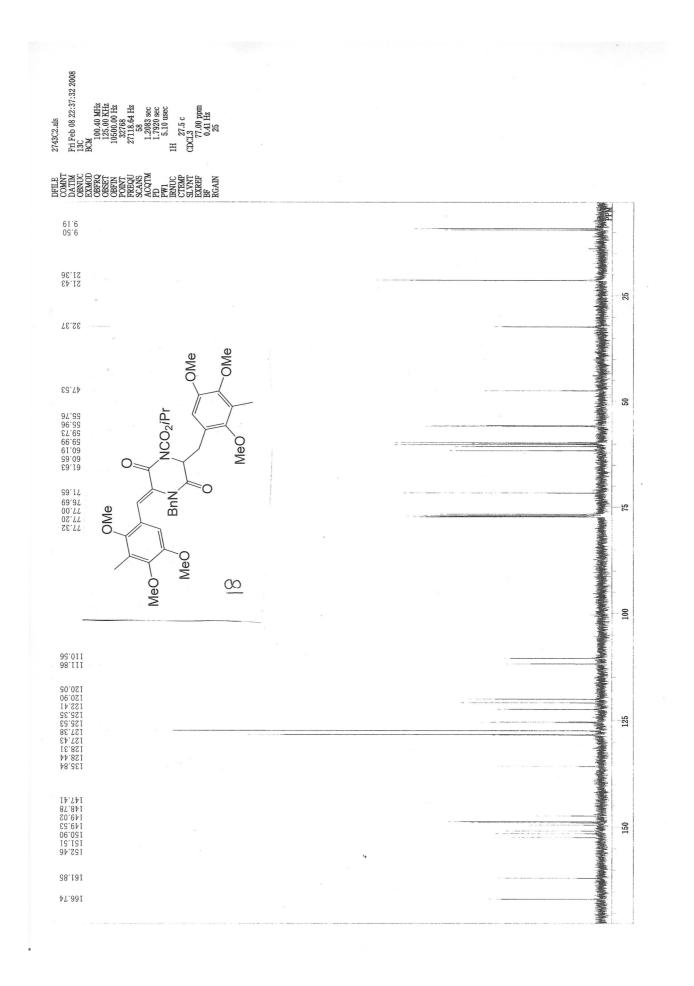












S-40

