Transfer of copper between bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. Insights into mechanisms of copper uptake and hypoxia Selectivity

Zhiguang Xiao,* Paul S Donnelly,* Matthias Zimmermann and Anthony G Wedd

School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, and Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010, Australia
email: z.xiao@unimelb.edu.au, pauld@unimelb.edu.au

Electronic Supplementary Information

Table S1. Electrochemical data ${ }^{a}$

Solvent ${ }^{\text {b }}$	$\mathrm{pH}^{\text {c }}$	$\mathrm{Cu}($ Atsm)			$\mathrm{Cu}(\mathrm{Gtsm})$			$\begin{aligned} & \Delta E \\ & (\mathrm{~V})^{d} \end{aligned}$
		$\begin{gathered} E_{\mathrm{P}_{c}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{Pa}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} E_{1 / 2} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{P}_{\mathrm{c}}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{Pa} a} \\ (\mathrm{mV}) \end{gathered}$	$\begin{aligned} & E_{1 / 2} \\ & (\mathrm{mV}) \end{aligned}$	
$\begin{gathered} \mathrm{Me}_{2} \mathrm{SO} / \text { buffer } \\ (3: 2 \mathrm{v} / \mathrm{v}) \end{gathered}$	6	- 590	-520	-555	- 390	ir ${ }^{e}$	-	-0.2
	7	- 590	- 530	- 560	- 400	ir ${ }^{e}$	-	- 0.2
	8	-590	-525	- 555	- 395	ir ${ }^{e}$	-	- 0.2
	9	- 590	-530	- 560	- 400	ir ${ }^{\text {e }}$	-	-0.2
$\mathrm{Me}_{2} \mathrm{SO}$	-	-630	-570	- 600	- 480	-410	- 445	-0.15
	-			$-590{ }^{f}$			$-430{ }^{f}$	-0.15

a Potentials were referenced to $\mathrm{Ag} / \mathrm{AgCl}$ in saturated KCl ;
${ }^{\mathrm{b}} \mathrm{Me}_{2} \mathrm{SO}$ containing $0.1 \mathrm{M}\left(\mathrm{Bu}_{4}\right) \mathrm{NBF}_{4}$ as electrolyte; aqueous buffer (50 mM) containing 0.1 M NaCl as electrolyte;
c The buffers (50 mM) used were $\mathrm{KPi}(\mathrm{pH} 6,7)$, $\operatorname{Tris-Cl}(\mathrm{pH} 8)$ and Na-Ches (pH 9);
${ }^{\text {d }}$ Potential difference between $\mathrm{Cu}(\mathrm{Atsm})$ and $\mathrm{Cu}(\mathrm{Gtsm})$;
${ }^{\mathrm{e}}$ Irreversible;
${ }^{f}$ From reference: Dearling, J. L.; Lewis, J. S.; Mullen, G. E.; Welch, M. J.; Blower, P. J. J. Biol. Inorg. Chem., 2002, 7, 249-59.

Table S2 Estimation of $K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I}} \mathrm{L}\right)(\mathrm{L}=$ Atsm or Gtsm) by ligand competition for $\mathrm{Cu}(\mathrm{I})$ with Bca. ${ }^{a, b}$

Ligand $\left(\mathrm{LH}_{2}\right)$	$[\mathrm{Bca}]_{\text {tot }}$ $(\mu \mathrm{M})$	$\left[\mathrm{LH}_{2}\right]_{\text {tot }}$ $(\mu \mathrm{M})$	A_{562}	$\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-c}$ $(\mu \mathrm{M})$	$\left[\mathrm{Cu}^{\mathrm{I} \mathrm{L}]^{d}}\right.$ $(\mu \mathrm{M})$	$K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I} L}\right)^{e}$ $\left(10^{-13} \mathrm{M}\right)$
none	100	0	0.322	40.0	0	-
AtsmH $_{2}$	0	50	0	0	40.0	-
	100	50	0.212	26.3	13.7	1.8
	100	100	0.192	23.9	16.1	2.7
	100	200	0.148	18.4	21.6	2.2
GtsmH_{2}	0	50	0.073	0	40.0	-
	100	50	0.222	23.9	16.1	1.1
	100	100	0.190	18.8	21.2	1.1
	100	200	0.162	14.3	25.7	1.1

${ }^{a}$ In KPi buffer (20 mM ; pH 7) containing $\mathrm{NaCl}(100 \mathrm{mM})$, dithionite (1 mM) and DMSO (30%; v/v) under anaerobic conditions;
${ }^{b}$ Total Cu concentration in all equilibrium solutions was $40.0 \mu \mathrm{M}$;
${ }^{c}\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}$ concentration was calculated as $40.0 \times\left(\mathrm{A}_{562} / 0.322\right)$ and $40 \mathrm{x}\left\{\left(\mathrm{A}_{562}-\right.\right.$ $0.073) /(0.322-0.073)\}$ for competition with AtsmH_{2} and GtsmH_{2}, respectively, since at 562 nm , the $\mathrm{Cu}(\mathrm{I})$ form has no absorption for AtsmH H_{2} but has weak absorption for GtsmH_{2} (see Figures 6c, S1c);
${ }^{d}\left[\mathrm{Cu}^{\mathrm{I}} \mathrm{L}\right]=40.0-\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}$ with assumptions that $\left[\mathrm{Cu}^{\mathrm{I}}\right]_{\text {free }} \ll\left[\mathrm{Cu}^{\mathrm{I} L}\right]$ and $\left[\mathrm{Cu}^{\mathrm{I}}\right]_{\text {free }} \ll$ $\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}$;
e $K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I}} \mathrm{L}\right)$ was calculated according to following equation:

$$
K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I} P}\right)=\left(1 / \beta_{2}\right) \times\left(K_{\mathrm{ex}}\right)^{-1}=\left(1 / \beta_{2}\right) \times \frac{\left[\mathrm{Cu}^{1}(\mathrm{Bca})_{2}\right][\mathrm{L}]}{\left[\mathrm{Cu}^{1} \mathrm{~L}\right][\mathrm{Bca}]^{2}}
$$

where $\beta_{2}=1.7 \times 10^{17}$ for $\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}$ (see Table S3) and $K_{\text {ex }}$ is the equilibrium constant for following exchange reaction:

$$
\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}+\mathrm{L} \Leftrightarrow \mathrm{Cu}^{\mathrm{I}}-\mathrm{L}+2 \mathrm{Bca}^{2-}
$$

Determination of formation constant β_{2} for $\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}$

If a competition for $\mathrm{Cu}(\mathrm{I})$ between a $\mathrm{Cu}(\mathrm{I})$-binding protein P (or ligand L) and both Bca and Bcs can be induced in the same buffer conditions by variation of $[\mathrm{Bca}] /[\mathrm{Cu}(\mathrm{I})]$ and $[\mathrm{Bcs}] /[\mathrm{Cu}(\mathrm{I})]$ ratio, then we have following competitions:

$$
\begin{align*}
& {\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}+\mathrm{P} \Leftrightarrow \mathrm{Cu}^{\mathrm{I}}-\mathrm{P}+2 \mathrm{Bcs}^{2-}} \\
& K_{\mathrm{ex}}=\frac{\left[\mathrm{Cu}^{\mathrm{I}}-\mathrm{P}\right][\mathrm{Bcs}]^{2}}{\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right][\mathrm{P}]}=\left\{K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I} P)} \times \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3}\right)\right\}^{-1}\right. \tag{1}
\end{align*}
$$

Where $K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I}} \mathrm{P}\right)$ is the dissociation constant of $\mathrm{Cu}^{\mathrm{I}} \mathrm{P}$ and $\beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}\right)$ is the formation constant of $\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}$.

Similarly, $\quad\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}+\mathrm{P} \Leftrightarrow \mathrm{Cu}^{\mathrm{I}}-\mathrm{P}+2 \mathrm{Bca}^{2-}$

$$
\begin{equation*}
K_{\mathrm{ex}}^{\prime}=\frac{\left[\mathrm{Cu}^{1}-\mathrm{P}\right][\mathrm{Bca}]^{2}}{\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right][\mathrm{P}]}=\left\{K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I} P)} \mathrm{x} \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3}\right)\right\}^{-1}\right. \tag{2}
\end{equation*}
$$

In the same reaction buffer, $K_{\mathrm{D}}\left(\mathrm{Cu}^{\prime} \mathrm{P}\right)$ in eqs (1) and (2) should be the same,

$$
\begin{array}{ll}
\text { thus, } & \frac{K_{\mathrm{ex}}}{K_{\mathrm{ex}}^{\prime}}=\frac{K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I} P) \times \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}\right)}\right.}{K_{\mathrm{D}}\left(\mathrm{Cu}^{\mathrm{I}} \mathrm{P}\right) \times \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}\right)} \\
=\frac{\beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}\right)}{\beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}\right)} \\
\text { and } \quad \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bca})_{2}\right]^{3-}\right)=\frac{K_{\mathrm{ex}}}{K_{\mathrm{ex}}^{\prime}} \times \beta_{2}\left(\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}\right) \tag{3}
\end{array}
$$

From the known β_{2} for $\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{Bcs})_{2}\right]^{3-}\left(10^{19.8}\right)^{1}$ and the experimental values $K_{\text {ex }}$ and $K_{\text {ex }}{ }^{\text {' }}$ for eqs (1) and (2), β_{2} for $\left[\mathrm{Cu}^{1}(\mathrm{Bca})_{2}\right]^{3-}$ can be calculated from (3).

Three proteins (Atx1 ${ }^{1}$, nA-PcoC, ${ }^{2} \mathrm{C} 42 \mathrm{~S}-\mathrm{rubredoxin}{ }^{3}$) were used to define the ratio of ($K_{\mathrm{ex}} /$ $K_{\text {ex }}$) in the same reaction buffer according to a previous approach. ${ }^{1}$ These three proteins bind $\mathrm{Cu}(\mathrm{I})$ with very different affinity ($K_{\mathrm{D}}=10^{-13}-10^{-18} \mathrm{M}$), but the ratios of ($K_{\text {ex }} / K_{\text {ex }}$) derived were very similar (Table S 1), validating the reliability of the data obtained. Other experimental details and results are given in Tables S4 and S5.

References

1. Xiao, Z.; Loughlin, F.; George, G. N.; Howlett, G. J.; Wedd, A. G. J. Am. Chem. Soc., 2004, 126, 3081-90.
2. Djoko, K. Y.; Xiao, Z.; Huffman, D. L.; Wedd, A. G. Inorg. Chem., 2007, 46, 4560-8.
3. Xiao, Z.; Lavery, M. J.; Ayhan, M.; Scrofani, S. D. B.; Wilce, M. C. J.; Guss, J. M.; Tregloan, P. A.; George, G. N.; Wedd, A. G. J. Am. Chem. Soc., 1998, 120, 4135-50.

Table S3. Exchange constants for eqs 1 and 2 and formation constant β_{2} for $\left[\mathrm{Cu}^{1}(\mathrm{Bca})_{2}\right]^{3-}$

apo-protein	$K_{\mathrm{ex}}(\text { see eqs } 1,2)^{a}$		$K_{\mathrm{ex}}(\mathrm{Bcs}) / K_{\mathrm{ex}}(\mathrm{Bca})$	$\beta_{2}\left(\left[\mathrm{Cu}(\mathrm{Bca})_{2}\right]^{3}\right)^{b}$
	Bca	Bcs		2.6×10^{17}
nA-PcoC	6.6×10^{-5}	2.8×10^{-7}	2.2×10^{-3}	1.4×10^{17}
C42S-Rd	2.0	4.4×10^{-3}	1.7×10^{-3}	1.1×10^{17}
Atx1	4.5	7.8×10^{-3}	$2.7(\pm 1.5) \times 10^{-3}$	$2(1) \times 10^{17}$
Average				

a Reactions were carried out in Na-Mops buffer (pH 7) and 100 mM NaCl ;
${ }^{\mathrm{b}}$ Calculated from eq (3) with known $\beta_{2}\left(=10^{19.8}\right)$ for $\left[\mathrm{Cu}^{1}(\mathrm{Bcs})_{2}\right]^{3-}$.

Table S4 Competition for $\mathrm{Cu}(\mathrm{I})$ between Bcs and apo-proteins nA-PcoC, $\mathrm{C} 42 \mathrm{~S}-\mathrm{Rd}$ and Atx1 in Mops buffer ($50 \mathrm{mM}, \mathrm{pH} 7$) and 100 mM NaCl .

$[\mathrm{Bcs}]_{\text {total }}$ ($\mu \mathrm{M}$)	Apoprotein	$\begin{gathered} {[\mathrm{P}]_{\text {total }}} \\ (\mu \mathrm{M}) \end{gathered}$	A_{483}	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{Bcs})_{2}\right]^{3-}} \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} {\left[\mathrm{Cu}^{\mathrm{I}-\mathrm{P}]}\right.} \\ (\mu \mathrm{M}) \end{gathered}$	$K_{\text {ex }}$	Average K_{ex}
70-500	none	0	0.395	30.4			
70	nA-PcoC	50	0.366	28.2	2.4	3.4×10^{-7}	2.8×10^{-7}
		100	0.361	27.8	2.8	2.2×10^{-7}	
400	C42S-Rd	20	0.278	21.4	9.0	4.9×10^{-3}	4.4×10^{-3}
		30	0.254	19.5	10.9	3.8×10^{-3}	
		40	0.217	16.7	13.7	4.2×10^{-3}	
		80	0.134	10.3	20.1	4.7×10^{-3}	
500	Atx 1	10	0.329	25.3	4.9	7.5×10^{-3}	7.8×10^{-3}
		20	0.270	20.8	9.4	9.0×10^{-3}	
		30	0.236	18.2	12.0	7.9×10^{-3}	
		60	0.172	13.3	16.9	6.7×10^{-3}	

Table S5 Competition for $\mathrm{Cu}(\mathrm{I})$ between Bca and apo-proteins nA-PcoC, $\mathrm{C} 42 \mathrm{~S}-\mathrm{Rd}$ and Atx1 in Mops buffer ($50 \mathrm{mM}, \mathrm{pH} 7$) and 100 mM NaCl .

$[\mathrm{Cu}]_{\text {Total }}$ ($\mu \mathrm{M}$)	$[\mathrm{Bca}]_{\text {total }}$ ($\mu \mathrm{M}$)	$\begin{gathered} \text { Apo- } \\ \text { protein } \end{gathered}$	$\begin{aligned} & {[\mathrm{P}]_{\text {total }}} \\ & (\mu \mathrm{M}) \end{aligned}$	A_{562}	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{Bca})_{2}\right]^{3-}} \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} {\left[\mathrm{Cu}^{\mathrm{I}}-\mathrm{P}\right]} \\ (\mu \mathrm{M}) \end{gathered}$	$\mathrm{K}_{\text {ex }}$	Average K_{ex}
30.4	100-3000	none	0	0.240	30.4			
15.0	45	PcoC	10	0.074	9.5	5.5	8.8×10^{-5}	6.6×10^{-5}
			25	0.059	7.6	7.4	5.0×10^{-5}	
			50	0.044	5.6	9.4	4.6×10^{-5}	
			100	0.025	3.2	11.8	6.2×10^{-5}	
			150	0.015	1.9	13.1	8.4×10^{-5}	
31.1	2500	$\begin{gathered} \mathrm{C} 42 \mathrm{~S}- \\ \mathrm{Rd} \end{gathered}$	20	0.119	15.0	16.1	1.7	2.0
			30	0.067	8.5	22.6	2.2	
			40	0.041	5.2	25.9	2.2	
30.6	3000	Atx 1	20	0.109	13.8	16.8	3.4	4.5
			30	0.052	6.6	24.0	5.5	

Figure S1. Solution spectra in buffer A:
(a) a solution of $\mathrm{Cu}^{2+}(40 \mu \mathrm{M}), \mathrm{GtsmH}_{2}(50 \mu \mathrm{M})$ and Bca $(200 \mu \mathrm{M})$;
(b) after addition of sodium dithionite (1 mM) into solution (a);
(c) after addition of sodium dithionite (1 mM) into solution (a) in the absence of Bca;
(d) after addition of Edta $(100 \mu \mathrm{M})$ into solution (b), followed by bubbling air into the solution.

Figure S2. Solution spectra in buffer A:
(a) a mixture of $\mathrm{Cu}^{2+}(40 \mu \mathrm{M}), \operatorname{AtsmH}_{2}(50 \mu \mathrm{M})$ and $\operatorname{Bcs}(1 \mathrm{mM})$ (i) and after reduction of the mixture with sodium dithionite ($1 \mathrm{mM} ; 10 \mathrm{~min}$) (ii);
(b) spectral difference recorded at 2 h after addition of sodium ascorbate $(1 \mathrm{mM})$ or glutathione (1 mM) into solution a(i) (bottom red trace (i)) and at 10 min after addition of sodium dithionite (1 mM) (top blue trace (ii)).

Figure S3. Solution spectra in buffer A:
(a) a mixture of $\mathrm{Cu}^{2+}(40 \mu \mathrm{M}), \mathrm{GtsmH}_{2}(50 \mu \mathrm{M})$ and Bca $(200 \mu \mathrm{M})$;
(b) after reduction of the solution (a) with sodium ascorbate ($1 \mathrm{mM} ; 6 \mathrm{~h}$);
(c) after reduction of the solution (a) with glutathione ($1 \mathrm{mM} ; 6 \mathrm{~h}$);
(d) after reduction of the solution (a) with sodium dithionite ($1 \mathrm{mM} ; 10 \mathrm{~min}$).

Figure S4. Solution spectra in buffer A:
(a) a mixture of $\mathrm{Cu}^{2+}(40 \mu \mathrm{M}), \mathrm{GtsmH}_{2}(50 \mu \mathrm{M})$ and $\mathrm{Bcs}(1 \mathrm{mM})$ (i) and after reduction of the mixture with sodium dithionite ($1 \mathrm{mM} ; 10 \mathrm{~min}$) (ii);
(b) spectral difference recorded at 1, 2, 3, 5, 7 min (from bottom to top) after addition of GSH (1 mM) into solution a(i) (note: the top blue trace at 7 min superimposed the spectral difference between $a(i i)$ and $a(i)$).

Figure S5. Solution spectra in buffer A containing $\mathrm{LH}_{2}=\operatorname{AtsmH} \mathbf{H}_{2}$ (a) and GtsmH_{2} (b):
(i) a solution of $\mathrm{Cu}^{2+}(40 \mu \mathrm{M}), \mathrm{LH}_{2}(50 \mu \mathrm{M})$ and $\mathrm{Bca}(200 \mu \mathrm{M})$;
(ii) after addition of sodium dithionite $(1 \mathrm{mM})$ into solution (i);
(iii) after addition of sodium dithionite (1 mM) and glutathione (1 mM) into solution (i);
(iv) (a) 10 min after bubbling air into solution a(iii) (note: the spectrum a(iv) was increasing in intensity with time and overlapped with spectrum a(i) in about 1 h); (b) 3 h after bubbling air into solution b (iii) (note: the spectrum b (iv) remained little change in intensity with time).

Figure S6. Solution spectra in KPi buffer (20 mM ; pH 7; $100 \mathrm{mM} \mathrm{NaCl} ; 10 \%$ DMSO):
(a) top, a mixture of $\mathrm{CuSO}_{4}(40 \mu \mathrm{M}), \mathrm{GtsmH}_{2}(50 \mu \mathrm{M})$ and $\mathrm{BCA}(200 \mu \mathrm{M})$ and from the second top, $10 \mathrm{~min}, 1 \mathrm{~h}, 2 \mathrm{~h}$ and 4 h after addition of apo-Atx1 $(100 \mu \mathrm{M})$ into the top solution;
(b) after addition of sodium dithionite (1 mM) into the top solution (a) without apo-Atx1.

