Supporting information

Transmembrane Nanopore from Porphyrin Supramolecule
 Akiharu Satake, Mika Yamamura, Masafumi Oda, and Yoshiaki Kobuke

Pages S-

1. Schemes S1-S3 2-4
2. Figures S1-S3 5-7
3. Experimental 8-14
4. References 15
5. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8}, \mathbf{2}, \mathbf{3}, \mathbf{4}$, and $\mathbf{9}$ 16-24
6. UV-vis spectra of \mathbf{N}-(1-ester) $)_{3}$ and \mathbf{C}-(1-ester) $\mathbf{3}^{3}$ 25
7. HPLC-GPC chart of C-(1-ester) ${ }_{3}$ 26
8. MALDI-TOF mass spectra of \mathbf{C}-(1-ester) $)_{3}$ and \mathbf{C}-(1-acid) $)_{3}$ 27-28

Scheme S1. Synthetic scheme of zinc porphyrin 2

$\xrightarrow{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3}}$
/Dry Toluene, Dry DMF
40%

Scheme S2. Synthesis of 1-ester and 9

Side view

Top view

Figure S1. Molecular model of dimeric C-(1-acid)3 constructed by Material Studio (supplied from Accelrys), molecular mechanics calculation (Universal force field)

Figure S2. Time profile of ion-channel current observation (500 mM KCl symmetric conditions at pH 7.2), Y -axis: current (pA), dotted line: 0 pA , values indicated in the profile: applied voltage, The I-V plot is shown in Figure 1 in the main text.

Figure S3. I-V plots of ion-channel current of C-(1-acid)3, salt conditions: cis 10 mM / trans 100 mM tetramethylammonium chloride, pH 7.2 , Vrev: -28.2 $\pm 4.4 \mathrm{mV}$

Experimental

Materials

All the commercially available chemicals were used directly unless otherwise described. Grubbs catalyst (1st generation) and PAMAM dendrimer (generation 4, $10 \mathrm{wt} \% \mathrm{MeOH}$ solution) were purchased from Aldrich. Soybean lecithin (type-IIS) was purchased from Sigma Chemical Co. Ltd. 1-Methylimidazole-2-carboxyaldehyde (5) ${ }^{[1]}$, boronic ester $\mathbf{6}^{[2]}$, dipyrromethane $7^{[3]}$, and 5,15-bis-(4'-eyhoxycarbonylphenyl)-porphyrin ${ }^{[4]}$ were prepared according to the corresponding literatures. TLC was operated on glass plates coated with $60 \mathrm{~F}_{254}$ (Merck) silica gel. Column chromatography was undertaken using a column packed with silica gel 60 N (Kanto Chemical, spherical, neutral, 63-210 $\mu \mathrm{m}$).

Instruments

${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL JNM-ECP 600 spectrometer in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ chemical shifts were referenced to tetramethysilane or the residual proton resonance $\left(\left(\mathrm{CHCl}_{2}\right)_{2}, 5.95\right.$ ppm) in the case of $\left(\mathrm{CDCl}_{2}\right)_{2}$ as the internal standard. UV-vis spectra were measured by a Shimadzu UV-3000 PC spectrometer. Fluorescence spectra were recorded on a Hitachi F-4500 spectrometer. MALDI-TOF mass spectra were measured on a Perseptive Biosystems Voyager DE-STR or Bruker Daltonics autoflex II with dithranol as a matrix. High resolution mass spectra (FAB method, m-NBA as a matrix) were measured on a JEOL MStation.

For ion channel measurements, a patch/whole cell clamp amplifier (CEZ-2400, Nihon Kohden), an A/D converter (VR-10B, Instrutech Corp.), a video recorder (NV-HV1, Panasonic), a multifunction filter (3611, NF electronic), and a digitizer (DIGI DATA 1322A, Axon) were used. Data analysis was carried out on pCLAMP 8 (Axon) and Origin 7 (Origin Lab).

Synthesis

Free base porphyrin 8. Into a 3 L three-necked flask, 1-methylimidazole-2-carboxaldehyde 5 (0.61
g, 5.50 mmol), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylcarboxaldehyde 6 (1.28 g,
5.50 mmol), dipyrromethane $7(2.68 \mathrm{~g}, 11.0 \mathrm{mmol})$, and degassed $\mathrm{CHCl}_{3}(1.1 \mathrm{~L})$ were added. After replacing by N_{2}, tifluoroacetic acid ($1.27 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added slowly to the mixture over 30 seconds. The mixture was stirred at rt for 8 h . Triethylamine ($2.30 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added to neutralize the mixture, and then, p-chloranil ($4.06 \mathrm{~g}, 16.5 \mathrm{mmol}$) was added to the mixture for oxidative aromatization. After stirring for 8 h , the reaction mixture was passed through a column packed with Celite ${ }^{\circledR} 545$ to remove precipitate. The filtrate was washed with saturated NaHCO_{3} solution and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated under reduced pressure, and the residue was purified by SiO_{2} column chromatography $\left(\mathrm{CHCl}_{3}\right.$ /acetone $=6 / 1$ to $3 / 1$) to give a mixture of porphyrin 8 and aldehyde 6 (462.8 mg including 23% of $\mathbf{6}$) as purple solid. The mixture was used for the next coupling reaction. Aldehyde $\mathbf{6}$ could be removed after the next reaction. TLC $\left(\mathrm{CHCl}_{3} /\right.$ Acetone $\left.=4 / 1\right) \mathrm{R}_{\mathrm{f}}=0.37$, $\mathrm{HRMS}\left(\mathrm{FAB}, m-\mathrm{NBA}\right.$ matrix) mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 789.4304, calcd for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{BN}_{6} \mathrm{O}_{4} 789.4308 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $8 \delta 9.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $2 \mathrm{H}, \beta$-pyrrole), 9.47 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta$-pyrrole), 8.85-8.83 (m, 2H, β-pyrrole), 8.80-8.77 (m, 2H, β-pyrrole), 8.67* and 8.58* (s, 1H, ph), 8.29-8.26* and 8.19-8.16* (m, 1H, ph), 8.26-8.22 (m, 1H, ph), 7.77* and 7.75* (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, p h$), 7.70* and 7.69* (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Im}$), 7.49* and 7.48* (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Im}$), 6.08 (ddt, $J=17.0,10.4,5.7 \mathrm{~Hz}, 2 \mathrm{H},-C H=$), 5.42 (dq, $J=17.0,1.6$ $\left.\mathrm{Hz}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.26\left(\mathrm{dt}, J=10.4,1.6 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.10\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.11-4.04(\mathrm{~m}$, $\left.4 \mathrm{H},-\mathrm{OCH}_{2}-\right)$, $3.66\left(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.43^{*}$ and $3.39 *(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NMe})$, 2.83-2.75 (m, 4H, CH2$)$, 1.41 and $1.40(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{Me}),-2.68(\mathrm{~s}, 2 \mathrm{H}$, Inner -NH), and 23% of $6 \delta 10.05(\mathrm{~s}, \mathrm{CHO}), 8.31(\mathrm{~s}, \mathrm{Ar})$, 8.07-8.05 (m, Ar), 8.00-7.97 (m, Ar), 7.53 (t, $J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 1.37$ (s, Me). (*: atropisomers)

Zinc porphyrin 2. Free base porphyrin 8 ($441.5 \mathrm{mg}, 559.7 \mu \mathrm{~mol}$) was dissolved in CHCl_{3} (72 mL). Saturated solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in methanol $(10.6 \mathrm{~mL})$ was added to the solution, and stirred for 7 h . The mixture was washed with saturated NaHCO_{3} solution and brine. The mixture was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$. Saturated NaHSO_{3} solution (pH 3) was adjusted to pH 8 with saturated NaHCO_{3} solution, and the mixture (200 mL) was added to the chloroform solution to remove aldehyde $\mathbf{6}$. ${ }^{[5]}$

After stirring for 3 h , the chloroform layer was washed with saturated NaHCO_{3} solution and distilled water. The mixture was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was washed with hexane to give 2 (293.4 mg, 62\%). TLC $\left(\mathrm{CHCl}_{3} /\right.$ Acetone $\left.=20 / 1\right) R f=0.49$, HRMS ($\mathrm{FAB}, m-\mathrm{NBA}$ matrix) mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 851.3429$, calcd for $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{BN}_{6} \mathrm{O}_{4} \mathrm{Zn} 850.3443,{ }^{1} \mathrm{H}$ NMR of complementary coordination dimer of 2 (600 MHz , CDCl_{3}) $\delta 9.64-9.59$ (m, 2H, β-pyrrole), 9.16* (s, 0.5H*, ph), 9.01-8.94 (m, 4H, β-pyrrole), 8.73* (d, $\left.J=7.3 \mathrm{~Hz}, 0.3 \mathrm{H}^{*}, p h\right), 8.63^{*}(\mathrm{~s}, 0.4 \mathrm{H}, p h), 8.31\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.8 \mathrm{H}^{*}, p h\right), 8.18-8.15\left(\mathrm{~m}, 0.5 \mathrm{H}^{*}\right.$, ph), 7.94 (t, $J=7.7 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{ph}), 7.76^{*}\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}^{*}, p h\right), 6.22-6.15(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=)$, 5.57-5.55* (m, 0.5H*, Im-5), 5.54-5.52* (0.5H*, Im-5), 5.52 (d, 2H, J=17.0 Hz, =CH2), $5.44-5.38$ ($\mathrm{m}, 2 \mathrm{H}, \beta$-pyrrole), 5.29-5.14 (m, 4H, CH2), 4.26-4.19 (m, 4H, -OCH ${ }_{2}$), 3.97-3.88 (m, 4H, CH 2), 3.15-3.05 (m, 2H, CH2), 3.04-2.95 (m, 2H), 2.20-2.18* (m, 0.5H*, Im-4), 2.14-2.11* (m, 0.5H*, Im-4), (1.72, 1.69, 1.68, and 1.65) (s, 3H, -NMe), 1.56 and 1.40 (s, 6H, Me). (*: atropisomers)

5,15-Bisbromo-10,20-Bis-(4'-ethoxycarbonylphenyl)-porphyrin

5,15-Bis-(4-eyhoxycarbonylphenyl)-porphyrin ${ }^{[4]}$ ($203.7 \mathrm{mg}, 0.336 \mathrm{mmol}$) was dissolved in degassed $\mathrm{CHCl}_{3}(102 \mathrm{~mL})$, and the solution was cooled at $0^{\circ} \mathrm{C}$. Pyridine ($0.774 \mathrm{~mL}, 9.5703 \mathrm{mmol}$) and N -bromosuccinimide ($179.3 \mathrm{mg}, 1.0074 \mathrm{mmol}$) were added to the solution successively. After stirring for 1 h at $0^{\circ} \mathrm{C}$, acetone (30 mL) was added to the mixture, and the mixture was warmed to rt. The mixture was concentrated under reduced pressure, and the residue was washed with methanol and dried under reduced pressure to give dibromoporphyrin 3 ($177.8 \mathrm{mg}, 69 \%$). TLC $\left(\mathrm{CHCl}_{3}\right) \mathrm{Rf}=0.39$, MALDI-TOF mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}]^{+}\right) 764.0$, calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} 764.05$ (Average), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63$ (broad d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole), 8.79 (br, $4 \mathrm{H}, \beta$-pyrrole), 8.47 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole), 8.24 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \beta$-pyrrole), 4.60 (q, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, CH_{2}), $1.57\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right),-2.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$.
(Zn)-(Free base)-(Zn) trisporphyrin 4. In the Schlenk flask (50 mL), boronate-porphyrin 2 (20.7 $\mathrm{mg}, 24.3 \mu \mathrm{~mol}$) and dibromoporphyrin $3(9.3 \mathrm{mg}, 12.2 \mu \mathrm{~mol})$ was placed. The atmosphere was
replaced with Ar. Dry toluene (6.1 mL) and dry DMF (3.05 mL) were added to the flask, and the mixture was degassed by freeze-pump-thaw processes three times. The mixture was heated at $80^{\circ} \mathrm{C}$. To the mixture, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11.9 \mathrm{mg}, 36.6 \mu \mathrm{~mol})$ dried in a microwave oven for 1 min and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($2.8 \mathrm{mg}, 2.44 \mu \mathrm{~mol}$) were added successively. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 20 h . The mixture was cooled to rt. Distilled water (30 mL) was added, and the mixture was stirred for 10 min . Precipitates were removed by filtration, and the filtrate was transferred to a separated funnel. Toluene was added to the mixture, and the mixture was washed with brine. The organic layer was extracted with CHCl_{3} several times, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was filtered out, and colored precipitates on the filter paper were eluted with a mixture of chloroform and methanol (9/1). The organic solution was concentrated under reduced pressure, and the residue was passed through short column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /\right.$ acetone $\left.=4 / 1\right)$. The collected solution was divided into three equal parts. Each part was purified further by recycle gel permeation chromatography (Tosoh G2500H ${ }_{\text {HR }}$, Pyridine, flow rate: $3 \mathrm{~mL} / \mathrm{min}$, detection: 430 nm , three recycle). Totally 10.0 mg of trisporphyrin 4 (40 \%) was obtained as purple solid. TLC (benzene/THF $=10 / 1) R f=0.47$, MALDI-TOF mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 2056.2$, calcd for $\mathrm{C}_{122} \mathrm{H}_{106} \mathrm{~N}_{16} \mathrm{O}_{8} \mathrm{Zn}_{2} 2055.70$ (Average), UV-vis (in pyridine) $\lambda_{\text {max }} / \mathrm{nm}$ (Abs.): 611 (0.018), 562 (0.029), 518 (0.019), 439 (0.423), 430 (0.417), 423 (0.406), 365 (0.031), Fluorescence (in pyridine, $\lambda_{\mathrm{ex}}=518 \mathrm{~nm}$) $\lambda_{\max } / \mathrm{nm}$ (intensity) 619 (42.8), 654 (83.2), 720 (60.4).

Tris(free base porphyrin) 9. For ${ }^{1} \mathrm{H}$ NMR spectral analysis of free base trisporphyrin, a part of $\mathbf{4}$ was demetalated to give tris(free base porphyrin). Biszinc-mono free base porphyrin 4 ($27.4 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CHCl}_{3}(110 \mathrm{~mL})$ under Ar atmosphere. p-Toluenesulfonic acid monohydrate ($208.5 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added to the solution, and the mixture was stirred for 1 h . The organic layer was washed with water, saturated NaHCO_{3} solution, and water, successively. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: benzene/THF from $1.5 / 1$ to $1 / 1$) and further reprecipitation from chloroform/hexane to give tris(free base porphyrin) 9 ($13.4 \mathrm{mg}, 25 \%$) as
purple solid. This sample was unstable as compared with 4 . On standing 5 days in air at rt , about 80% of sample was decomposed. TLC (benzene/THF $=1 / 1$) $\mathrm{Rf}=0.45$, MALDI-TOF mass m / z $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1929.4, calcd for $\mathrm{C}_{122} \mathrm{H}_{110} \mathrm{~N}_{16} \mathrm{O}_{8} 1927.87$ (Average), ${ }^{1} \mathrm{H}$ NMR (as a mixture of atropisomers, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.65-9.48 (m, 8H, β-pyrrole), 9.38-9.27 (m, $8 \mathrm{H}, \beta$-pyrrole), [9.13, 9.11, 9.08, and 9.02]* (s, 1H, ph), 8.98 (m, 4H, β-pyrrole), 8.80-8.74 (m, 4H, β-pyrrole), 8.69-8.52 (m, 4H, ph), 8.48-8.12 (m, 10H, ph), 7.68-7.64 (m, 2H, Im), 6.12-6.00 (m, 4H, -CH=), 5.43-5.35 (m, 4H, =CH), 5.27-5.20 (m, 4H, =CH), 5.15-5.05 (m, 8H, CH $)^{2}$, $4.62(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.12-4.00 (m, 8H, CH2), 3.68-3.60 (m, 8H, CH 2), [3.41, 3.38, 3.37, and 3.31]* (s, 6H, NCH_{3}), 2.81-2.75 (m, 8H), 1.65-1.45 (m, $\mathrm{H}_{2} \mathrm{O} \& \mathrm{CH}_{2} \mathrm{CH}_{3}$), -2.60 ~ -2.70* (m, 6H, NH). UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm}(\mathrm{Abs.):} 648$ (0.033), 592 (0.040), 553 (0.064), 517 (0.131), 433 (1.220), 414 (1.379), Fluorescence $\left(\mathrm{CHCl}_{3}, \lambda_{\mathrm{ex}}=517 \mathrm{~nm}\right) \lambda_{\text {max }} / \mathrm{nm}$ (intensity): 653 (316.8), 717 (92.7).

Tris(zinc porphyrin) (1-ester). Trisporphyrin $4(1.7 \mathrm{mg}, 0.88 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CHCl}_{3}(0.7$ $\mathrm{mL})$. Saturated $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution in methanol $(0.1 \mathrm{~mL})$ was added to the solution. The mixture was stirred for 3 h . The mixture was washed with saturated NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by reprecipitation from chloroform/hexane to give 1-ester (1.9 mg , quant.) as purple solid. TLC (benzene/THF=10/1) $\mathrm{R}_{\mathrm{f}}=0.47$, HRMS (FAB, m-NBA matrix) mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$2119.6155, calcd for $\mathrm{C}_{122} \mathrm{H}_{105} \mathrm{~N}_{16} \mathrm{O}_{8} \mathrm{Zn}_{3} 2119.6162$.

Reorganization of 1-ester to macroring N-(1-ester) $3 .{ }^{[6]} \quad$ Tris(zincporphyrin) $\mathbf{1 - e s t e r ~ (4 . 7 ~ m g , ~}$ $2.2 \mu \mathrm{~mol}$) was dissolved in a mixture of $\mathrm{CHCl}_{3} /$ methnol ($9 / 1(\mathrm{v} / \mathrm{v}), 110 \mathrm{~mL}$), and the mixture was left stand without stirring at $27^{\circ} \mathrm{C}$ for 24 h . The mixture was concentrated under reduced pressure $\left(30{ }^{\circ} \mathrm{C}\right.$ from 250 to 150 hPa$)$. Conversion into cyclic trimer N-(1-ester) ${ }_{3}$ was confirmed by analytical gel permeation chromatography (JAIGEL-3HA, Chloroform).

Covalent linked macroring C-(1-ester) ${ }_{3}$. Macroring N-(1-ester) ${ }_{3} \quad(7.0 \mathrm{mg}, 1.1 \mu \mathrm{~mol})$ was
dissolved in $\mathrm{CHCl}_{3}(16 \mathrm{~mL})$ under Ar atmosphere, and 1st generation of Grubbs catalyst (1.4 mg, $1.7 \mu \mathrm{~mol}$) was added to the solution. The reaction progress was monitored by MALDI-TOF spectrometry, and continued until most of the peaks were converted to the corresponding trimer (for 9 h in this experiment). Distilled water (15 mL) was added to the mixture to quench the reaction. The organic layer was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \text { Acetone }=20 / 1 \text {) to give covalently linked macroring } \mathbf{C} \text {-(1-ester) }\right)_{3}(6.3 \mathrm{mg}, 92 \%)$ as purple solid. TLC $\left(\mathrm{CHCl}_{3} /\right.$ Acetone=15/1) Rf=0.30, MALDI-TOF mass m/z ([M+H] $)$ 6177, calcd for $\mathrm{C}_{354} \mathrm{H}_{288} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{Zn}_{9} 6170$ (monoisotopic) and 6188 (average), UV-vis (1,1,2,2-tetrachloroethane) $\lambda_{\max } / n m$ (Abs): 621 (0.028), 565 (0.049), 555 (0.049), 442 (0.6325), 412 (0.635), Fluorescence (1,1,2,2-tetrachloroethane, $\lambda_{\mathrm{ex}}=548 \mathrm{~nm}$) $\lambda_{\max } / \mathrm{nm}$ (Int): 665 (59.9), 625 (219.7).

Hydrolysis of C-(1-ester) $\mathbf{3}_{3}$ to give C-(1-acid) $)_{3}$ Hexaester C-(1-ester) $\mathbf{3}_{3}$ was dissolved in a mixture of $\mathrm{THF} / \mathrm{methanol}(2 / 1(\mathrm{v} / \mathrm{v}), 10.0 \mathrm{~mL}) .8 \mathrm{M} \mathrm{NaOH}$ solution (3.38 mL) was added to the mixture to hydrolyze the ester groups. The reaction progress was monitored by MALDI-TOF mass analysis of a small amount of sample neutralized with acetic acid. After 7h, most of ester groups were hydrolyzed. Distilled water (30 mL) and CHCl_{3} were added to the mixture, successively. The mixture was cooled with ice bath, and acidified with 1 M HCl to adjust pH 3 . The organic layer was separated, and the solvent was evaporated. To the residue, ion-exchanged water was added, and the suspension was stirred vigorously. The sample was centrifuged, and the supernatant was removed. This washing process was repeated totally three times. After dryness under reduced pressure, similar washings with diethyl ether, hexane, and chloroform were carried out in sequence to give \mathbf{C} -(1-acid) ${ }_{3}$ (6.5 mg , quant.) as purple solid. MALDI-TOF mass $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 6018$, calcd for $\mathrm{C}_{342} \mathrm{H}_{264} \mathrm{~N}_{48} \mathrm{O}_{24} \mathrm{Zn}_{9} 6001$ (monoisotopic) and 6018 (average), UV-vis (dry THF) $\lambda_{\text {max }} / \mathrm{nm}$ (Abs): 619 (0.013), 563 (0.027), 442 (0.282), 410 (0.228), Fluorescence (dry THF, $\lambda_{\mathrm{ex}}=563 \mathrm{~nm}$) $\lambda_{\max } / \mathrm{nm}$ (Int): 676 (157.1), 623 (516.9).

Measurements of ion channel currents

Ion channel currents were measured by the planar bilayer lipid membrane method. Details may refer to the previous papers. ${ }^{[7]}$ A premix solution of \mathbf{C}-(1-acid) $)_{3}(10 \mu \mathrm{~g})$ and soybean lecithin (10 mg) in n-decane ($250 \mu \mathrm{~L}$) was prepared. The premix solution was applied to the cis side of a hole precoated with a concentrated lecithin solution in n-decane ($80 \mathrm{mg} / \mathrm{mL}$) in a partition separating two aqueous chambers. In advance, the two chambers were filled with ca. 1 mL of appropriate salt solution, such as 500 mM of $\mathrm{KCl}, \mathrm{LiCl}, \mathrm{CaCl}_{2}$, or tetraalkylammonium chloride, and adjusted to pH 7.2 by Tris-HEPES buffer. Triangular voltage ramps were applied to form bilayer membranes. Then, data were collected at various applied potentials. The data storage and analysis were undertaken in a similar way as reported previously. ${ }^{[7]}$

Blocking pore

A stock solution of 4th generation of PAMAM dendrimer ($\mathbf{G 4}, 1.1 \times 10^{-5} \mathrm{M}$) was prepared by mixing $10 \mathrm{wt} \%$ methanol solution of $\mathbf{G 4}(0.8 \mathrm{mg})$ and $500 \mathrm{mM} \mathrm{Me} \mathrm{MNCl}^{\mathrm{NCl}}$ solution (0.5 mL). Appropriate drops of the G 4 stock solution ($5 \mu \mathrm{~L} / \mathrm{drop}$) was added to the trans side with applying positive voltage when ion channel current was observed. Data were collected at positive and, then, negative applied voltage.

Deblocking pore

After diminishing of ion current by the above blocking, appropriate drops of 1 M of HEPES solution ($5 \mu \mathrm{~L} /$ drop) were added to the both cis and trans sides with applying negative voltage. Data were collected at various applied voltages.

References

1. Milgrom, L. R.; Dempsey P. J. F. and Yahioglu D. Tetrahedron 1996, 52, 9877.
2. Vogels, C. M.; Nikolcheva, L. G.; Norman, D. W.; Spinney, H. A.; Decken, A.; Baerlocher, M. O.; Baerlocher, F. J.; Westcott, S. A. Can. J. Chem. 2001, 79, 1115.
3. Ohashi, A.; Satake, A.; Kobuke, Y. Bull. Chem. Soc. Jpn. 2004, 77, 365.
4. Ogawa, K.; Dy, J.; Kobuke, Y. J. Porphyrins and Phthalocyanines, 2005, 9, 735.
5. Fieser, M., Fieser and Fieser's Reagents for Organic Synthesis, vol. 11, p. 487, 1984, John Wiley \& Sons, Canada.
6. Kuramochi, Y.; Satake, A.; Itou, M.; Ogawa, K.; Araki, Y.; Ito, O.; Kobuke, Y. Chem. Eur. J. 2008, 14, 2827-2841.
7. a) C. Goto, M. Yamamura, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2001, 123, 12152, b) Y. Kobuke, T. Nagatani, J. Org. Chem. 2001, 66, 5094.

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 8

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2

 $\begin{array}{llllllllllllll}10.0 & 9.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 & 0.0 & -1.0 & -2.0 & -3.0\end{array}$

Figure S . ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3

Figure 5 . ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

Figure S9. Magnified ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

Figure $\mathrm{S} 10 . \mathrm{HH}-\mathrm{COSY}$ spectrum of 9 recorded at 600 MHz in CDCl_{3}

Figure S11. Magnified $\mathrm{HH}-\mathrm{COSY}$ spectrum of $9\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(600 \mathrm{MHz},\left(\mathrm{CDCl}_{2}\right)_{2}\right)$ of N -(1ester) $)_{3}$

Figure S13. UV-vis spectra of N -(1-ester) $)_{3}$ and C-(1-ester) ${ }_{3}$ in 1,1,2,2tetrachloroethane at $25^{\circ} \mathrm{C}$

Figure S14. HPLC-GPC chart of C-(1-ester) ${ }_{3}$ (conditions; column : Tosoh $\mathbf{G 2 5 0 0 H _ { H R }}$, pyridine, $0.8 \mathrm{~mL} / \mathrm{min}$)

Figure S15. MALDI-TOF mass spectrum of C-(1-ester) ${ }_{3}$ (matrix: dithranol)

Figure S16. MALDI-TOF mass spectrum of C-(1-acid) $)_{3}$ (matrix: dithranol)

