Interplay of Hydrogenation and Dehydrogenation in Isoindoline and Indoline Isomers: A Density Functional Theory Study

Hui-Hsu Gavin Tsai*, Ming-Weng Chung, Yi-Kang Chou, and Duen-Ren Hou

Department of Chemistry
National Central University
Jhong-Li City
Tao-Yuan County 32001, Taiwan

* Correspondence: Hui-Hsu Gavin Tsai: hhtsai@cc.ncu.edu.tw

Figure S1. Calculation of the aromaticity of N-methylisoindole.

Figure S2. Energy profile (from IRC calculations; plotted in terms of the C $\cdots \mathrm{H}$ distance) for the oxidative insertion of Pd into isoindoline $(\mathbf{a} \mathbf{2} \rightarrow \mathbf{a 3}(\mathbf{T S}) \rightarrow \mathbf{a} 4)$. The C , H , and Pd atoms are labeled in the molecular graphs. The reactant $\mathbf{a} 2$ and product $\mathbf{a} 4$ geometries were optimized from the final geometries (labeled with triangles) obtained from the IRC calculations. The detailed geometries of $\mathbf{a} \mathbf{2}-\mathbf{a} 4$ are presented in the main text.

Figure S3. Energy profile (from IRC calculations) for the 1,3 PdH group migration $(\mathbf{a 4} \rightarrow \mathbf{a 5}(\mathbf{T S}) \rightarrow \mathbf{a 6})$ in the isoindoline reaction. Reaction coordinates: C8 $\cdots \mathrm{Pd}$ (left panel) and $\mathrm{C} 1 \cdots \mathrm{Pd}$ (right panel) distances. The $\mathrm{C} 1, \mathrm{C} 8$, and Pd atoms are labeled in the molecular graphs. The IRC calculations reveal a flat potential energy surface. The reaction pathway from $\mathbf{a 5}(\mathbf{T S})$ to $\mathbf{a 4}$ occurs with a decrease in the $\mathrm{C} 8 \cdots \mathrm{Pd}$ distance, indicating that the reaction proceeds toward the reactant. Similarly, the IRC pathway of $\mathbf{a 5}(\mathbf{T S}) \rightarrow \mathbf{a 6}$ reveals a decrease of the $\mathrm{C} 1 \cdots \mathrm{Pd}$ distance, indicating that the reaction proceeds toward the product. Optimization of the final geometries (labeled with triangles) from the IRC calculations provided the local minima of the reactant $\mathbf{a} \mathbf{2}$ and the product $\mathbf{a 4}$ (labeled with squares). These two local minima possess the structural characteristics of the reactant $\mathbf{a} 4$ and the product $\mathbf{a 6}$ with shorter $\mathrm{C} 8-\mathrm{Pd}$ and $\mathrm{C} 1-\mathrm{Pd}$ distances, respectively. The detailed geometries of $\mathbf{a 4} \mathbf{- a 6}$ are presented in the main text.

Figure S4. Energy profile (from the IRC calculations; plotted in terms of the C $\cdots \mathrm{H}$ distance) for the β-hydride elimination $(\mathbf{a 6} \rightarrow \mathbf{a 7}(\mathbf{T S}) \rightarrow \mathbf{a 8})$ in the isoindoline reaction. The C, H, and Pd atoms are labeled in the molecular graphs. Optimization of the final geometry (labeled with a triangle) from the IRC calculations ($\mathbf{(7 7}(\mathbf{T S}) \rightarrow \mathbf{a 6}$) provided the local minimum (labeled with a square) of reactant a6. This local minimum has similar structural characteristics as reactant a6 except for the different orientation of the H atom on Pd . The final geometry (labeled with a triangle) from the $\mathbf{a 7 (T S}) \rightarrow \mathbf{a 8}$ IRC calculation exhibits the obvious characteristics of PdH_{2} elimination. The detailed geometries of $\mathbf{a 6}$ and $\mathbf{a 7}$ are presented in the main text.

Figure S5. Energy profile (from IRC calculations; plotted in terms of the C… H distance) for the reaction ($\mathbf{d} \mathbf{2} \boldsymbol{\rightarrow} \mathbf{d 3}(\mathbf{T S}) \rightarrow \mathbf{d 4})$ for the oxidative insertion of Pd into indoline. The C, H, and Pd atoms are labeled in the molecular graphs. The reactant $\mathbf{d} \mathbf{2}$ and the product $\mathbf{d 4}$ were obtained through optimization of the final geometries (labeled with triangles) from the IRC calculations. The detailed geometries of d2-d4 are presented in the main text.

Figure S6. Energy profile (from IRC calculations; plotted in terms of the C $\cdots \mathrm{H}$ distance) for the β-hydride elimination ($\mathbf{d 4} \boldsymbol{\rightarrow} \mathbf{d 5}(\mathbf{T S}) \rightarrow \mathbf{d 6}$) in the indoline reaction. The C, H, and Pd atoms are labeled in the molecular graphs. Optimization of the final geometry (labeled with a triangle) from the IRC calculations ($\mathbf{d 5}(\mathbf{T S}) \rightarrow \mathbf{d 4}$) provided the reactant $\mathbf{d 4}$. The final geometry (labeled with a triangle) in the $\mathbf{d 5}(\mathbf{T S}) \rightarrow \mathbf{d 6}$ IRC calculation exhibits the obvious characteristics of PdH_{2} elimination. The detailed geometries of $\mathbf{d 4}$ and $\mathbf{d 5}$ are presented in the main text.

