Reactivity of Chromium(III) Nutritional Supplements

in Biological Media:

a X-Ray Absorption Spectroscopic Study

Annie Nguyen, Irma Mulyani, Aviva Levina and Peter A. Lay*

School of Chemistry, The University of Sydney, NSW, 2006, Australia

Supporting Information

Figure S1. Typical examples of background subtraction and normalization of XANES spectra, including those with strong (e.g., **A2**) and weak (e.g., **A11**) edges, collected at different beamlines (ANBF or SSRL). Designations of the samples correspond to Tables 1-3 (main text). The upper energy limit for data collection was 200 eV above the Cr edge.³³ The normalization algorithm, performed in the Spline program within the XFit software package,³² included the following steps: (i) the pre-edge background (red line in **a**) was fitted with a fourth-order polynomial; (ii) the spline function (red line in **b**) was set as a first-order polynomial; and (iii) the post-edge part of the background function was adjusted using a control point (**a**), so that the slope of the resultant spline function corresponded to that of the normalized X-ray crossection for Cr (red and blue lines in **b**).³³ The control points are the points with weight 100 (compared to 1 for the absorbance data points and the *k*-weighting for the normalised absorbance points) in the least-squares fitting procedure for the corresponding spline curve. They, therefore, act by strongly 'attracting' the spline curve toward themselves and can be used to influence or control the curve.³²

Figure S2. Comparison of XANES spectra (295 K) of Cr(III) complexes **A** and **B** before and after the reactions with artificial digestion systems and blood components. Designations of the samples correspond to Tables 1-3 (main text). The insets are expansions of the main peaks in the XANES.

Figure S3. Comparison of XANES spectra (295 K) of Cr(III) complexes **A-C** before and after the reactions with cultured mammalian cells or cell culture media. Designations of the samples: L6-Cr(VI) are differentiated rat muscle cells (L6), treated with Cr(VI) (10 μ M for 20 h at 310 K); A549-Cr(VI) are human lung carcinoma cells (A549), treated with Cr(VI) (100 μ M for 4 h at 310 K; data from Ref. 12); other designations correspond to Tables 1-3 (main text).

Figure S4. Comparison of XANES spectra (295 K) of Cr(III)-protein adducts (**a-d**; RSA is rat serum albumin and Tr is bovine transferrin; see Experimental Section for sample preparation) and of model Cr(III) complexes (**e** and **f**). Designations of the samples correspond to those given inTables 1-3 (main text).

Figure S5. Typical ESMS signals (positive-ion mode) for a freshly prepared aqueous solution of **A** (1.0 mM; **a**) and for the reactions of **A** (1.0 mM) with NH₃/CH₃COOH buffer (10 mM) at various pH values for 32 h at 298 K (**b-d**). Assignments of the main signals (1-4) are given in Table S1.

Table S1. Assignment of Major ESMS Signals for the Reactions of $\bf A$ with Aqueous Buffer Solutions^a

Signal	al +m/z Assignment ^b			
1	663	$\left[Cr_3O(O_2CEt)_6(OH_2)_3\right]^+$		
	677	$\left[Cr_3O(O_2CEt)_6(OH_2)_2(MeOH)\right]^+$		
	691	$\left[Cr_3O(O_2CEt)_6(OH_2)(MeOH)_2\right]^+$		
	704	[Cr3O(O2CEt)6(MeOH)3]+		
2	509	$\left[Cr_3O(O_2CEt)_3(OH)_3(OH_2)_3\right]^+$		
	523	$\left[Cr_3O(O_2CEt)_3(OH)_3(OH_2)_2(MeOH)\right]^+$		
	537	$\left[Cr_3O(O_2CEt)_3(OH)_3(OH_2)(MeOH)_2\right]^+$		
	551	$\left[Cr_3O(O_2CEt)_4(OH)_2(OH_2)_3\right]^+$		
	565	$\left[Cr_3O(O_2CEt)_4(OH)_2(OH_2)_2(MeOH)\right]^+$		
	578	$\left[Cr_3O(O_2CEt)_4(OH)_2(OH_2)(MeOH)_2\right]^+$		
	592	$\left[Cr_3O(O_2CEt)_4(OH)_2(MeOH)_3\right]^+$		
3	288	$[Cr(O_2CEt)_3]NH_4^+$		
4	196	$[Cr_2(OH)_2(O_2CEt)_2(OH_2)_6]^{2+}$		

^a Reactions of **A** (1.0 mM) with NH₃/CH₃COOH buffers (10 mM) at pH = 4.0, 6.9 or 8.1 (see Figure S5) for 32 h at 298 K. Designations of the signals (1-4) correspond to Figure S5. ^b MeOH ligands originate from the flushing solution used for ESMS (H₂O:MeOH = 1:1).

Figure S6. Cr K-edge XANES spectra (raw absorbance data, freeze-dried solids, 295 K) for cell pellets collected after the treatments of L6 cells with **C** (0.10 mM for 20 h at 310 K). Complex **C** was added to the cell culture medium either immediately (**a**) or 24 h prior to (**b**) the treatment of the cells. Conditions of sample preparation were identical for the both samples. Spectrum (**b**) was multiplied by a factor of 10, to compensate for the difference in ion chamber gain.

Figure S7. Electronic absorption spectra of Cr(III) aqua-hydroxo complexes:²³ (**a**) chromatographic fractions after the reaction of $[Cr(OH_2)_6]^{3+}$ (0.10 M) with NaOH (0.10 M) for 24 h at 298 K, followed by separation on Sephadex G25 gel filtration column (eluted with H₂O); and (**b**) comparison of spectra of the main chromatographic fraction immediately after the separation (black line) and after freeze-drying and re-dissolving in H₂O (red line). The extinction coefficients (ε , M⁻¹ cm⁻¹) were calculated based on Cr concentrations in solutions, determined by AAS.

Table S2. Characteristic Features in the Electronic Absorption Spectra of Cr(III)-OH-OH₂ Complexes

Sample	Max ^a	\mathbf{LW}^{b}	Min ^a	Max ^a	\mathbf{LW}^{b}	Min ^a
Monomer (deprot.) ^c	586 (16)	159	511 (8.5)	432 (28)	97	342 (3.7)
Monomer (deprot.) ^d	590 (16)	ND^e	ND^e	430 (28)	ND^e	ND^e
Dimer/trimer ^c	584 (19)	118	498 (5.3)	422 (24)	79	350 (1.3)
Dimer/trimer ^{c,f}	590 (20)	125	498 (4.9)	424 (23)	78	350 (0)
Dimer ^d	582 (17)	147	490 (5.2)	417 (20)	78	345 (1.5)
Trimer ^d	584 (19)	121	499 (5.5)	425 (30)	80	346 (2.1)
Tetramer ^d	580 (16)	115	500 (5.6)	426 (30)	80	347 (1.9)
Hexamer ^d	585 (19)	129	503 (6.1)	426 (29)	82	353 (2.4)
Polymers ^c	619 (24)	182	495 (4.8)	428 (14)	87	355 (2.3)

^a Wavelength in nm; extinction coefficients (M⁻¹ cm⁻¹, per Cr ion) are given in parentheses. ^b Line width at half-height in nm. ^c Data from this work; samples obtained from the reaction of [Cr(OH₂)]₆]³⁺ (0.10 M) with NaOH (0.10 M), followed by separation of the products on a Sephadex G-25 column (see Figure S5 and the Experimental Section in the main text). ^d Data from Ref. 23. ^e Data not available. ^f Sample re-dissolved after freeze-drying.

Figure S8. Comparison of experimental and calculated (based on the models listed in Table 3, main text) XANES spectra of biotransformation products of Cr(III) complexes **A-C**. Designations of the samples correspond to Tables 1-3, main text. Smoothed first-derivative spectra (blue lines) were obtained by the FFT procedure with 20-point window³⁵ (see the Experimental Section). The figure is continued on the next six pages. The data for the sample **A10** are shown in Figure 2, main text.

Figure S8 (continued).

Figure S8 (end).

Figure S9. Experimental and fitted XAFS spectra (295 K) of **A** and **D** (solid mixtures with BN) and reaction products of **A** in biological media (**A1**, **A2** and **A7**, freeze-dried solids). Designations of the samples correspond to Tables 1-3 (main text). Details of the fits are given in Table S3.

Table S3. Summary of SS XAFS Fitting Results^a

Parameter ^b	A (solid)	A1	A2	A7	D					
k range, \mathring{A}^{-1}	1-11									
FT range, Å	0.5-5.0									
N_i/p	4.5									
R, %	30.0	29.1	31.6	30.7	25.2					
$-\Delta E_0$, eV	E_0 , eV 3.6(3) 3.6(3)		3.6(3)	3.6(3)	3.6(3)					
S_0^{2c}	0.80(1)	0.81(7)	0.81(7)	0.84(7)	0.81(7)					
		Shell 1: Cr–O/	N							
N^{d}	6	6 6		6	6					
X, Å	1.96(1)	1.96(1)	1.96(1)	1.96(1)	1.98(1)					
σ^2 , e $\mathring{\mathrm{A}}^2$	0.0050(1)	0.0036(4)	0.0020(5)	0.0022(9)	0.0015(
		Shell 2: Cr–Ci	r							
N	1.9 ± 0.3	2.3 ± 1.0	1.5 ± 0.7	0.7 ± 0.3						
X, Å	3.24(2)	3.24(2)	3.15(2)	3.10(2)						
$\sigma^{2,e} \mathring{\mathrm{A}}^{2}$	0.0048(6)	0.0043(5)	0.0055(4)	0.0060(6)						

^a Designations of the samples correspond to Tables 1-3 (main text). Errors in the last significant figures (arising from the noise in the data, as calculated by Monte-Carlo analysis) are shown in parentheses. ^b Designations of the parameters: N_i/p is the determinancy factor (were N_i is the number of independent observations and p is the number of varied parameters); ³² R is the goodness-of-fit parameter; ³² $\Delta E_0 = E_0 - 6005$ (eV) is the threshold energy; S_0^2 is the scale factor; N are the numbers of donor atoms in each shell; X (Å) are the average absorber-scatterer distances; and σ^2 (Å²) are the Debye-Waller factors. ^c Restrained to be within the 0.80-1.0 range. ³² ^d The values were not varied during the optimization. ^e Restrained to be within the 0.0005-0.02 Å² range.

Figure S10. Typical electronic absorption spectra of the reaction mixtures containing **B** (1.0 mM) and H_2O_2 (5.0 mM) in undiluted rat serum or HEPES-buffered saline (HBS, pH = 7.4) after 1 h of reaction at 310 K. The reaction mixtures were diluted 10-fold with H_2O prior to the spectral measurement.